xref: /openbmc/linux/security/keys/keyring.c (revision e657c18a)
1 /* Keyring handling
2  *
3  * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/export.h>
13 #include <linux/init.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/seq_file.h>
18 #include <linux/err.h>
19 #include <keys/keyring-type.h>
20 #include <keys/user-type.h>
21 #include <linux/assoc_array_priv.h>
22 #include <linux/uaccess.h>
23 #include "internal.h"
24 
25 /*
26  * When plumbing the depths of the key tree, this sets a hard limit
27  * set on how deep we're willing to go.
28  */
29 #define KEYRING_SEARCH_MAX_DEPTH 6
30 
31 /*
32  * We keep all named keyrings in a hash to speed looking them up.
33  */
34 #define KEYRING_NAME_HASH_SIZE	(1 << 5)
35 
36 /*
37  * We mark pointers we pass to the associative array with bit 1 set if
38  * they're keyrings and clear otherwise.
39  */
40 #define KEYRING_PTR_SUBTYPE	0x2UL
41 
42 static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
43 {
44 	return (unsigned long)x & KEYRING_PTR_SUBTYPE;
45 }
46 static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
47 {
48 	void *object = assoc_array_ptr_to_leaf(x);
49 	return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
50 }
51 static inline void *keyring_key_to_ptr(struct key *key)
52 {
53 	if (key->type == &key_type_keyring)
54 		return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
55 	return key;
56 }
57 
58 static struct list_head	keyring_name_hash[KEYRING_NAME_HASH_SIZE];
59 static DEFINE_RWLOCK(keyring_name_lock);
60 
61 static inline unsigned keyring_hash(const char *desc)
62 {
63 	unsigned bucket = 0;
64 
65 	for (; *desc; desc++)
66 		bucket += (unsigned char)*desc;
67 
68 	return bucket & (KEYRING_NAME_HASH_SIZE - 1);
69 }
70 
71 /*
72  * The keyring key type definition.  Keyrings are simply keys of this type and
73  * can be treated as ordinary keys in addition to having their own special
74  * operations.
75  */
76 static int keyring_preparse(struct key_preparsed_payload *prep);
77 static void keyring_free_preparse(struct key_preparsed_payload *prep);
78 static int keyring_instantiate(struct key *keyring,
79 			       struct key_preparsed_payload *prep);
80 static void keyring_revoke(struct key *keyring);
81 static void keyring_destroy(struct key *keyring);
82 static void keyring_describe(const struct key *keyring, struct seq_file *m);
83 static long keyring_read(const struct key *keyring,
84 			 char __user *buffer, size_t buflen);
85 
86 struct key_type key_type_keyring = {
87 	.name		= "keyring",
88 	.def_datalen	= 0,
89 	.preparse	= keyring_preparse,
90 	.free_preparse	= keyring_free_preparse,
91 	.instantiate	= keyring_instantiate,
92 	.revoke		= keyring_revoke,
93 	.destroy	= keyring_destroy,
94 	.describe	= keyring_describe,
95 	.read		= keyring_read,
96 };
97 EXPORT_SYMBOL(key_type_keyring);
98 
99 /*
100  * Semaphore to serialise link/link calls to prevent two link calls in parallel
101  * introducing a cycle.
102  */
103 static DECLARE_RWSEM(keyring_serialise_link_sem);
104 
105 /*
106  * Publish the name of a keyring so that it can be found by name (if it has
107  * one).
108  */
109 static void keyring_publish_name(struct key *keyring)
110 {
111 	int bucket;
112 
113 	if (keyring->description) {
114 		bucket = keyring_hash(keyring->description);
115 
116 		write_lock(&keyring_name_lock);
117 
118 		if (!keyring_name_hash[bucket].next)
119 			INIT_LIST_HEAD(&keyring_name_hash[bucket]);
120 
121 		list_add_tail(&keyring->name_link,
122 			      &keyring_name_hash[bucket]);
123 
124 		write_unlock(&keyring_name_lock);
125 	}
126 }
127 
128 /*
129  * Preparse a keyring payload
130  */
131 static int keyring_preparse(struct key_preparsed_payload *prep)
132 {
133 	return prep->datalen != 0 ? -EINVAL : 0;
134 }
135 
136 /*
137  * Free a preparse of a user defined key payload
138  */
139 static void keyring_free_preparse(struct key_preparsed_payload *prep)
140 {
141 }
142 
143 /*
144  * Initialise a keyring.
145  *
146  * Returns 0 on success, -EINVAL if given any data.
147  */
148 static int keyring_instantiate(struct key *keyring,
149 			       struct key_preparsed_payload *prep)
150 {
151 	assoc_array_init(&keyring->keys);
152 	/* make the keyring available by name if it has one */
153 	keyring_publish_name(keyring);
154 	return 0;
155 }
156 
157 /*
158  * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit.  Ideally we'd
159  * fold the carry back too, but that requires inline asm.
160  */
161 static u64 mult_64x32_and_fold(u64 x, u32 y)
162 {
163 	u64 hi = (u64)(u32)(x >> 32) * y;
164 	u64 lo = (u64)(u32)(x) * y;
165 	return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
166 }
167 
168 /*
169  * Hash a key type and description.
170  */
171 static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key)
172 {
173 	const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
174 	const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
175 	const char *description = index_key->description;
176 	unsigned long hash, type;
177 	u32 piece;
178 	u64 acc;
179 	int n, desc_len = index_key->desc_len;
180 
181 	type = (unsigned long)index_key->type;
182 
183 	acc = mult_64x32_and_fold(type, desc_len + 13);
184 	acc = mult_64x32_and_fold(acc, 9207);
185 	for (;;) {
186 		n = desc_len;
187 		if (n <= 0)
188 			break;
189 		if (n > 4)
190 			n = 4;
191 		piece = 0;
192 		memcpy(&piece, description, n);
193 		description += n;
194 		desc_len -= n;
195 		acc = mult_64x32_and_fold(acc, piece);
196 		acc = mult_64x32_and_fold(acc, 9207);
197 	}
198 
199 	/* Fold the hash down to 32 bits if need be. */
200 	hash = acc;
201 	if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
202 		hash ^= acc >> 32;
203 
204 	/* Squidge all the keyrings into a separate part of the tree to
205 	 * ordinary keys by making sure the lowest level segment in the hash is
206 	 * zero for keyrings and non-zero otherwise.
207 	 */
208 	if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
209 		return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
210 	if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
211 		return (hash + (hash << level_shift)) & ~fan_mask;
212 	return hash;
213 }
214 
215 /*
216  * Build the next index key chunk.
217  *
218  * On 32-bit systems the index key is laid out as:
219  *
220  *	0	4	5	9...
