xref: /openbmc/linux/security/keys/keyring.c (revision c67ce71d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Keyring handling
3  *
4  * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/export.h>
9 #include <linux/init.h>
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/security.h>
13 #include <linux/seq_file.h>
14 #include <linux/err.h>
15 #include <linux/user_namespace.h>
16 #include <linux/nsproxy.h>
17 #include <keys/keyring-type.h>
18 #include <keys/user-type.h>
19 #include <linux/assoc_array_priv.h>
20 #include <linux/uaccess.h>
21 #include <net/net_namespace.h>
22 #include "internal.h"
23 
24 /*
25  * When plumbing the depths of the key tree, this sets a hard limit
26  * set on how deep we're willing to go.
27  */
28 #define KEYRING_SEARCH_MAX_DEPTH 6
29 
30 /*
31  * We mark pointers we pass to the associative array with bit 1 set if
32  * they're keyrings and clear otherwise.
33  */
34 #define KEYRING_PTR_SUBTYPE	0x2UL
35 
36 static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
37 {
38 	return (unsigned long)x & KEYRING_PTR_SUBTYPE;
39 }
40 static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
41 {
42 	void *object = assoc_array_ptr_to_leaf(x);
43 	return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
44 }
45 static inline void *keyring_key_to_ptr(struct key *key)
46 {
47 	if (key->type == &key_type_keyring)
48 		return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
49 	return key;
50 }
51 
52 static DEFINE_RWLOCK(keyring_name_lock);
53 
54 /*
55  * Clean up the bits of user_namespace that belong to us.
56  */
57 void key_free_user_ns(struct user_namespace *ns)
58 {
59 	write_lock(&keyring_name_lock);
60 	list_del_init(&ns->keyring_name_list);
61 	write_unlock(&keyring_name_lock);
62 
63 	key_put(ns->user_keyring_register);
64 #ifdef CONFIG_PERSISTENT_KEYRINGS
65 	key_put(ns->persistent_keyring_register);
66 #endif
67 }
68 
69 /*
70  * The keyring key type definition.  Keyrings are simply keys of this type and
71  * can be treated as ordinary keys in addition to having their own special
72  * operations.
73  */
74 static int keyring_preparse(struct key_preparsed_payload *prep);
75 static void keyring_free_preparse(struct key_preparsed_payload *prep);
76 static int keyring_instantiate(struct key *keyring,
77 			       struct key_preparsed_payload *prep);
78 static void keyring_revoke(struct key *keyring);
79 static void keyring_destroy(struct key *keyring);
80 static void keyring_describe(const struct key *keyring, struct seq_file *m);
81 static long keyring_read(const struct key *keyring,
82 			 char *buffer, size_t buflen);
83 
84 struct key_type key_type_keyring = {
85 	.name		= "keyring",
86 	.def_datalen	= 0,
87 	.preparse	= keyring_preparse,
88 	.free_preparse	= keyring_free_preparse,
89 	.instantiate	= keyring_instantiate,
90 	.revoke		= keyring_revoke,
91 	.destroy	= keyring_destroy,
92 	.describe	= keyring_describe,
93 	.read		= keyring_read,
94 };
95 EXPORT_SYMBOL(key_type_keyring);
96 
97 /*
98  * Semaphore to serialise link/link calls to prevent two link calls in parallel
99  * introducing a cycle.
100  */
101 static DEFINE_MUTEX(keyring_serialise_link_lock);
102 
103 /*
104  * Publish the name of a keyring so that it can be found by name (if it has
105  * one and it doesn't begin with a dot).
106  */
107 static void keyring_publish_name(struct key *keyring)
108 {
109 	struct user_namespace *ns = current_user_ns();
110 
111 	if (keyring->description &&
112 	    keyring->description[0] &&
113 	    keyring->description[0] != '.') {
114 		write_lock(&keyring_name_lock);
115 		list_add_tail(&keyring->name_link, &ns->keyring_name_list);
116 		write_unlock(&keyring_name_lock);
117 	}
118 }
119 
120 /*
121  * Preparse a keyring payload
122  */
123 static int keyring_preparse(struct key_preparsed_payload *prep)
124 {
125 	return prep->datalen != 0 ? -EINVAL : 0;
126 }
127 
128 /*
129  * Free a preparse of a user defined key payload
130  */
131 static void keyring_free_preparse(struct key_preparsed_payload *prep)
132 {
133 }
134 
135 /*
136  * Initialise a keyring.
137  *
138  * Returns 0 on success, -EINVAL if given any data.
139  */
140 static int keyring_instantiate(struct key *keyring,
141 			       struct key_preparsed_payload *prep)
142 {
143 	assoc_array_init(&keyring->keys);
144 	/* make the keyring available by name if it has one */
145 	keyring_publish_name(keyring);
146 	return 0;
147 }
148 
149 /*
150  * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit.  Ideally we'd
151  * fold the carry back too, but that requires inline asm.
152  */
153 static u64 mult_64x32_and_fold(u64 x, u32 y)
154 {
155 	u64 hi = (u64)(u32)(x >> 32) * y;
156 	u64 lo = (u64)(u32)(x) * y;
157 	return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
158 }
159 
160 /*
161  * Hash a key type and description.
162  */
163 static void hash_key_type_and_desc(struct keyring_index_key *index_key)
164 {
165 	const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
166 	const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
167 	const char *description = index_key->description;
168 	unsigned long hash, type;
169 	u32 piece;
170 	u64 acc;
171 	int n, desc_len = index_key->desc_len;
172 
173 	type = (unsigned long)index_key->type;
174 	acc = mult_64x32_and_fold(type, desc_len + 13);
175 	acc = mult_64x32_and_fold(acc, 9207);
176 	piece = (unsigned long)index_key->domain_tag;
177 	acc = mult_64x32_and_fold(acc, piece);
178 	acc = mult_64x32_and_fold(acc, 9207);
179 
180 	for (;;) {
181 		n = desc_len;
182 		if (n <= 0)
183 			break;
184 		if (n > 4)
185 			n = 4;
186 		piece = 0;
187 		memcpy(&piece, description, n);
188 		description += n;
189 		desc_len -= n;
190 		acc = mult_64x32_and_fold(acc, piece);
191 		acc = mult_64x32_and_fold(acc, 9207);
192 	}
193 
194 	/* Fold the hash down to 32 bits if need be. */
195 	hash = acc;
196 	if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
197 		hash ^= acc >> 32;
198 
199 	/* Squidge all the keyrings into a separate part of the tree to
200 	 * ordinary keys by making sure the lowest level segment in the hash is
201 	 * zero for keyrings and non-zero otherwise.
202 	 */
203 	if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
204 		hash |= (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
205 	else if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
206 		hash = (hash + (hash << level_shift)) & ~fan_mask;
207 	index_key->hash = hash;
208 }
209 
210 /*
211  * Finalise an index key to include a part of the description actually in the
212  * index key, to set the domain tag and to calculate the hash.
213  */
214 void key_set_index_key(struct keyring_index_key *index_key)
215 {
216 	static struct key_tag default_domain_tag = { .usage = REFCOUNT_INIT(1), };
217 	size_t n = min_t(size_t, index_key->desc_len, sizeof(index_key->desc));
218 
219 	memcpy(index_key->desc, index_key->description, n);
220 
221 	if (!index_key->domain_tag) {
222 		if (index_key->type->flags & KEY_TYPE_NET_DOMAIN)
223 			index_key->domain_tag = current->nsproxy->net_ns->key_domain;
224 		else
225 			index_key->domain_tag = &default_domain_tag;
226 	}
227 
228 	hash_key_type_and_desc(index_key);
229 }
230 
231 /**
232  * key_put_tag - Release a ref on a tag.