221  *	hash	desclen	typeptr	desc[]
222  *
223  * On 64-bit systems:
224  *
225  *	0	8	9	17...
226  *	hash	desclen	typeptr	desc[]
227  *
228  * We return it one word-sized chunk at a time.
229  */
230 static unsigned long keyring_get_key_chunk(const void *data, int level)
231 {
232 	const struct keyring_index_key *index_key = data;
233 	unsigned long chunk = 0;
234 	long offset = 0;
235 	int desc_len = index_key->desc_len, n = sizeof(chunk);
236 
237 	level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
238 	switch (level) {
239 	case 0:
240 		return hash_key_type_and_desc(index_key);
241 	case 1:
242 		return ((unsigned long)index_key->type << 8) | desc_len;
243 	case 2:
244 		if (desc_len == 0)
245 			return (u8)((unsigned long)index_key->type >>
246 				    (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
247 		n--;
248 		offset = 1;
249 		/* fall through */
250 	default:
251 		offset += sizeof(chunk) - 1;
252 		offset += (level - 3) * sizeof(chunk);
253 		if (offset >= desc_len)
254 			return 0;
255 		desc_len -= offset;
256 		if (desc_len > n)
257 			desc_len = n;
258 		offset += desc_len;
259 		do {
260 			chunk <<= 8;
261 			chunk |= ((u8*)index_key->description)[--offset];
262 		} while (--desc_len > 0);
263 
264 		if (level == 2) {
265 			chunk <<= 8;
266 			chunk |= (u8)((unsigned long)index_key->type >>
267 				      (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
268 		}
269 		return chunk;
270 	}
271 }
272 
273 static unsigned long keyring_get_object_key_chunk(const void *object, int level)
274 {
275 	const struct key *key = keyring_ptr_to_key(object);
276 	return keyring_get_key_chunk(&key->index_key, level);
277 }
278 
279 static bool keyring_compare_object(const void *object, const void *data)
280 {
281 	const struct keyring_index_key *index_key = data;
282 	const struct key *key = keyring_ptr_to_key(object);
283 
284 	return key->index_key.type == index_key->type &&
285 		key->index_key.desc_len == index_key->desc_len &&
286 		memcmp(key->index_key.description, index_key->description,
287 		       index_key->desc_len) == 0;
288 }
289 
290 /*
291  * Compare the index keys of a pair of objects and determine the bit position
292  * at which they differ - if they differ.
293  */
294 static int keyring_diff_objects(const void *object, const void *data)
295 {
296 	const struct key *key_a = keyring_ptr_to_key(object);
297 	const struct keyring_index_key *a = &key_a->index_key;
298 	const struct keyring_index_key *b = data;
299 	unsigned long seg_a, seg_b;
300 	int level, i;
301 
302 	level = 0;
303 	seg_a = hash_key_type_and_desc(a);
304 	seg_b = hash_key_type_and_desc(b);
305 	if ((seg_a ^ seg_b) != 0)
306 		goto differ;
307 
308 	/* The number of bits contributed by the hash is controlled by a
309 	 * constant in the assoc_array headers.  Everything else thereafter we
310 	 * can deal with as being machine word-size dependent.
311 	 */
312 	level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
313 	seg_a = a->desc_len;
314 	seg_b = b->desc_len;
315 	if ((seg_a ^ seg_b) != 0)
316 		goto differ;
317 
318 	/* The next bit may not work on big endian */
319 	level++;
320 	seg_a = (unsigned long)a->type;
321 	seg_b = (unsigned long)b->type;
322 	if ((seg_a ^ seg_b) != 0)
323 		goto differ;
324 
325 	level += sizeof(unsigned long);
326 	if (a->desc_len == 0)
327 		goto same;
328 
329 	i = 0;
330 	if (((unsigned long)a->description | (unsigned long)b->description) &
331 	    (sizeof(unsigned long) - 1)) {
332 		do {
333 			seg_a = *(unsigned long *)(a->description + i);
334 			seg_b = *(unsigned long *)(b->description + i);
335 			if ((seg_a ^ seg_b) != 0)
336 				goto differ_plus_i;
337 			i += sizeof(unsigned long);
338 		} while (i < (a->desc_len & (sizeof(unsigned long) - 1)));
339 	}
340 
341 	for (; i < a->desc_len; i++) {
342 		seg_a = *(unsigned char *)(a->description + i);
343 		seg_b = *(unsigned char *)(b->description + i);
344 		if ((seg_a ^ seg_b) != 0)
345 			goto differ_plus_i;
346 	}
347 
348 same:
349 	return -1;
350 
351 differ_plus_i:
352 	level += i;
353 differ:
354 	i = level * 8 + __ffs(seg_a ^ seg_b);
355 	return i;
356 }
357 
358 /*
359  * Free an object after stripping the keyring flag off of the pointer.
360  */
361 static void keyring_free_object(void *object)
362 {
363 	key_put(keyring_ptr_to_key(object));
364 }
365 
366 /*
367  * Operations for keyring management by the index-tree routines.
368  */
369 static const struct assoc_array_ops keyring_assoc_array_ops = {
370 	.get_key_chunk		= keyring_get_key_chunk,
371 	.get_object_key_chunk	= keyring_get_object_key_chunk,
372 	.compare_object		= keyring_compare_object,
373 	.diff_objects		= keyring_diff_objects,
374 	.free_object		= keyring_free_object,
375 };
376 
377 /*
378  * Clean up a keyring when it is destroyed.  Unpublish its name if it had one
379  * and dispose of its data.
380  *
381  * The garbage collector detects the final key_put(), removes the keyring from
382  * the serial number tree and then does RCU synchronisation before coming here,
383  * so we shouldn't need to worry about code poking around here with the RCU
384  * readlock held by this time.
385  */
386 static void keyring_destroy(struct key *keyring)
387 {
388 	if (keyring->description) {
389 		write_lock(&keyring_name_lock);
390 
391 		if (keyring->name_link.next != NULL &&
392 		    !list_empty(&keyring->name_link))
393 			list_del(&keyring->name_link);
394 
395 		write_unlock(&keyring_name_lock);
396 	}
397 
398 	if (keyring->restrict_link) {
399 		struct key_restriction *keyres = keyring->restrict_link;
400 
401 		key_put(keyres->key);
402 		kfree(keyres);
403 	}
404 
405 	assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
406 }
407 
408 /*
409  * Describe a keyring for /proc.
410  */
411 static void keyring_describe(const struct key *keyring, struct seq_file *m)
412 {
413 	if (keyring->description)
414 		seq_puts(m, keyring->description);
415 	else
416 		seq_puts(m, "[anon]");
417 
418 	if (key_is_positive(keyring)) {
419 		if (keyring->keys.nr_leaves_on_tree != 0)
420 			seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
421 		else
422 			seq_puts(m, ": empty");
423 	}
424 }
425 
426 struct keyring_read_iterator_context {
427 	size_t			buflen;
428 	size_t			count;
429 	key_serial_t __user	*buffer;
430 };
431 
432 static int keyring_read_iterator(const void *object, void *data)
433 {
434 	struct keyring_read_iterator_context *ctx = data;
435 	const struct key *key = keyring_ptr_to_key(object);
436 	int ret;
437 
438 	kenter("{%s,%d},,{%zu/%zu}",
439 	       key->type->name, key->serial, ctx->count, ctx->buflen);
440 
441 	if (ctx->count >= ctx->buflen)
442 		return 1;
443 
444 	ret = put_user(key->serial, ctx->buffer);
445 	if (ret < 0)
446 		return ret;
447 	ctx->buffer++;
448 	ctx->count += sizeof(key->serial);
449 	return 0;
450 }
451 
452 /*
453  * Read a list of key IDs from the keyring's contents in binary form
454  *
455  * The keyring's semaphore is read-locked by the caller.  This prevents someone
456  * from modifying it under us - which could cause us to read key IDs multiple
457  * times.
458  */
459 static long keyring_read(const struct key *keyring,
460 			 char __user *buffer, size_t buflen)
461 {
462 	struct keyring_read_iterator_context ctx;
463 	long ret;
464 
465 	kenter("{%d},,%zu", key_serial(keyring), buflen);
466 
467 	if (buflen & (sizeof(key_serial_t) - 1))
468 		return -EINVAL;
469 
470 	/* Copy as many key IDs as fit into the buffer */
471 	if (buffer && buflen) {
472 		ctx.buffer = (key_serial_t __user *)buffer;
473 		ctx.buflen = buflen;
474 		ctx.count = 0;
475 		ret = assoc_array_iterate(&keyring->keys,
476 					  keyring_read_iterator, &ctx);
477 		if (ret < 0) {
478 			kleave(" = %ld [iterate]", ret);
479 			return ret;
480 		}
481 	}
482 
483 	/* Return the size of the buffer needed */
484 	ret = keyring->keys.nr_leaves_on_tree * sizeof(key_serial_t);
485 	if (ret <= buflen)
486 		kleave("= %ld [ok]", ret);
487 	else
488 		kleave("= %ld [buffer too small]", ret);
489 	return ret;
490 }
491 
492 /*
493  * Allocate a keyring and link into the destination keyring.
494  */
495 struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
496 			  const struct cred *cred, key_perm_t perm,
497 			  unsigned long flags,
498 			  struct key_restriction *restrict_link,
499 			  struct key *dest)
500 {
501 	struct key *keyring;
502 	int ret;
503 
504 	keyring = key_alloc(&key_type_keyring, description,
505 			    uid, gid, cred, perm, flags, restrict_link);
506 	if (!IS_ERR(keyring)) {
507 		ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
508 		if (ret < 0) {
509 			key_put(keyring);
510 			keyring = ERR_PTR(ret);
511 		}
512 	}
513 
514 	return keyring;
515 }
516 EXPORT_SYMBOL(keyring_alloc);
517 
518 /**
519  * restrict_link_reject - Give -EPERM to restrict link
520  * @keyring: The keyring being added to.
521  * @type: The type of key being added.
522  * @payload: The payload of the key intended to be added.
523  * @data: Additional data for evaluating restriction.
524  *
525  * Reject the addition of any links to a keyring.  It can be overridden by
526  * passing KEY_ALLOC_BYPASS_RESTRICTION to key_instantiate_and_link() when
527  * adding a key to a keyring.
528  *
529  * This is meant to be stored in a key_restriction structure which is passed
530  * in the restrict_link parameter to keyring_alloc().
531  */
532 int restrict_link_reject(struct key *keyring,
533 			 const struct key_type *type,
534 			 const union key_payload *payload,
535 			 struct key *restriction_key)
536 {
537 	return -EPERM;
538 }
539 
540 /*
541  * By default, we keys found by getting an exact match on their descriptions.
542  */
543 bool key_default_cmp(const struct key *key,
544 		     const struct key_match_data *match_data)
545 {
546 	return strcmp(key->description, match_data->raw_data) == 0;
547 }
548 
549 /*
550  * Iteration function to consider each key found.
551  */
552 static int keyring_search_iterator(const void *object, void *iterator_data)
553 {
554 	struct keyring_search_context *ctx = iterator_data;
555 	const struct key *key = keyring_ptr_to_key(object);
556 	unsigned long kflags = READ_ONCE(key->flags);
557 	short state = READ_ONCE(key->state);
558 
559 	kenter("{%d}", key->serial);
560 
561 	/* ignore keys not of this type */
562 	if (key->type != ctx->index_key.type) {
563 		kleave(" = 0 [!type]");
564 		return 0;
565 	}
566 
567 	/* skip invalidated, revoked and expired keys */
568 	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
569 		time64_t expiry = READ_ONCE(key->expiry);
570 
571 		if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
572 			      (1 << KEY_FLAG_REVOKED))) {
573 			ctx->result = ERR_PTR(-EKEYREVOKED);
574 			kleave(" = %d [invrev]", ctx->skipped_ret);
575 			goto skipped;
576 		}
577 
578 		if (expiry && ctx->now >= expiry) {
579 			if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED))
580 				ctx->result = ERR_PTR(-EKEYEXPIRED);
581 			kleave(" = %d [expire]", ctx->skipped_ret);
582 			goto skipped;
583 		}
584 	}
585 
586 	/* keys that don't match */
587 	if (!ctx->match_data.cmp(key, &ctx->match_data)) {
588 		kleave(" = 0 [!match]");
589 		return 0;
590 	}
591 
592 	/* key must have search permissions */
593 	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
594 	    key_task_permission(make_key_ref(key, ctx->possessed),
595 				ctx->cred, KEY_NEED_SEARCH) < 0) {
596 		ctx->result = ERR_PTR(-EACCES);
597 		kleave(" = %d [!perm]", ctx->skipped_ret);
598 		goto skipped;
599 	}
600 
601 	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
602 		/* we set a different error code if we pass a negative key */
603 		if (state < 0) {
604 			ctx->result = ERR_PTR(state);
605 			kleave(" = %d [neg]", ctx->skipped_ret);
606 			goto skipped;
607 		}
608 	}
609 
610 	/* Found */
611 	ctx->result = make_key_ref(key, ctx->possessed);
612 	kleave(" = 1 [found]");
613 	return 1;
614 
615 skipped:
616 	return ctx->skipped_ret;
617 }
618 
619 /*
620  * Search inside a keyring for a key.  We can search by walking to it
621  * directly based on its index-key or we can iterate over the entire
622  * tree looking for it, based on the match function.