233  * @tag: The tag to release.
234  *
235  * This releases a reference the given tag and returns true if that ref was the
236  * last one.
237  */
238 bool key_put_tag(struct key_tag *tag)
239 {
240 	if (refcount_dec_and_test(&tag->usage)) {
241 		kfree_rcu(tag, rcu);
242 		return true;
243 	}
244 
245 	return false;
246 }
247 
248 /**
249  * key_remove_domain - Kill off a key domain and gc its keys
250  * @domain_tag: The domain tag to release.
251  *
252  * This marks a domain tag as being dead and releases a ref on it.  If that
253  * wasn't the last reference, the garbage collector is poked to try and delete
254  * all keys that were in the domain.
255  */
256 void key_remove_domain(struct key_tag *domain_tag)
257 {
258 	domain_tag->removed = true;
259 	if (!key_put_tag(domain_tag))
260 		key_schedule_gc_links();
261 }
262 
263 /*
264  * Build the next index key chunk.
265  *
266  * We return it one word-sized chunk at a time.
267  */
268 static unsigned long keyring_get_key_chunk(const void *data, int level)
269 {
270 	const struct keyring_index_key *index_key = data;
271 	unsigned long chunk = 0;
272 	const u8 *d;
273 	int desc_len = index_key->desc_len, n = sizeof(chunk);
274 
275 	level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
276 	switch (level) {
277 	case 0:
278 		return index_key->hash;
279 	case 1:
280 		return index_key->x;
281 	case 2:
282 		return (unsigned long)index_key->type;
283 	case 3:
284 		return (unsigned long)index_key->domain_tag;
285 	default:
286 		level -= 4;
287 		if (desc_len <= sizeof(index_key->desc))
288 			return 0;
289 
290 		d = index_key->description + sizeof(index_key->desc);
291 		d += level * sizeof(long);
292 		desc_len -= sizeof(index_key->desc);
293 		if (desc_len > n)
294 			desc_len = n;
295 		do {
296 			chunk <<= 8;
297 			chunk |= *d++;
298 		} while (--desc_len > 0);
299 		return chunk;
300 	}
301 }
302 
303 static unsigned long keyring_get_object_key_chunk(const void *object, int level)
304 {
305 	const struct key *key = keyring_ptr_to_key(object);
306 	return keyring_get_key_chunk(&key->index_key, level);
307 }
308 
309 static bool keyring_compare_object(const void *object, const void *data)
310 {
311 	const struct keyring_index_key *index_key = data;
312 	const struct key *key = keyring_ptr_to_key(object);
313 
314 	return key->index_key.type == index_key->type &&
315 		key->index_key.domain_tag == index_key->domain_tag &&
316 		key->index_key.desc_len == index_key->desc_len &&
317 		memcmp(key->index_key.description, index_key->description,
318 		       index_key->desc_len) == 0;
319 }
320 
321 /*
322  * Compare the index keys of a pair of objects and determine the bit position
323  * at which they differ - if they differ.
324  */
325 static int keyring_diff_objects(const void *object, const void *data)
326 {
327 	const struct key *key_a = keyring_ptr_to_key(object);
328 	const struct keyring_index_key *a = &key_a->index_key;
329 	const struct keyring_index_key *b = data;
330 	unsigned long seg_a, seg_b;
331 	int level, i;
332 
333 	level = 0;
334 	seg_a = a->hash;
335 	seg_b = b->hash;
336 	if ((seg_a ^ seg_b) != 0)
337 		goto differ;
338 	level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
339 
340 	/* The number of bits contributed by the hash is controlled by a
341 	 * constant in the assoc_array headers.  Everything else thereafter we
342 	 * can deal with as being machine word-size dependent.
343 	 */
344 	seg_a = a->x;
345 	seg_b = b->x;
346 	if ((seg_a ^ seg_b) != 0)
347 		goto differ;
348 	level += sizeof(unsigned long);
349 
350 	/* The next bit may not work on big endian */
351 	seg_a = (unsigned long)a->type;
352 	seg_b = (unsigned long)b->type;
353 	if ((seg_a ^ seg_b) != 0)
354 		goto differ;
355 	level += sizeof(unsigned long);
356 
357 	seg_a = (unsigned long)a->domain_tag;
358 	seg_b = (unsigned long)b->domain_tag;
359 	if ((seg_a ^ seg_b) != 0)
360 		goto differ;
361 	level += sizeof(unsigned long);
362 
363 	i = sizeof(a->desc);
364 	if (a->desc_len <= i)
365 		goto same;
366 
367 	for (; i < a->desc_len; i++) {
368 		seg_a = *(unsigned char *)(a->description + i);
369 		seg_b = *(unsigned char *)(b->description + i);
370 		if ((seg_a ^ seg_b) != 0)
371 			goto differ_plus_i;
372 	}
373 
374 same:
375 	return -1;
376 
377 differ_plus_i:
378 	level += i;
379 differ:
380 	i = level * 8 + __ffs(seg_a ^ seg_b);
381 	return i;
382 }
383 
384 /*
385  * Free an object after stripping the keyring flag off of the pointer.
386  */
387 static void keyring_free_object(void *object)
388 {
389 	key_put(keyring_ptr_to_key(object));
390 }
391 
392 /*
393  * Operations for keyring management by the index-tree routines.
394  */
395 static const struct assoc_array_ops keyring_assoc_array_ops = {
396 	.get_key_chunk		= keyring_get_key_chunk,
397 	.get_object_key_chunk	= keyring_get_object_key_chunk,
398 	.compare_object		= keyring_compare_object,
399 	.diff_objects		= keyring_diff_objects,
400 	.free_object		= keyring_free_object,
401 };
402 
403 /*
404  * Clean up a keyring when it is destroyed.  Unpublish its name if it had one
405  * and dispose of its data.
406  *
407  * The garbage collector detects the final key_put(), removes the keyring from
408  * the serial number tree and then does RCU synchronisation before coming here,
409  * so we shouldn't need to worry about code poking around here with the RCU
410  * readlock held by this time.
411  */
412 static void keyring_destroy(struct key *keyring)
413 {
414 	if (keyring->description) {
415 		write_lock(&keyring_name_lock);
416 
417 		if (keyring->name_link.next != NULL &&
418 		    !list_empty(&keyring->name_link))
419 			list_del(&keyring->name_link);
420 
421 		write_unlock(&keyring_name_lock);
422 	}
423 
424 	if (keyring->restrict_link) {
425 		struct key_restriction *keyres = keyring->restrict_link;
426 
427 		key_put(keyres->key);
428 		kfree(keyres);
429 	}
430 
431 	assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
432 }
433 
434 /*
435  * Describe a keyring for /proc.
436  */
437 static void keyring_describe(const struct key *keyring, struct seq_file *m)
438 {
439 	if (keyring->description)
440 		seq_puts(m, keyring->description);
441 	else
442 		seq_puts(m, "[anon]");
443 
444 	if (key_is_positive(keyring)) {
445 		if (keyring->keys.nr_leaves_on_tree != 0)
446 			seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
447 		else
448 			seq_puts(m, ": empty");
449 	}
450 }
451 
452 struct keyring_read_iterator_context {
453 	size_t			buflen;
454 	size_t			count;
455 	key_serial_t		*buffer;
456 };
457 
458 static int keyring_read_iterator(const void *object, void *data)
459 {
460 	struct keyring_read_iterator_context *ctx = data;
461 	const struct key *key = keyring_ptr_to_key(object);
462 
463 	kenter("{%s,%d},,{%zu/%zu}",
464 	       key->type->name, key->serial, ctx->count, ctx->buflen);
465 
466 	if (ctx->count >= ctx->buflen)
467 		return 1;
468 
469 	*ctx->buffer++ = key->serial;
470 	ctx->count += sizeof(key->serial);
471 	return 0;
472 }
473 
474 /*
475  * Read a list of key IDs from the keyring's contents in binary form
476  *
477  * The keyring's semaphore is read-locked by the caller.  This prevents someone
478  * from modifying it under us - which could cause us to read key IDs multiple
479  * times.