623  */
624 static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
625 {
626 	if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) {
627 		const void *object;
628 
629 		object = assoc_array_find(&keyring->keys,
630 					  &keyring_assoc_array_ops,
631 					  &ctx->index_key);
632 		return object ? ctx->iterator(object, ctx) : 0;
633 	}
634 	return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
635 }
636 
637 /*
638  * Search a tree of keyrings that point to other keyrings up to the maximum
639  * depth.
640  */
641 static bool search_nested_keyrings(struct key *keyring,
642 				   struct keyring_search_context *ctx)
643 {
644 	struct {
645 		struct key *keyring;
646 		struct assoc_array_node *node;
647 		int slot;
648 	} stack[KEYRING_SEARCH_MAX_DEPTH];
649 
650 	struct assoc_array_shortcut *shortcut;
651 	struct assoc_array_node *node;
652 	struct assoc_array_ptr *ptr;
653 	struct key *key;
654 	int sp = 0, slot;
655 
656 	kenter("{%d},{%s,%s}",
657 	       keyring->serial,
658 	       ctx->index_key.type->name,
659 	       ctx->index_key.description);
660 
661 #define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK)
662 	BUG_ON((ctx->flags & STATE_CHECKS) == 0 ||
663 	       (ctx->flags & STATE_CHECKS) == STATE_CHECKS);
664 
665 	/* Check to see if this top-level keyring is what we are looking for
666 	 * and whether it is valid or not.
667 	 */
668 	if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE ||
669 	    keyring_compare_object(keyring, &ctx->index_key)) {
670 		ctx->skipped_ret = 2;
671 		switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
672 		case 1:
673 			goto found;
674 		case 2:
675 			return false;
676 		default:
677 			break;
678 		}
679 	}
680 
681 	ctx->skipped_ret = 0;
682 
683 	/* Start processing a new keyring */
684 descend_to_keyring:
685 	kdebug("descend to %d", keyring->serial);
686 	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
687 			      (1 << KEY_FLAG_REVOKED)))
688 		goto not_this_keyring;
689 
690 	/* Search through the keys in this keyring before its searching its
691 	 * subtrees.
692 	 */
693 	if (search_keyring(keyring, ctx))
694 		goto found;
695 
696 	/* Then manually iterate through the keyrings nested in this one.
697 	 *
698 	 * Start from the root node of the index tree.  Because of the way the
699 	 * hash function has been set up, keyrings cluster on the leftmost
700 	 * branch of the root node (root slot 0) or in the root node itself.
701 	 * Non-keyrings avoid the leftmost branch of the root entirely (root
702 	 * slots 1-15).
703 	 */
704 	ptr = READ_ONCE(keyring->keys.root);
705 	if (!ptr)
706 		goto not_this_keyring;
707 
708 	if (assoc_array_ptr_is_shortcut(ptr)) {
709 		/* If the root is a shortcut, either the keyring only contains
710 		 * keyring pointers (everything clusters behind root slot 0) or
711 		 * doesn't contain any keyring pointers.
712 		 */
713 		shortcut = assoc_array_ptr_to_shortcut(ptr);
714 		if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
715 			goto not_this_keyring;
716 
717 		ptr = READ_ONCE(shortcut->next_node);
718 		node = assoc_array_ptr_to_node(ptr);
719 		goto begin_node;
720 	}
721 
722 	node = assoc_array_ptr_to_node(ptr);
723 	ptr = node->slots[0];
724 	if (!assoc_array_ptr_is_meta(ptr))
725 		goto begin_node;
726 
727 descend_to_node:
728 	/* Descend to a more distal node in this keyring's content tree and go
729 	 * through that.
730 	 */
731 	kdebug("descend");
732 	if (assoc_array_ptr_is_shortcut(ptr)) {
733 		shortcut = assoc_array_ptr_to_shortcut(ptr);
734 		ptr = READ_ONCE(shortcut->next_node);
735 		BUG_ON(!assoc_array_ptr_is_node(ptr));
736 	}
737 	node = assoc_array_ptr_to_node(ptr);
738 
739 begin_node:
740 	kdebug("begin_node");
741 	slot = 0;
742 ascend_to_node:
743 	/* Go through the slots in a node */
744 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
745 		ptr = READ_ONCE(node->slots[slot]);
746 
747 		if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
748 			goto descend_to_node;
749 
750 		if (!keyring_ptr_is_keyring(ptr))
751 			continue;
752 
753 		key = keyring_ptr_to_key(ptr);
754 
755 		if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
756 			if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
757 				ctx->result = ERR_PTR(-ELOOP);
758 				return false;
759 			}
760 			goto not_this_keyring;
761 		}
762 
763 		/* Search a nested keyring */
764 		if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
765 		    key_task_permission(make_key_ref(key, ctx->possessed),
766 					ctx->cred, KEY_NEED_SEARCH) < 0)
767 			continue;
768 
769 		/* stack the current position */
770 		stack[sp].keyring = keyring;
771 		stack[sp].node = node;
772 		stack[sp].slot = slot;
773 		sp++;
774 
775 		/* begin again with the new keyring */
776 		keyring = key;
777 		goto descend_to_keyring;
778 	}
779 
780 	/* We've dealt with all the slots in the current node, so now we need
781 	 * to ascend to the parent and continue processing there.
782 	 */
783 	ptr = READ_ONCE(node->back_pointer);
784 	slot = node->parent_slot;
785 
786 	if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
787 		shortcut = assoc_array_ptr_to_shortcut(ptr);
788 		ptr = READ_ONCE(shortcut->back_pointer);
789 		slot = shortcut->parent_slot;
790 	}
791 	if (!ptr)
792 		goto not_this_keyring;
793 	node = assoc_array_ptr_to_node(ptr);
794 	slot++;
795 
796 	/* If we've ascended to the root (zero backpointer), we must have just
797 	 * finished processing the leftmost branch rather than the root slots -
798 	 * so there can't be any more keyrings for us to find.
799 	 */
800 	if (node->back_pointer) {
801 		kdebug("ascend %d", slot);
802 		goto ascend_to_node;
803 	}
804 
805 	/* The keyring we're looking at was disqualified or didn't contain a
806 	 * matching key.