480  */
481 static long keyring_read(const struct key *keyring,
482 			 char *buffer, size_t buflen)
483 {
484 	struct keyring_read_iterator_context ctx;
485 	long ret;
486 
487 	kenter("{%d},,%zu", key_serial(keyring), buflen);
488 
489 	if (buflen & (sizeof(key_serial_t) - 1))
490 		return -EINVAL;
491 
492 	/* Copy as many key IDs as fit into the buffer */
493 	if (buffer && buflen) {
494 		ctx.buffer = (key_serial_t *)buffer;
495 		ctx.buflen = buflen;
496 		ctx.count = 0;
497 		ret = assoc_array_iterate(&keyring->keys,
498 					  keyring_read_iterator, &ctx);
499 		if (ret < 0) {
500 			kleave(" = %ld [iterate]", ret);
501 			return ret;
502 		}
503 	}
504 
505 	/* Return the size of the buffer needed */
506 	ret = keyring->keys.nr_leaves_on_tree * sizeof(key_serial_t);
507 	if (ret <= buflen)
508 		kleave("= %ld [ok]", ret);
509 	else
510 		kleave("= %ld [buffer too small]", ret);
511 	return ret;
512 }
513 
514 /*
515  * Allocate a keyring and link into the destination keyring.
516  */
517 struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
518 			  const struct cred *cred, key_perm_t perm,
519 			  unsigned long flags,
520 			  struct key_restriction *restrict_link,
521 			  struct key *dest)
522 {
523 	struct key *keyring;
524 	int ret;
525 
526 	keyring = key_alloc(&key_type_keyring, description,
527 			    uid, gid, cred, perm, flags, restrict_link);
528 	if (!IS_ERR(keyring)) {
529 		ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
530 		if (ret < 0) {
531 			key_put(keyring);
532 			keyring = ERR_PTR(ret);
533 		}
534 	}
535 
536 	return keyring;
537 }
538 EXPORT_SYMBOL(keyring_alloc);
539 
540 /**
541  * restrict_link_reject - Give -EPERM to restrict link
542  * @keyring: The keyring being added to.
543  * @type: The type of key being added.
544  * @payload: The payload of the key intended to be added.
545  * @restriction_key: Keys providing additional data for evaluating restriction.
546  *
547  * Reject the addition of any links to a keyring.  It can be overridden by
548  * passing KEY_ALLOC_BYPASS_RESTRICTION to key_instantiate_and_link() when
549  * adding a key to a keyring.
550  *
551  * This is meant to be stored in a key_restriction structure which is passed
552  * in the restrict_link parameter to keyring_alloc().
553  */
554 int restrict_link_reject(struct key *keyring,
555 			 const struct key_type *type,
556 			 const union key_payload *payload,
557 			 struct key *restriction_key)
558 {
559 	return -EPERM;
560 }
561 
562 /*
563  * By default, we keys found by getting an exact match on their descriptions.
564  */
565 bool key_default_cmp(const struct key *key,
566 		     const struct key_match_data *match_data)
567 {
568 	return strcmp(key->description, match_data->raw_data) == 0;
569 }
570 
571 /*
572  * Iteration function to consider each key found.
573  */
574 static int keyring_search_iterator(const void *object, void *iterator_data)
575 {
576 	struct keyring_search_context *ctx = iterator_data;
577 	const struct key *key = keyring_ptr_to_key(object);
578 	unsigned long kflags = READ_ONCE(key->flags);
579 	short state = READ_ONCE(key->state);
580 
581 	kenter("{%d}", key->serial);
582 
583 	/* ignore keys not of this type */
584 	if (key->type != ctx->index_key.type) {
585 		kleave(" = 0 [!type]");
586 		return 0;
587 	}
588 
589 	/* skip invalidated, revoked and expired keys */
590 	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
591 		time64_t expiry = READ_ONCE(key->expiry);
592 
593 		if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
594 			      (1 << KEY_FLAG_REVOKED))) {
595 			ctx->result = ERR_PTR(-EKEYREVOKED);
596 			kleave(" = %d [invrev]", ctx->skipped_ret);
597 			goto skipped;
598 		}
599 
600 		if (expiry && ctx->now >= expiry) {
601 			if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED))
602 				ctx->result = ERR_PTR(-EKEYEXPIRED);
603 			kleave(" = %d [expire]", ctx->skipped_ret);
604 			goto skipped;
605 		}
606 	}
607 
608 	/* keys that don't match */
609 	if (!ctx->match_data.cmp(key, &ctx->match_data)) {
610 		kleave(" = 0 [!match]");
611 		return 0;
612 	}
613 
614 	/* key must have search permissions */
615 	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
616 	    key_task_permission(make_key_ref(key, ctx->possessed),
617 				ctx->cred, KEY_NEED_SEARCH) < 0) {
618 		ctx->result = ERR_PTR(-EACCES);
619 		kleave(" = %d [!perm]", ctx->skipped_ret);
620 		goto skipped;
621 	}
622 
623 	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
624 		/* we set a different error code if we pass a negative key */
625 		if (state < 0) {
626 			ctx->result = ERR_PTR(state);
627 			kleave(" = %d [neg]", ctx->skipped_ret);
628 			goto skipped;
629 		}
630 	}
631 
632 	/* Found */
633 	ctx->result = make_key_ref(key, ctx->possessed);
634 	kleave(" = 1 [found]");
635 	return 1;
636 
637 skipped:
638 	return ctx->skipped_ret;
639 }
640 
641 /*
642  * Search inside a keyring for a key.  We can search by walking to it
643  * directly based on its index-key or we can iterate over the entire
644  * tree looking for it, based on the match function.
645  */
646 static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
647 {
648 	if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) {
649 		const void *object;
650 
651 		object = assoc_array_find(&keyring->keys,
652 					  &keyring_assoc_array_ops,
653 					  &ctx->index_key);
654 		return object ? ctx->iterator(object, ctx) : 0;
655 	}
656 	return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
657 }
658 
659 /*
660  * Search a tree of keyrings that point to other keyrings up to the maximum
661  * depth.
662  */
663 static bool search_nested_keyrings(struct key *keyring,
664 				   struct keyring_search_context *ctx)
665 {
666 	struct {
667 		struct key *keyring;
668 		struct assoc_array_node *node;
669 		int slot;
670 	} stack[KEYRING_SEARCH_MAX_DEPTH];
671 
672 	struct assoc_array_shortcut *shortcut;
673 	struct assoc_array_node *node;
674 	struct assoc_array_ptr *ptr;
675 	struct key *key;
676 	int sp = 0, slot;
677 
678 	kenter("{%d},{%s,%s}",
679 	       keyring->serial,
680 	       ctx->index_key.type->name,
681 	       ctx->index_key.description);
682 
683 #define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK)
684 	BUG_ON((ctx->flags & STATE_CHECKS) == 0 ||
685 	       (ctx->flags & STATE_CHECKS) == STATE_CHECKS);
686 
687 	if (ctx->index_key.description)
688 		key_set_index_key(&ctx->index_key);
689 
690 	/* Check to see if this top-level keyring is what we are looking for
691 	 * and whether it is valid or not.
692 	 */
693 	if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE ||
694 	    keyring_compare_object(keyring, &ctx->index_key)) {
695 		ctx->skipped_ret = 2;
696 		switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
697 		case 1:
698 			goto found;
699 		case 2:
700 			return false;
701 		default:
702 			break;
703 		}
704 	}
705 
706 	ctx->skipped_ret = 0;
707 
708 	/* Start processing a new keyring */
709 descend_to_keyring:
710 	kdebug("descend to %d", keyring->serial);
711 	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
712 			      (1 << KEY_FLAG_REVOKED)))
713 		goto not_this_keyring;
714 
715 	/* Search through the keys in this keyring before its searching its
716 	 * subtrees.
717 	 */
718 	if (search_keyring(keyring, ctx))
719 		goto found;
720 
721 	/* Then manually iterate through the keyrings nested in this one.
722 	 *
723 	 * Start from the root node of the index tree.  Because of the way the
724 	 * hash function has been set up, keyrings cluster on the leftmost
725 	 * branch of the root node (root slot 0) or in the root node itself.
726 	 * Non-keyrings avoid the leftmost branch of the root entirely (root
727 	 * slots 1-15).
728 	 */
729 	if (!(ctx->flags & KEYRING_SEARCH_RECURSE))
730 		goto not_this_keyring;
731 
732 	ptr = READ_ONCE(keyring->keys.root);
733 	if (!ptr)
734 		goto not_this_keyring;
735 
736 	if (assoc_array_ptr_is_shortcut(ptr)) {
737 		/* If the root is a shortcut, either the keyring only contains
738 		 * keyring pointers (everything clusters behind root slot 0) or
739 		 * doesn't contain any keyring pointers.
740 		 */
741 		shortcut = assoc_array_ptr_to_shortcut(ptr);
742 		if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
743 			goto not_this_keyring;
744 
745 		ptr = READ_ONCE(shortcut->next_node);
746 		node = assoc_array_ptr_to_node(ptr);
747 		goto begin_node;
748 	}
749 
750 	node = assoc_array_ptr_to_node(ptr);
751 	ptr = node->slots[0];
752 	if (!assoc_array_ptr_is_meta(ptr))
753 		goto begin_node;
754 
755 descend_to_node:
756 	/* Descend to a more distal node in this keyring's content tree and go
757 	 * through that.
758 	 */
759 	kdebug("descend");
760 	if (assoc_array_ptr_is_shortcut(ptr)) {
761 		shortcut = assoc_array_ptr_to_shortcut(ptr);
762 		ptr = READ_ONCE(shortcut->next_node);
763 		BUG_ON(!assoc_array_ptr_is_node(ptr));
764 	}
765 	node = assoc_array_ptr_to_node(ptr);
766 
767 begin_node:
768 	kdebug("begin_node");
769 	slot = 0;
770 ascend_to_node:
771 	/* Go through the slots in a node */
772 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
773 		ptr = READ_ONCE(node->slots[slot]);
774 
775 		if (assoc_array_ptr_is_meta(ptr)) {
776 			if (node->back_pointer ||
777 			    assoc_array_ptr_is_shortcut(ptr))
778 				goto descend_to_node;
779 		}
780 
781 		if (!keyring_ptr_is_keyring(ptr))
782 			continue;
783 
784 		key = keyring_ptr_to_key(ptr);
785 
786 		if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
787 			if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
788 				ctx->result = ERR_PTR(-ELOOP);
789 				return false;
790 			}
791 			goto not_this_keyring;
792 		}
793 
794 		/* Search a nested keyring */
795 		if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
796 		    key_task_permission(make_key_ref(key, ctx->possessed),
797 					ctx->cred, KEY_NEED_SEARCH) < 0)
798 			continue;
799 
800 		/* stack the current position */
801 		stack[sp].keyring = keyring;
802 		stack[sp].node = node;
803 		stack[sp].slot = slot;
804 		sp++;
805 
806 		/* begin again with the new keyring */
807 		keyring = key;
808 		goto descend_to_keyring;
809 	}
810 
811 	/* We've dealt with all the slots in the current node, so now we need
812 	 * to ascend to the parent and continue processing there.
813 	 */
814 	ptr = READ_ONCE(node->back_pointer);
815 	slot = node->parent_slot;
816 
817 	if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
818 		shortcut = assoc_array_ptr_to_shortcut(ptr);
819 		ptr = READ_ONCE(shortcut->back_pointer);
820 		slot = shortcut->parent_slot;
821 	}
822 	if (!ptr)
823 		goto not_this_keyring;
824 	node = assoc_array_ptr_to_node(ptr);
825 	slot++;
826 
827 	/* If we've ascended to the root (zero backpointer), we must have just
828 	 * finished processing the leftmost branch rather than the root slots -
829 	 * so there can't be any more keyrings for us to find.
830 	 */
831 	if (node->back_pointer) {
832 		kdebug("ascend %d", slot);
833 		goto ascend_to_node;
834 	}
835 
836 	/* The keyring we're looking at was disqualified or didn't contain a
837 	 * matching key.
838 	 */
839 not_this_keyring:
840 	kdebug("not_this_keyring %d", sp);
841 	if (sp <= 0) {
842 		kleave(" = false");
843 		return false;
844 	}
845 
846 	/* Resume the processing of a keyring higher up in the tree */
847 	sp--;
848 	keyring = stack[sp].keyring;
849 	node = stack[sp].node;
850 	slot = stack[sp].slot + 1;
851 	kdebug("ascend to %d [%d]", keyring->serial, slot);
852 	goto ascend_to_node;
853 
854 	/* We found a viable match */
855 found:
856 	key = key_ref_to_ptr(ctx->result);
857 	key_check(key);
858 	if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
859 		key->last_used_at = ctx->now;
860 		keyring->last_used_at = ctx->now;
861 		while (sp > 0)
862 			stack[--sp].keyring->last_used_at = ctx->now;
863 	}
864 	kleave(" = true");
865 	return true;
866 }
867 
868 /**
869  * keyring_search_rcu - Search a keyring tree for a matching key under RCU
870  * @keyring_ref: A pointer to the keyring with possession indicator.
871  * @ctx: The keyring search context.
872  *
873  * Search the supplied keyring tree for a key that matches the criteria given.
874  * The root keyring and any linked keyrings must grant Search permission to the
875  * caller to be searchable and keys can only be found if they too grant Search
876  * to the caller. The possession flag on the root keyring pointer controls use
877  * of the possessor bits in permissions checking of the entire tree.  In
878  * addition, the LSM gets to forbid keyring searches and key matches.
879  *
880  * The search is performed as a breadth-then-depth search up to the prescribed
881  * limit (KEYRING_SEARCH_MAX_DEPTH).  The caller must hold the RCU read lock to
882  * prevent keyrings from being destroyed or rearranged whilst they are being
883  * searched.
884  *
885  * Keys are matched to the type provided and are then filtered by the match
886  * function, which is given the description to use in any way it sees fit.  The
887  * match function may use any attributes of a key that it wishes to
888  * determine the match.  Normally the match function from the key type would be
889  * used.
890  *
891  * RCU can be used to prevent the keyring key lists from disappearing without
892  * the need to take lots of locks.
893  *
894  * Returns a pointer to the found key and increments the key usage count if
895  * successful; -EAGAIN if no matching keys were found, or if expired or revoked
896  * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
897  * specified keyring wasn't a keyring.
898  *
899  * In the case of a successful return, the possession attribute from
900  * @keyring_ref is propagated to the returned key reference.