807 	 */
808 not_this_keyring:
809 	kdebug("not_this_keyring %d", sp);
810 	if (sp <= 0) {
811 		kleave(" = false");
812 		return false;
813 	}
814 
815 	/* Resume the processing of a keyring higher up in the tree */
816 	sp--;
817 	keyring = stack[sp].keyring;
818 	node = stack[sp].node;
819 	slot = stack[sp].slot + 1;
820 	kdebug("ascend to %d [%d]", keyring->serial, slot);
821 	goto ascend_to_node;
822 
823 	/* We found a viable match */
824 found:
825 	key = key_ref_to_ptr(ctx->result);
826 	key_check(key);
827 	if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
828 		key->last_used_at = ctx->now;
829 		keyring->last_used_at = ctx->now;
830 		while (sp > 0)
831 			stack[--sp].keyring->last_used_at = ctx->now;
832 	}
833 	kleave(" = true");
834 	return true;
835 }
836 
837 /**
838  * keyring_search_aux - Search a keyring tree for a key matching some criteria
839  * @keyring_ref: A pointer to the keyring with possession indicator.
840  * @ctx: The keyring search context.
841  *
842  * Search the supplied keyring tree for a key that matches the criteria given.
843  * The root keyring and any linked keyrings must grant Search permission to the
844  * caller to be searchable and keys can only be found if they too grant Search
845  * to the caller. The possession flag on the root keyring pointer controls use
846  * of the possessor bits in permissions checking of the entire tree.  In
847  * addition, the LSM gets to forbid keyring searches and key matches.
848  *
849  * The search is performed as a breadth-then-depth search up to the prescribed
850  * limit (KEYRING_SEARCH_MAX_DEPTH).
851  *
852  * Keys are matched to the type provided and are then filtered by the match
853  * function, which is given the description to use in any way it sees fit.  The
854  * match function may use any attributes of a key that it wishes to to
855  * determine the match.  Normally the match function from the key type would be
856  * used.
857  *
858  * RCU can be used to prevent the keyring key lists from disappearing without
859  * the need to take lots of locks.
860  *
861  * Returns a pointer to the found key and increments the key usage count if
862  * successful; -EAGAIN if no matching keys were found, or if expired or revoked
863  * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
864  * specified keyring wasn't a keyring.
865  *
866  * In the case of a successful return, the possession attribute from
867  * @keyring_ref is propagated to the returned key reference.
868  */
869 key_ref_t keyring_search_aux(key_ref_t keyring_ref,
870 			     struct keyring_search_context *ctx)
871 {
872 	struct key *keyring;
873 	long err;
874 
875 	ctx->iterator = keyring_search_iterator;
876 	ctx->possessed = is_key_possessed(keyring_ref);
877 	ctx->result = ERR_PTR(-EAGAIN);
878 
879 	keyring = key_ref_to_ptr(keyring_ref);
880 	key_check(keyring);
881 
882 	if (keyring->type != &key_type_keyring)
883 		return ERR_PTR(-ENOTDIR);
884 
885 	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
886 		err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH);
887 		if (err < 0)
888 			return ERR_PTR(err);
889 	}
890 
891 	rcu_read_lock();
892 	ctx->now = ktime_get_real_seconds();
893 	if (search_nested_keyrings(keyring, ctx))
894 		__key_get(key_ref_to_ptr(ctx->result));
895 	rcu_read_unlock();
896 	return ctx->result;
897 }
898 
899 /**
900  * keyring_search - Search the supplied keyring tree for a matching key
901  * @keyring: The root of the keyring tree to be searched.
902  * @type: The type of keyring we want to find.
903  * @description: The name of the keyring we want to find.
904  *
905  * As keyring_search_aux() above, but using the current task's credentials and
906  * type's default matching function and preferred search method.
907  */
908 key_ref_t keyring_search(key_ref_t keyring,
909 			 struct key_type *type,
910 			 const char *description)
911 {
912 	struct keyring_search_context ctx = {
913 		.index_key.type		= type,
914 		.index_key.description	= description,
915 		.index_key.desc_len	= strlen(description),
916 		.cred			= current_cred(),
917 		.match_data.cmp		= key_default_cmp,
918 		.match_data.raw_data	= description,
919 		.match_data.lookup_type	= KEYRING_SEARCH_LOOKUP_DIRECT,
920 		.flags			= KEYRING_SEARCH_DO_STATE_CHECK,
921 	};
922 	key_ref_t key;
923 	int ret;
924 
925 	if (type->match_preparse) {
926 		ret = type->match_preparse(&ctx.match_data);
927 		if (ret < 0)
928 			return ERR_PTR(ret);
929 	}
930 
931 	key = keyring_search_aux(keyring, &ctx);
932 
933 	if (type->match_free)
934 		type->match_free(&ctx.match_data);
935 	return key;
936 }
937 EXPORT_SYMBOL(keyring_search);
938 
939 static struct key_restriction *keyring_restriction_alloc(
940 	key_restrict_link_func_t check)
941 {
942 	struct key_restriction *keyres =
943 		kzalloc(sizeof(struct key_restriction), GFP_KERNEL);
944 
945 	if (!keyres)
946 		return ERR_PTR(-ENOMEM);
947 
948 	keyres->check = check;
949 
950 	return keyres;
951 }
952 
953 /*
954  * Semaphore to serialise restriction setup to prevent reference count
955  * cycles through restriction key pointers.
956  */
957 static DECLARE_RWSEM(keyring_serialise_restrict_sem);
958 
959 /*
960  * Check for restriction cycles that would prevent keyring garbage collection.
961  * keyring_serialise_restrict_sem must be held.
962  */
963 static bool keyring_detect_restriction_cycle(const struct key *dest_keyring,
964 					     struct key_restriction *keyres)
965 {
966 	while (keyres && keyres->key &&
967 	       keyres->key->type == &key_type_keyring) {
968 		if (keyres->key == dest_keyring)
969 			return true;
970 
971 		keyres = keyres->key->restrict_link;
972 	}
973 
974 	return false;
975 }
976 
977 /**
978  * keyring_restrict - Look up and apply a restriction to a keyring
979  *
980  * @keyring: The keyring to be restricted
981  * @restriction: The restriction options to apply to the keyring
982  */
983 int keyring_restrict(key_ref_t keyring_ref, const char *type,
984 		     const char *restriction)
985 {
986 	struct key *keyring;
987 	struct key_type *restrict_type = NULL;
988 	struct key_restriction *restrict_link;
989 	int ret = 0;
990 
991 	keyring = key_ref_to_ptr(keyring_ref);
992 	key_check(keyring);
993 
994 	if (keyring->type != &key_type_keyring)
995 		return -ENOTDIR;
996 
997 	if (!type) {
998 		restrict_link = keyring_restriction_alloc(restrict_link_reject);
999 	} else {
1000 		restrict_type = key_type_lookup(type);
1001 
1002 		if (IS_ERR(restrict_type))
1003 			return PTR_ERR(restrict_type);
1004 
1005 		if (!restrict_type->lookup_restriction) {
1006 			ret = -ENOENT;
1007 			goto error;
1008 		}
1009 
1010 		restrict_link = restrict_type->lookup_restriction(restriction);
1011 	}
1012 
1013 	if (IS_ERR(restrict_link)) {
1014 		ret = PTR_ERR(restrict_link);
1015 		goto error;
1016 	}
1017 
1018 	down_write(&keyring->sem);
1019 	down_write(&keyring_serialise_restrict_sem);
1020 
1021 	if (keyring->restrict_link)
1022 		ret = -EEXIST;
1023 	else if (keyring_detect_restriction_cycle(keyring, restrict_link))
1024 		ret = -EDEADLK;
1025 	else
1026 		keyring->restrict_link = restrict_link;
1027 
1028 	up_write(&keyring_serialise_restrict_sem);
1029 	up_write(&keyring->sem);
1030 
1031 	if (ret < 0) {
1032 		key_put(restrict_link->key);
1033 		kfree(restrict_link);
1034 	}
1035 
1036 error:
1037 	if (restrict_type)
1038 		key_type_put(restrict_type);
1039 
1040 	return ret;
1041 }
1042 EXPORT_SYMBOL(keyring_restrict);
1043 
1044 /*
1045  * Search the given keyring for a key that might be updated.