901  */
902 key_ref_t keyring_search_rcu(key_ref_t keyring_ref,
903 			     struct keyring_search_context *ctx)
904 {
905 	struct key *keyring;
906 	long err;
907 
908 	ctx->iterator = keyring_search_iterator;
909 	ctx->possessed = is_key_possessed(keyring_ref);
910 	ctx->result = ERR_PTR(-EAGAIN);
911 
912 	keyring = key_ref_to_ptr(keyring_ref);
913 	key_check(keyring);
914 
915 	if (keyring->type != &key_type_keyring)
916 		return ERR_PTR(-ENOTDIR);
917 
918 	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
919 		err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH);
920 		if (err < 0)
921 			return ERR_PTR(err);
922 	}
923 
924 	ctx->now = ktime_get_real_seconds();
925 	if (search_nested_keyrings(keyring, ctx))
926 		__key_get(key_ref_to_ptr(ctx->result));
927 	return ctx->result;
928 }
929 
930 /**
931  * keyring_search - Search the supplied keyring tree for a matching key
932  * @keyring: The root of the keyring tree to be searched.
933  * @type: The type of keyring we want to find.
934  * @description: The name of the keyring we want to find.
935  * @recurse: True to search the children of @keyring also
936  *
937  * As keyring_search_rcu() above, but using the current task's credentials and
938  * type's default matching function and preferred search method.
939  */
940 key_ref_t keyring_search(key_ref_t keyring,
941 			 struct key_type *type,
942 			 const char *description,
943 			 bool recurse)
944 {
945 	struct keyring_search_context ctx = {
946 		.index_key.type		= type,
947 		.index_key.description	= description,
948 		.index_key.desc_len	= strlen(description),
949 		.cred			= current_cred(),
950 		.match_data.cmp		= key_default_cmp,
951 		.match_data.raw_data	= description,
952 		.match_data.lookup_type	= KEYRING_SEARCH_LOOKUP_DIRECT,
953 		.flags			= KEYRING_SEARCH_DO_STATE_CHECK,
954 	};
955 	key_ref_t key;
956 	int ret;
957 
958 	if (recurse)
959 		ctx.flags |= KEYRING_SEARCH_RECURSE;
960 	if (type->match_preparse) {
961 		ret = type->match_preparse(&ctx.match_data);
962 		if (ret < 0)
963 			return ERR_PTR(ret);
964 	}
965 
966 	rcu_read_lock();
967 	key = keyring_search_rcu(keyring, &ctx);
968 	rcu_read_unlock();
969 
970 	if (type->match_free)
971 		type->match_free(&ctx.match_data);
972 	return key;
973 }
974 EXPORT_SYMBOL(keyring_search);
975 
976 static struct key_restriction *keyring_restriction_alloc(
977 	key_restrict_link_func_t check)
978 {
979 	struct key_restriction *keyres =
980 		kzalloc(sizeof(struct key_restriction), GFP_KERNEL);
981 
982 	if (!keyres)
983 		return ERR_PTR(-ENOMEM);
984 
985 	keyres->check = check;
986 
987 	return keyres;
988 }
989 
990 /*
991  * Semaphore to serialise restriction setup to prevent reference count
992  * cycles through restriction key pointers.
993  */
994 static DECLARE_RWSEM(keyring_serialise_restrict_sem);
995 
996 /*
997  * Check for restriction cycles that would prevent keyring garbage collection.
998  * keyring_serialise_restrict_sem must be held.
999  */
1000 static bool keyring_detect_restriction_cycle(const struct key *dest_keyring,
1001 					     struct key_restriction *keyres)
1002 {
1003 	while (keyres && keyres->key &&
1004 	       keyres->key->type == &key_type_keyring) {
1005 		if (keyres->key == dest_keyring)
1006 			return true;
1007 
1008 		keyres = keyres->key->restrict_link;
1009 	}
1010 
1011 	return false;
1012 }
1013 
1014 /**
1015  * keyring_restrict - Look up and apply a restriction to a keyring
1016  * @keyring_ref: The keyring to be restricted
1017  * @type: The key type that will provide the restriction checker.
1018  * @restriction: The restriction options to apply to the keyring
1019  *
1020  * Look up a keyring and apply a restriction to it.  The restriction is managed
1021  * by the specific key type, but can be configured by the options specified in
1022  * the restriction string.
1023  */
1024 int keyring_restrict(key_ref_t keyring_ref, const char *type,
1025 		     const char *restriction)
1026 {
1027 	struct key *keyring;
1028 	struct key_type *restrict_type = NULL;
1029 	struct key_restriction *restrict_link;
1030 	int ret = 0;
1031 
1032 	keyring = key_ref_to_ptr(keyring_ref);
1033 	key_check(keyring);
1034 
1035 	if (keyring->type != &key_type_keyring)
1036 		return -ENOTDIR;
1037 
1038 	if (!type) {
1039 		restrict_link = keyring_restriction_alloc(restrict_link_reject);
1040 	} else {
1041 		restrict_type = key_type_lookup(type);
1042 
1043 		if (IS_ERR(restrict_type))
1044 			return PTR_ERR(restrict_type);
1045 
1046 		if (!restrict_type->lookup_restriction) {
1047 			ret = -ENOENT;
1048 			goto error;
1049 		}
1050 
1051 		restrict_link = restrict_type->lookup_restriction(restriction);
1052 	}
1053 
1054 	if (IS_ERR(restrict_link)) {
1055 		ret = PTR_ERR(restrict_link);
1056 		goto error;
1057 	}
1058 
1059 	down_write(&keyring->sem);
1060 	down_write(&keyring_serialise_restrict_sem);
1061 
1062 	if (keyring->restrict_link) {
1063 		ret = -EEXIST;
1064 	} else if (keyring_detect_restriction_cycle(keyring, restrict_link)) {
1065 		ret = -EDEADLK;
1066 	} else {
1067 		keyring->restrict_link = restrict_link;
1068 		notify_key(keyring, NOTIFY_KEY_SETATTR, 0);
1069 	}
1070 
1071 	up_write(&keyring_serialise_restrict_sem);
1072 	up_write(&keyring->sem);
1073 
1074 	if (ret < 0) {
1075 		key_put(restrict_link->key);
1076 		kfree(restrict_link);
1077 	}
1078 
1079 error:
1080 	if (restrict_type)
1081 		key_type_put(restrict_type);
1082 
1083 	return ret;
1084 }
1085 EXPORT_SYMBOL(keyring_restrict);
1086 
1087 /*
1088  * Search the given keyring for a key that might be updated.
1089  *
1090  * The caller must guarantee that the keyring is a keyring and that the
1091  * permission is granted to modify the keyring as no check is made here.  The
1092  * caller must also hold a lock on the keyring semaphore.
1093  *
1094  * Returns a pointer to the found key with usage count incremented if
1095  * successful and returns NULL if not found.  Revoked and invalidated keys are
1096  * skipped over.
1097  *
1098  * If successful, the possession indicator is propagated from the keyring ref
1099  * to the returned key reference.
1100  */
1101 key_ref_t find_key_to_update(key_ref_t keyring_ref,
1102 			     const struct keyring_index_key *index_key)
1103 {
1104 	struct key *keyring, *key;
1105 	const void *object;
1106 
1107 	keyring = key_ref_to_ptr(keyring_ref);
1108 
1109 	kenter("{%d},{%s,%s}",
1110 	       keyring->serial, index_key->type->name, index_key->description);
1111 
1112 	object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
1113 				  index_key);
1114 
1115 	if (object)
1116 		goto found;
1117 
1118 	kleave(" = NULL");
1119 	return NULL;
1120 
1121 found:
1122 	key = keyring_ptr_to_key(object);
1123 	if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
1124 			  (1 << KEY_FLAG_REVOKED))) {
1125 		kleave(" = NULL [x]");
1126 		return NULL;
1127 	}
1128 	__key_get(key);
1129 	kleave(" = {%d}", key->serial);
1130 	return make_key_ref(key, is_key_possessed(keyring_ref));
1131 }
1132 
1133 /*
1134  * Find a keyring with the specified name.