1046  *
1047  * The caller must guarantee that the keyring is a keyring and that the
1048  * permission is granted to modify the keyring as no check is made here.  The
1049  * caller must also hold a lock on the keyring semaphore.
1050  *
1051  * Returns a pointer to the found key with usage count incremented if
1052  * successful and returns NULL if not found.  Revoked and invalidated keys are
1053  * skipped over.
1054  *
1055  * If successful, the possession indicator is propagated from the keyring ref
1056  * to the returned key reference.
1057  */
1058 key_ref_t find_key_to_update(key_ref_t keyring_ref,
1059 			     const struct keyring_index_key *index_key)
1060 {
1061 	struct key *keyring, *key;
1062 	const void *object;
1063 
1064 	keyring = key_ref_to_ptr(keyring_ref);
1065 
1066 	kenter("{%d},{%s,%s}",
1067 	       keyring->serial, index_key->type->name, index_key->description);
1068 
1069 	object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
1070 				  index_key);
1071 
1072 	if (object)
1073 		goto found;
1074 
1075 	kleave(" = NULL");
1076 	return NULL;
1077 
1078 found:
1079 	key = keyring_ptr_to_key(object);
1080 	if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
1081 			  (1 << KEY_FLAG_REVOKED))) {
1082 		kleave(" = NULL [x]");
1083 		return NULL;
1084 	}
1085 	__key_get(key);
1086 	kleave(" = {%d}", key->serial);
1087 	return make_key_ref(key, is_key_possessed(keyring_ref));
1088 }
1089 
1090 /*
1091  * Find a keyring with the specified name.
1092  *
1093  * Only keyrings that have nonzero refcount, are not revoked, and are owned by a
1094  * user in the current user namespace are considered.  If @uid_keyring is %true,
1095  * the keyring additionally must have been allocated as a user or user session
1096  * keyring; otherwise, it must grant Search permission directly to the caller.
1097  *
1098  * Returns a pointer to the keyring with the keyring's refcount having being
1099  * incremented on success.  -ENOKEY is returned if a key could not be found.
1100  */
1101 struct key *find_keyring_by_name(const char *name, bool uid_keyring)
1102 {
1103 	struct key *keyring;
1104 	int bucket;
1105 
1106 	if (!name)
1107 		return ERR_PTR(-EINVAL);
1108 
1109 	bucket = keyring_hash(name);
1110 
1111 	read_lock(&keyring_name_lock);
1112 
1113 	if (keyring_name_hash[bucket].next) {
1114 		/* search this hash bucket for a keyring with a matching name
1115 		 * that's readable and that hasn't been revoked */
1116 		list_for_each_entry(keyring,
1117 				    &keyring_name_hash[bucket],
1118 				    name_link
1119 				    ) {
1120 			if (!kuid_has_mapping(current_user_ns(), keyring->user->uid))
1121 				continue;
1122 
1123 			if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1124 				continue;
1125 
1126 			if (strcmp(keyring->description, name) != 0)
1127 				continue;
1128 
1129 			if (uid_keyring) {
1130 				if (!test_bit(KEY_FLAG_UID_KEYRING,
1131 					      &keyring->flags))
1132 					continue;
1133 			} else {
1134 				if (key_permission(make_key_ref(keyring, 0),
1135 						   KEY_NEED_SEARCH) < 0)
1136 					continue;
1137 			}
1138 
1139 			/* we've got a match but we might end up racing with
1140 			 * key_cleanup() if the keyring is currently 'dead'
1141 			 * (ie. it has a zero usage count) */
1142 			if (!refcount_inc_not_zero(&keyring->usage))
1143 				continue;
1144 			keyring->last_used_at = ktime_get_real_seconds();
1145 			goto out;
1146 		}
1147 	}
1148 
1149 	keyring = ERR_PTR(-ENOKEY);
1150 out:
1151 	read_unlock(&keyring_name_lock);
1152 	return keyring;
1153 }
1154 
1155 static int keyring_detect_cycle_iterator(const void *object,
1156 					 void *iterator_data)
1157 {
1158 	struct keyring_search_context *ctx = iterator_data;
1159 	const struct key *key = keyring_ptr_to_key(object);
1160 
1161 	kenter("{%d}", key->serial);
1162 
1163 	/* We might get a keyring with matching index-key that is nonetheless a
1164 	 * different keyring. */
1165 	if (key != ctx->match_data.raw_data)
1166 		return 0;
1167 
1168 	ctx->result = ERR_PTR(-EDEADLK);
1169 	return 1;
1170 }
1171 
1172 /*
1173  * See if a cycle will will be created by inserting acyclic tree B in acyclic
1174  * tree A at the topmost level (ie: as a direct child of A).
1175  *
1176  * Since we are adding B to A at the top level, checking for cycles should just
1177  * be a matter of seeing if node A is somewhere in tree B.
1178  */
1179 static int keyring_detect_cycle(struct key *A, struct key *B)
1180 {
1181 	struct keyring_search_context ctx = {
1182 		.index_key		= A->index_key,
1183 		.match_data.raw_data	= A,
1184 		.match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
1185 		.iterator		= keyring_detect_cycle_iterator,
1186 		.flags			= (KEYRING_SEARCH_NO_STATE_CHECK |
1187 					   KEYRING_SEARCH_NO_UPDATE_TIME |
1188 					   KEYRING_SEARCH_NO_CHECK_PERM |
1189 					   KEYRING_SEARCH_DETECT_TOO_DEEP),
1190 	};
1191 
1192 	rcu_read_lock();
1193 	search_nested_keyrings(B, &ctx);
1194 	rcu_read_unlock();
1195 	return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
1196 }
1197 
1198 /*
1199  * Preallocate memory so that a key can be linked into to a keyring.