1135  *
1136  * Only keyrings that have nonzero refcount, are not revoked, and are owned by a
1137  * user in the current user namespace are considered.  If @uid_keyring is %true,
1138  * the keyring additionally must have been allocated as a user or user session
1139  * keyring; otherwise, it must grant Search permission directly to the caller.
1140  *
1141  * Returns a pointer to the keyring with the keyring's refcount having being
1142  * incremented on success.  -ENOKEY is returned if a key could not be found.
1143  */
1144 struct key *find_keyring_by_name(const char *name, bool uid_keyring)
1145 {
1146 	struct user_namespace *ns = current_user_ns();
1147 	struct key *keyring;
1148 
1149 	if (!name)
1150 		return ERR_PTR(-EINVAL);
1151 
1152 	read_lock(&keyring_name_lock);
1153 
1154 	/* Search this hash bucket for a keyring with a matching name that
1155 	 * grants Search permission and that hasn't been revoked
1156 	 */
1157 	list_for_each_entry(keyring, &ns->keyring_name_list, name_link) {
1158 		if (!kuid_has_mapping(ns, keyring->user->uid))
1159 			continue;
1160 
1161 		if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1162 			continue;
1163 
1164 		if (strcmp(keyring->description, name) != 0)
1165 			continue;
1166 
1167 		if (uid_keyring) {
1168 			if (!test_bit(KEY_FLAG_UID_KEYRING,
1169 				      &keyring->flags))
1170 				continue;
1171 		} else {
1172 			if (key_permission(make_key_ref(keyring, 0),
1173 					   KEY_NEED_SEARCH) < 0)
1174 				continue;
1175 		}
1176 
1177 		/* we've got a match but we might end up racing with
1178 		 * key_cleanup() if the keyring is currently 'dead'
1179 		 * (ie. it has a zero usage count) */
1180 		if (!refcount_inc_not_zero(&keyring->usage))
1181 			continue;
1182 		keyring->last_used_at = ktime_get_real_seconds();
1183 		goto out;
1184 	}
1185 
1186 	keyring = ERR_PTR(-ENOKEY);
1187 out:
1188 	read_unlock(&keyring_name_lock);
1189 	return keyring;
1190 }
1191 
1192 static int keyring_detect_cycle_iterator(const void *object,
1193 					 void *iterator_data)
1194 {
1195 	struct keyring_search_context *ctx = iterator_data;
1196 	const struct key *key = keyring_ptr_to_key(object);
1197 
1198 	kenter("{%d}", key->serial);
1199 
1200 	/* We might get a keyring with matching index-key that is nonetheless a
1201 	 * different keyring. */
1202 	if (key != ctx->match_data.raw_data)
1203 		return 0;
1204 
1205 	ctx->result = ERR_PTR(-EDEADLK);
1206 	return 1;
1207 }
1208 
1209 /*
1210  * See if a cycle will be created by inserting acyclic tree B in acyclic
1211  * tree A at the topmost level (ie: as a direct child of A).
1212  *
1213  * Since we are adding B to A at the top level, checking for cycles should just
1214  * be a matter of seeing if node A is somewhere in tree B.
1215  */
1216 static int keyring_detect_cycle(struct key *A, struct key *B)
1217 {
1218 	struct keyring_search_context ctx = {
1219 		.index_key		= A->index_key,
1220 		.match_data.raw_data	= A,
1221 		.match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
1222 		.iterator		= keyring_detect_cycle_iterator,
1223 		.flags			= (KEYRING_SEARCH_NO_STATE_CHECK |
1224 					   KEYRING_SEARCH_NO_UPDATE_TIME |
1225 					   KEYRING_SEARCH_NO_CHECK_PERM |
1226 					   KEYRING_SEARCH_DETECT_TOO_DEEP |
1227 					   KEYRING_SEARCH_RECURSE),
1228 	};
1229 
1230 	rcu_read_lock();
1231 	search_nested_keyrings(B, &ctx);
1232 	rcu_read_unlock();
1233 	return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
1234 }
1235 
1236 /*
1237  * Lock keyring for link.
1238  */
1239 int __key_link_lock(struct key *keyring,
1240 		    const struct keyring_index_key *index_key)
1241 	__acquires(&keyring->sem)
1242 	__acquires(&keyring_serialise_link_lock)
1243 {
1244 	if (keyring->type != &key_type_keyring)
1245 		return -ENOTDIR;
1246 
1247 	down_write(&keyring->sem);
1248 
1249 	/* Serialise link/link calls to prevent parallel calls causing a cycle
1250 	 * when linking two keyring in opposite orders.
1251 	 */
1252 	if (index_key->type == &key_type_keyring)
1253 		mutex_lock(&keyring_serialise_link_lock);
1254 
1255 	return 0;
1256 }
1257 
1258 /*
1259  * Lock keyrings for move (link/unlink combination).
1260  */
1261 int __key_move_lock(struct key *l_keyring, struct key *u_keyring,
1262 		    const struct keyring_index_key *index_key)
1263 	__acquires(&l_keyring->sem)
1264 	__acquires(&u_keyring->sem)
1265 	__acquires(&keyring_serialise_link_lock)
1266 {
1267 	if (l_keyring->type != &key_type_keyring ||
1268 	    u_keyring->type != &key_type_keyring)
1269 		return -ENOTDIR;
1270 
1271 	/* We have to be very careful here to take the keyring locks in the
1272 	 * right order, lest we open ourselves to deadlocking against another
1273 	 * move operation.
1274 	 */
1275 	if (l_keyring < u_keyring) {
1276 		down_write(&l_keyring->sem);
1277 		down_write_nested(&u_keyring->sem, 1);
1278 	} else {
1279 		down_write(&u_keyring->sem);
1280 		down_write_nested(&l_keyring->sem, 1);
1281 	}
1282 
1283 	/* Serialise link/link calls to prevent parallel calls causing a cycle
1284 	 * when linking two keyring in opposite orders.
1285 	 */
1286 	if (index_key->type == &key_type_keyring)
1287 		mutex_lock(&keyring_serialise_link_lock);
1288 
1289 	return 0;
1290 }
1291 
1292 /*
1293  * Preallocate memory so that a key can be linked into to a keyring.
1294  */
1295 int __key_link_begin(struct key *keyring,
1296 		     const struct keyring_index_key *index_key,
1297 		     struct assoc_array_edit **_edit)
1298 {
1299 	struct assoc_array_edit *edit;
1300 	int ret;
1301 
1302 	kenter("%d,%s,%s,",
1303 	       keyring->serial, index_key->type->name, index_key->description);
1304 
1305 	BUG_ON(index_key->desc_len == 0);
1306 	BUG_ON(*_edit != NULL);
1307 
1308 	*_edit = NULL;
1309 
1310 	ret = -EKEYREVOKED;
1311 	if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1312 		goto error;
1313 
1314 	/* Create an edit script that will insert/replace the key in the
1315 	 * keyring tree.
1316 	 */
1317 	edit = assoc_array_insert(&keyring->keys,
1318 				  &keyring_assoc_array_ops,
1319 				  index_key,
1320 				  NULL);
1321 	if (IS_ERR(edit)) {
1322 		ret = PTR_ERR(edit);
1323 		goto error;
1324 	}
1325 
1326 	/* If we're not replacing a link in-place then we're going to need some
1327 	 * extra quota.
1328 	 */
1329 	if (!edit->dead_leaf) {
1330 		ret = key_payload_reserve(keyring,
1331 					  keyring->datalen + KEYQUOTA_LINK_BYTES);
1332 		if (ret < 0)
1333 			goto error_cancel;
1334 	}
1335 
1336 	*_edit = edit;
1337 	kleave(" = 0");
1338 	return 0;
1339 
1340 error_cancel:
1341 	assoc_array_cancel_edit(edit);
1342 error:
1343 	kleave(" = %d", ret);
1344 	return ret;
1345 }
1346 
1347 /*
1348  * Check already instantiated keys aren't going to be a problem.
1349  *
1350  * The caller must have called __key_link_begin(). Don't need to call this for
1351  * keys that were created since __key_link_begin() was called.
1352  */
1353 int __key_link_check_live_key(struct key *keyring, struct key *key)
1354 {
1355 	if (key->type == &key_type_keyring)
1356 		/* check that we aren't going to create a cycle by linking one
1357 		 * keyring to another */
1358 		return keyring_detect_cycle(keyring, key);
1359 	return 0;
1360 }
1361 
1362 /*
1363  * Link a key into to a keyring.
1364  *
1365  * Must be called with __key_link_begin() having being called.  Discards any
1366  * already extant link to matching key if there is one, so that each keyring
1367  * holds at most one link to any given key of a particular type+description
1368  * combination.
1369  */
1370 void __key_link(struct key *keyring, struct key *key,
1371 		struct assoc_array_edit **_edit)
1372 {
1373 	__key_get(key);
1374 	assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
1375 	assoc_array_apply_edit(*_edit);
1376 	*_edit = NULL;
1377 	notify_key(keyring, NOTIFY_KEY_LINKED, key_serial(key));
1378 }
1379 
1380 /*
1381  * Finish linking a key into to a keyring.
1382  *
1383  * Must be called with __key_link_begin() having being called.
1384  */
1385 void __key_link_end(struct key *keyring,
1386 		    const struct keyring_index_key *index_key,
1387 		    struct assoc_array_edit *edit)
1388 	__releases(&keyring->sem)
1389 	__releases(&keyring_serialise_link_lock)
1390 {
1391 	BUG_ON(index_key->type == NULL);
1392 	kenter("%d,%s,", keyring->serial, index_key->type->name);
1393 
1394 	if (edit) {
1395 		if (!edit->dead_leaf) {
1396 			key_payload_reserve(keyring,
1397 				keyring->datalen - KEYQUOTA_LINK_BYTES);
1398 		}
1399 		assoc_array_cancel_edit(edit);
1400 	}
1401 	up_write(&keyring->sem);
1402 
1403 	if (index_key->type == &key_type_keyring)
1404 		mutex_unlock(&keyring_serialise_link_lock);
1405 }
1406 
1407 /*
1408  * Check addition of keys to restricted keyrings.
1409  */
1410 static int __key_link_check_restriction(struct key *keyring, struct key *key)
1411 {
1412 	if (!keyring->restrict_link || !keyring->restrict_link->check)
1413 		return 0;
1414 	return keyring->restrict_link->check(keyring, key->type, &key->payload,
1415 					     keyring->restrict_link->key);
1416 }
1417 
1418 /**
1419  * key_link - Link a key to a keyring
1420  * @keyring: The keyring to make the link in.
1421  * @key: The key to link to.
1422  *
1423  * Make a link in a keyring to a key, such that the keyring holds a reference
1424  * on that key and the key can potentially be found by searching that keyring.
1425  *
1426  * This function will write-lock the keyring's semaphore and will consume some
1427  * of the user's key data quota to hold the link.
1428  *
1429  * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
1430  * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
1431  * full, -EDQUOT if there is insufficient key data quota remaining to add
1432  * another link or -ENOMEM if there's insufficient memory.
1433  *
1434  * It is assumed that the caller has checked that it is permitted for a link to
1435  * be made (the keyring should have Write permission and the key Link
1436  * permission).
1437  */
1438 int key_link(struct key *keyring, struct key *key)
1439 {
1440 	struct assoc_array_edit *edit = NULL;
1441 	int ret;
1442 
1443 	kenter("{%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1444 
1445 	key_check(keyring);
1446 	key_check(key);
1447 
1448 	ret = __key_link_lock(keyring, &key->index_key);
1449 	if (ret < 0)
1450 		goto error;
1451 
1452 	ret = __key_link_begin(keyring, &key->index_key, &edit);
1453 	if (ret < 0)
1454 		goto error_end;
1455 
1456 	kdebug("begun {%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1457 	ret = __key_link_check_restriction(keyring, key);
1458 	if (ret == 0)
1459 		ret = __key_link_check_live_key(keyring, key);
1460 	if (ret == 0)
1461 		__key_link(keyring, key, &edit);
1462 
1463 error_end:
1464 	__key_link_end(keyring, &key->index_key, edit);
1465 error:
1466 	kleave(" = %d {%d,%d}", ret, keyring->serial, refcount_read(&keyring->usage));
1467 	return ret;
1468 }
1469 EXPORT_SYMBOL(key_link);
1470 
1471 /*
1472  * Lock a keyring for unlink.
1473  */
1474 static int __key_unlink_lock(struct key *keyring)
1475 	__acquires(&keyring->sem)
1476 {
1477 	if (keyring->type != &key_type_keyring)
1478 		return -ENOTDIR;
1479 
1480 	down_write(&keyring->sem);
1481 	return 0;
1482 }
1483 
1484 /*
1485  * Begin the process of unlinking a key from a keyring.
1486  */
1487 static int __key_unlink_begin(struct key *keyring, struct key *key,
1488 			      struct assoc_array_edit **_edit)
1489 {
1490 	struct assoc_array_edit *edit;
1491 
1492 	BUG_ON(*_edit != NULL);
1493 
1494 	edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
1495 				  &key->index_key);
1496 	if (IS_ERR(edit))
1497 		return PTR_ERR(edit);
1498 
1499 	if (!edit)
1500 		return -ENOENT;
1501 
1502 	*_edit = edit;
1503 	return 0;
1504 }
1505 
1506 /*
1507  * Apply an unlink change.
1508  */
1509 static void __key_unlink(struct key *keyring, struct key *key,
1510 			 struct assoc_array_edit **_edit)
1511 {
1512 	assoc_array_apply_edit(*_edit);
1513 	notify_key(keyring, NOTIFY_KEY_UNLINKED, key_serial(key));
1514 	*_edit = NULL;
1515 	key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
1516 }
1517 
1518 /*
1519  * Finish unlinking a key from to a keyring.
1520  */
1521 static void __key_unlink_end(struct key *keyring,
1522 			     struct key *key,
1523 			     struct assoc_array_edit *edit)
1524 	__releases(&keyring->sem)
1525 {
1526 	if (edit)
1527 		assoc_array_cancel_edit(edit);
1528 	up_write(&keyring->sem);
1529 }
1530 
1531 /**
1532  * key_unlink - Unlink the first link to a key from a keyring.
1533  * @keyring: The keyring to remove the link from.
1534  * @key: The key the link is to.
1535  *
1536  * Remove a link from a keyring to a key.
1537  *
1538  * This function will write-lock the keyring's semaphore.
1539  *
1540  * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1541  * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1542  * memory.
1543  *
1544  * It is assumed that the caller has checked that it is permitted for a link to
1545  * be removed (the keyring should have Write permission; no permissions are
1546  * required on the key).
1547  */
1548 int key_unlink(struct key *keyring, struct key *key)
1549 {
1550 	struct assoc_array_edit *edit = NULL;
1551 	int ret;
1552 
1553 	key_check(keyring);
1554 	key_check(key);
1555 
1556 	ret = __key_unlink_lock(keyring);
1557 	if (ret < 0)
1558 		return ret;
1559 
1560 	ret = __key_unlink_begin(keyring, key, &edit);
1561 	if (ret == 0)
1562 		__key_unlink(keyring, key, &edit);
1563 	__key_unlink_end(keyring, key, edit);
1564 	return ret;
1565 }
1566 EXPORT_SYMBOL(key_unlink);
1567 
1568 /**
1569  * key_move - Move a key from one keyring to another
1570  * @key: The key to move
1571  * @from_keyring: The keyring to remove the link from.