1200  */
1201 int __key_link_begin(struct key *keyring,
1202 		     const struct keyring_index_key *index_key,
1203 		     struct assoc_array_edit **_edit)
1204 	__acquires(&keyring->sem)
1205 	__acquires(&keyring_serialise_link_sem)
1206 {
1207 	struct assoc_array_edit *edit;
1208 	int ret;
1209 
1210 	kenter("%d,%s,%s,",
1211 	       keyring->serial, index_key->type->name, index_key->description);
1212 
1213 	BUG_ON(index_key->desc_len == 0);
1214 
1215 	if (keyring->type != &key_type_keyring)
1216 		return -ENOTDIR;
1217 
1218 	down_write(&keyring->sem);
1219 
1220 	ret = -EKEYREVOKED;
1221 	if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1222 		goto error_krsem;
1223 
1224 	/* serialise link/link calls to prevent parallel calls causing a cycle
1225 	 * when linking two keyring in opposite orders */
1226 	if (index_key->type == &key_type_keyring)
1227 		down_write(&keyring_serialise_link_sem);
1228 
1229 	/* Create an edit script that will insert/replace the key in the
1230 	 * keyring tree.
1231 	 */
1232 	edit = assoc_array_insert(&keyring->keys,
1233 				  &keyring_assoc_array_ops,
1234 				  index_key,
1235 				  NULL);
1236 	if (IS_ERR(edit)) {
1237 		ret = PTR_ERR(edit);
1238 		goto error_sem;
1239 	}
1240 
1241 	/* If we're not replacing a link in-place then we're going to need some
1242 	 * extra quota.
1243 	 */
1244 	if (!edit->dead_leaf) {
1245 		ret = key_payload_reserve(keyring,
1246 					  keyring->datalen + KEYQUOTA_LINK_BYTES);
1247 		if (ret < 0)
1248 			goto error_cancel;
1249 	}
1250 
1251 	*_edit = edit;
1252 	kleave(" = 0");
1253 	return 0;
1254 
1255 error_cancel:
1256 	assoc_array_cancel_edit(edit);
1257 error_sem:
1258 	if (index_key->type == &key_type_keyring)
1259 		up_write(&keyring_serialise_link_sem);
1260 error_krsem:
1261 	up_write(&keyring->sem);
1262 	kleave(" = %d", ret);
1263 	return ret;
1264 }
1265 
1266 /*
1267  * Check already instantiated keys aren't going to be a problem.
1268  *
1269  * The caller must have called __key_link_begin(). Don't need to call this for
1270  * keys that were created since __key_link_begin() was called.
1271  */
1272 int __key_link_check_live_key(struct key *keyring, struct key *key)
1273 {
1274 	if (key->type == &key_type_keyring)
1275 		/* check that we aren't going to create a cycle by linking one
1276 		 * keyring to another */
1277 		return keyring_detect_cycle(keyring, key);
1278 	return 0;
1279 }
1280 
1281 /*
1282  * Link a key into to a keyring.
1283  *
1284  * Must be called with __key_link_begin() having being called.  Discards any
1285  * already extant link to matching key if there is one, so that each keyring
1286  * holds at most one link to any given key of a particular type+description
1287  * combination.
1288  */
1289 void __key_link(struct key *key, struct assoc_array_edit **_edit)
1290 {
1291 	__key_get(key);
1292 	assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
1293 	assoc_array_apply_edit(*_edit);
1294 	*_edit = NULL;
1295 }
1296 
1297 /*
1298  * Finish linking a key into to a keyring.
1299  *
1300  * Must be called with __key_link_begin() having being called.
1301  */
1302 void __key_link_end(struct key *keyring,
1303 		    const struct keyring_index_key *index_key,
1304 		    struct assoc_array_edit *edit)
1305 	__releases(&keyring->sem)
1306 	__releases(&keyring_serialise_link_sem)
1307 {
1308 	BUG_ON(index_key->type == NULL);
1309 	kenter("%d,%s,", keyring->serial, index_key->type->name);
1310 
1311 	if (index_key->type == &key_type_keyring)
1312 		up_write(&keyring_serialise_link_sem);
1313 
1314 	if (edit) {
1315 		if (!edit->dead_leaf) {
1316 			key_payload_reserve(keyring,
1317 				keyring->datalen - KEYQUOTA_LINK_BYTES);
1318 		}
1319 		assoc_array_cancel_edit(edit);
1320 	}
1321 	up_write(&keyring->sem);
1322 }
1323 
1324 /*
1325  * Check addition of keys to restricted keyrings.
1326  */
1327 static int __key_link_check_restriction(struct key *keyring, struct key *key)
1328 {
1329 	if (!keyring->restrict_link || !keyring->restrict_link->check)
1330 		return 0;
1331 	return keyring->restrict_link->check(keyring, key->type, &key->payload,
1332 					     keyring->restrict_link->key);
1333 }
1334 
1335 /**
1336  * key_link - Link a key to a keyring
1337  * @keyring: The keyring to make the link in.
1338  * @key: The key to link to.
1339  *
1340  * Make a link in a keyring to a key, such that the keyring holds a reference
1341  * on that key and the key can potentially be found by searching that keyring.
1342  *
1343  * This function will write-lock the keyring's semaphore and will consume some
1344  * of the user's key data quota to hold the link.
1345  *
1346  * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
1347  * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
1348  * full, -EDQUOT if there is insufficient key data quota remaining to add
1349  * another link or -ENOMEM if there's insufficient memory.
1350  *
1351  * It is assumed that the caller has checked that it is permitted for a link to
1352  * be made (the keyring should have Write permission and the key Link
1353  * permission).
1354  */
1355 int key_link(struct key *keyring, struct key *key)
1356 {
1357 	struct assoc_array_edit *edit;
1358 	int ret;
1359 
1360 	kenter("{%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1361 
1362 	key_check(keyring);
1363 	key_check(key);
1364 
1365 	ret = __key_link_begin(keyring, &key->index_key, &edit);
1366 	if (ret == 0) {
1367 		kdebug("begun {%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1368 		ret = __key_link_check_restriction(keyring, key);
1369 		if (ret == 0)
1370 			ret = __key_link_check_live_key(keyring, key);
1371 		if (ret == 0)
1372 			__key_link(key, &edit);
1373 		__key_link_end(keyring, &key->index_key, edit);
1374 	}
1375 
1376 	kleave(" = %d {%d,%d}", ret, keyring->serial, refcount_read(&keyring->usage));
1377 	return ret;
1378 }
1379 EXPORT_SYMBOL(key_link);
1380 
1381 /**
1382  * key_unlink - Unlink the first link to a key from a keyring.
1383  * @keyring: The keyring to remove the link from.
1384  * @key: The key the link is to.
1385  *
1386  * Remove a link from a keyring to a key.
1387  *
1388  * This function will write-lock the keyring's semaphore.
1389  *
1390  * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1391  * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1392  * memory.
1393  *
1394  * It is assumed that the caller has checked that it is permitted for a link to
1395  * be removed (the keyring should have Write permission; no permissions are
1396  * required on the key).
1397  */
1398 int key_unlink(struct key *keyring, struct key *key)
1399 {
1400 	struct assoc_array_edit *edit;
1401 	int ret;
1402 
1403 	key_check(keyring);
1404 	key_check(key);
1405 
1406 	if (keyring->type != &key_type_keyring)
1407 		return -ENOTDIR;
1408 
1409 	down_write(&keyring->sem);
1410 
1411 	edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
1412 				  &key->index_key);
1413 	if (IS_ERR(edit)) {
1414 		ret = PTR_ERR(edit);
1415 		goto error;
1416 	}
1417 	ret = -ENOENT;
1418 	if (edit == NULL)
1419 		goto error;
1420 
1421 	assoc_array_apply_edit(edit);
1422 	key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
1423 	ret = 0;
1424 
1425 error:
1426 	up_write(&keyring->sem);
1427 	return ret;
1428 }
1429 EXPORT_SYMBOL(key_unlink);
1430 
1431 /**
1432  * keyring_clear - Clear a keyring
1433  * @keyring: The keyring to clear.
1434  *
1435  * Clear the contents of the specified keyring.
1436  *
1437  * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1438  */
1439 int keyring_clear(struct key *keyring)
1440 {
1441 	struct assoc_array_edit *edit;
1442 	int ret;
1443 
1444 	if (keyring->type != &key_type_keyring)
1445 		return -ENOTDIR;
1446 
1447 	down_write(&keyring->sem);
1448 
1449 	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1450 	if (IS_ERR(edit)) {
1451 		ret = PTR_ERR(edit);
1452 	} else {
1453 		if (edit)
1454 			assoc_array_apply_edit(edit);
1455 		key_payload_reserve(keyring, 0);
1456 		ret = 0;
1457 	}
1458 
1459 	up_write(&keyring->sem);
1460 	return ret;
1461 }
1462 EXPORT_SYMBOL(keyring_clear);
1463 
1464 /*
1465  * Dispose of the links from a revoked keyring.
1466  *
1467  * This is called with the key sem write-locked.
1468  */
1469 static void keyring_revoke(struct key *keyring)
1470 {
1471 	struct assoc_array_edit *edit;
1472 
1473 	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1474 	if (!IS_ERR(edit)) {
1475 		if (edit)
1476 			assoc_array_apply_edit(edit);
1477 		key_payload_reserve(keyring, 0);
1478 	}
1479 }
1480 
1481 static bool keyring_gc_select_iterator(void *object, void *iterator_data)
1482 {
1483 	struct key *key = keyring_ptr_to_key(object);
1484 	time64_t *limit = iterator_data;
1485 
1486 	if (key_is_dead(key, *limit))
1487 		return false;
1488 	key_get(key);
1489 	return true;
1490 }
1491 
1492 static int keyring_gc_check_iterator(const void *object, void *iterator_data)
1493 {
1494 	const struct key *key = keyring_ptr_to_key(object);
1495 	time64_t *limit = iterator_data;
1496 
1497 	key_check(key);
1498 	return key_is_dead(key, *limit);
1499 }
1500 
1501 /*
1502  * Garbage collect pointers from a keyring.
1503  *
1504  * Not called with any locks held.  The keyring's key struct will not be
1505  * deallocated under us as only our caller may deallocate it.
1506  */
1507 void keyring_gc(struct key *keyring, time64_t limit)
1508 {
1509 	int result;
1510 
1511 	kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1512 
1513 	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
1514 			      (1 << KEY_FLAG_REVOKED)))
1515 		goto dont_gc;
1516 
1517 	/* scan the keyring looking for dead keys */
1518 	rcu_read_lock();
1519 	result = assoc_array_iterate(&keyring->keys,
1520 				     keyring_gc_check_iterator, &limit);
1521 	rcu_read_unlock();
1522 	if (result == true)
1523 		goto do_gc;
1524 
1525 dont_gc:
1526 	kleave(" [no gc]");
1527 	return;
1528 
1529 do_gc:
1530 	down_write(&keyring->sem);
1531 	assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
1532 		       keyring_gc_select_iterator, &limit);
1533 	up_write(&keyring->sem);
1534 	kleave(" [gc]");
1535 }
1536 
1537 /*
1538  * Garbage collect restriction pointers from a keyring.
1539  *
1540  * Keyring restrictions are associated with a key type, and must be cleaned
1541  * up if the key type is unregistered. The restriction is altered to always
1542  * reject additional keys so a keyring cannot be opened up by unregistering
1543  * a key type.
1544  *
1545  * Not called with any keyring locks held. The keyring's key struct will not
1546  * be deallocated under us as only our caller may deallocate it.
1547  *
1548  * The caller is required to hold key_types_sem and dead_type->sem. This is
1549  * fulfilled by key_gc_keytype() holding the locks on behalf of
1550  * key_garbage_collector(), which it invokes on a workqueue.
1551  */
1552 void keyring_restriction_gc(struct key *keyring, struct key_type *dead_type)
1553 {
1554 	struct key_restriction *keyres;
1555 
1556 	kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1557 
1558 	/*
1559 	 * keyring->restrict_link is only assigned at key allocation time
1560 	 * or with the key type locked, so the only values that could be
1561 	 * concurrently assigned to keyring->restrict_link are for key
1562 	 * types other than dead_type. Given this, it's ok to check
1563 	 * the key type before acquiring keyring->sem.
1564 	 */
1565 	if (!dead_type || !keyring->restrict_link ||
1566 	    keyring->restrict_link->keytype != dead_type) {
1567 		kleave(" [no restriction gc]");
1568 		return;
1569 	}
1570 
1571 	/* Lock the keyring to ensure that a link is not in progress */
1572 	down_write(&keyring->sem);
1573 
1574 	keyres = keyring->restrict_link;
1575 
1576 	keyres->check = restrict_link_reject;
1577 
1578 	key_put(keyres->key);
1579 	keyres->key = NULL;
1580 	keyres->keytype = NULL;
1581 
1582 	up_write(&keyring->sem);
1583 
1584 	kleave(" [restriction gc]");
1585 }
1586