1572  * @to_keyring: The keyring to make the link in.
1573  * @flags: Qualifying flags, such as KEYCTL_MOVE_EXCL.
1574  *
1575  * Make a link in @to_keyring to a key, such that the keyring holds a reference
1576  * on that key and the key can potentially be found by searching that keyring
1577  * whilst simultaneously removing a link to the key from @from_keyring.
1578  *
1579  * This function will write-lock both keyring's semaphores and will consume
1580  * some of the user's key data quota to hold the link on @to_keyring.
1581  *
1582  * Returns 0 if successful, -ENOTDIR if either keyring isn't a keyring,
1583  * -EKEYREVOKED if either keyring has been revoked, -ENFILE if the second
1584  * keyring is full, -EDQUOT if there is insufficient key data quota remaining
1585  * to add another link or -ENOMEM if there's insufficient memory.  If
1586  * KEYCTL_MOVE_EXCL is set, then -EEXIST will be returned if there's already a
1587  * matching key in @to_keyring.
1588  *
1589  * It is assumed that the caller has checked that it is permitted for a link to
1590  * be made (the keyring should have Write permission and the key Link
1591  * permission).
1592  */
1593 int key_move(struct key *key,
1594 	     struct key *from_keyring,
1595 	     struct key *to_keyring,
1596 	     unsigned int flags)
1597 {
1598 	struct assoc_array_edit *from_edit = NULL, *to_edit = NULL;
1599 	int ret;
1600 
1601 	kenter("%d,%d,%d", key->serial, from_keyring->serial, to_keyring->serial);
1602 
1603 	if (from_keyring == to_keyring)
1604 		return 0;
1605 
1606 	key_check(key);
1607 	key_check(from_keyring);
1608 	key_check(to_keyring);
1609 
1610 	ret = __key_move_lock(from_keyring, to_keyring, &key->index_key);
1611 	if (ret < 0)
1612 		goto out;
1613 	ret = __key_unlink_begin(from_keyring, key, &from_edit);
1614 	if (ret < 0)
1615 		goto error;
1616 	ret = __key_link_begin(to_keyring, &key->index_key, &to_edit);
1617 	if (ret < 0)
1618 		goto error;
1619 
1620 	ret = -EEXIST;
1621 	if (to_edit->dead_leaf && (flags & KEYCTL_MOVE_EXCL))
1622 		goto error;
1623 
1624 	ret = __key_link_check_restriction(to_keyring, key);
1625 	if (ret < 0)
1626 		goto error;
1627 	ret = __key_link_check_live_key(to_keyring, key);
1628 	if (ret < 0)
1629 		goto error;
1630 
1631 	__key_unlink(from_keyring, key, &from_edit);
1632 	__key_link(to_keyring, key, &to_edit);
1633 error:
1634 	__key_link_end(to_keyring, &key->index_key, to_edit);
1635 	__key_unlink_end(from_keyring, key, from_edit);
1636 out:
1637 	kleave(" = %d", ret);
1638 	return ret;
1639 }
1640 EXPORT_SYMBOL(key_move);
1641 
1642 /**
1643  * keyring_clear - Clear a keyring
1644  * @keyring: The keyring to clear.
1645  *
1646  * Clear the contents of the specified keyring.
1647  *
1648  * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1649  */
1650 int keyring_clear(struct key *keyring)
1651 {
1652 	struct assoc_array_edit *edit;
1653 	int ret;
1654 
1655 	if (keyring->type != &key_type_keyring)
1656 		return -ENOTDIR;
1657 
1658 	down_write(&keyring->sem);
1659 
1660 	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1661 	if (IS_ERR(edit)) {
1662 		ret = PTR_ERR(edit);
1663 	} else {
1664 		if (edit)
1665 			assoc_array_apply_edit(edit);
1666 		notify_key(keyring, NOTIFY_KEY_CLEARED, 0);
1667 		key_payload_reserve(keyring, 0);
1668 		ret = 0;
1669 	}
1670 
1671 	up_write(&keyring->sem);
1672 	return ret;
1673 }
1674 EXPORT_SYMBOL(keyring_clear);
1675 
1676 /*
1677  * Dispose of the links from a revoked keyring.
1678  *
1679  * This is called with the key sem write-locked.
1680  */
1681 static void keyring_revoke(struct key *keyring)
1682 {
1683 	struct assoc_array_edit *edit;
1684 
1685 	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1686 	if (!IS_ERR(edit)) {
1687 		if (edit)
1688 			assoc_array_apply_edit(edit);
1689 		key_payload_reserve(keyring, 0);
1690 	}
1691 }
1692 
1693 static bool keyring_gc_select_iterator(void *object, void *iterator_data)
1694 {
1695 	struct key *key = keyring_ptr_to_key(object);
1696 	time64_t *limit = iterator_data;
1697 
1698 	if (key_is_dead(key, *limit))
1699 		return false;
1700 	key_get(key);
1701 	return true;
1702 }
1703 
1704 static int keyring_gc_check_iterator(const void *object, void *iterator_data)
1705 {
1706 	const struct key *key = keyring_ptr_to_key(object);
1707 	time64_t *limit = iterator_data;
1708 
1709 	key_check(key);
1710 	return key_is_dead(key, *limit);
1711 }
1712 
1713 /*
1714  * Garbage collect pointers from a keyring.
1715  *
1716  * Not called with any locks held.  The keyring's key struct will not be
1717  * deallocated under us as only our caller may deallocate it.
1718  */
1719 void keyring_gc(struct key *keyring, time64_t limit)
1720 {
1721 	int result;
1722 
1723 	kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1724 
1725 	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
1726 			      (1 << KEY_FLAG_REVOKED)))
1727 		goto dont_gc;
1728 
1729 	/* scan the keyring looking for dead keys */
1730 	rcu_read_lock();
1731 	result = assoc_array_iterate(&keyring->keys,
1732 				     keyring_gc_check_iterator, &limit);
1733 	rcu_read_unlock();
1734 	if (result == true)
1735 		goto do_gc;
1736 
1737 dont_gc:
1738 	kleave(" [no gc]");
1739 	return;
1740 
1741 do_gc:
1742 	down_write(&keyring->sem);
1743 	assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
1744 		       keyring_gc_select_iterator, &limit);
1745 	up_write(&keyring->sem);
1746 	kleave(" [gc]");
1747 }
1748 
1749 /*
1750  * Garbage collect restriction pointers from a keyring.
1751  *
1752  * Keyring restrictions are associated with a key type, and must be cleaned
1753  * up if the key type is unregistered. The restriction is altered to always
1754  * reject additional keys so a keyring cannot be opened up by unregistering
1755  * a key type.
1756  *
1757  * Not called with any keyring locks held. The keyring's key struct will not
1758  * be deallocated under us as only our caller may deallocate it.
1759  *
1760  * The caller is required to hold key_types_sem and dead_type->sem. This is
1761  * fulfilled by key_gc_keytype() holding the locks on behalf of
1762  * key_garbage_collector(), which it invokes on a workqueue.
1763  */
1764 void keyring_restriction_gc(struct key *keyring, struct key_type *dead_type)
1765 {
1766 	struct key_restriction *keyres;
1767 
1768 	kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1769 
1770 	/*
1771 	 * keyring->restrict_link is only assigned at key allocation time
1772 	 * or with the key type locked, so the only values that could be
1773 	 * concurrently assigned to keyring->restrict_link are for key
1774 	 * types other than dead_type. Given this, it's ok to check
1775 	 * the key type before acquiring keyring->sem.
1776 	 */
1777 	if (!dead_type || !keyring->restrict_link ||
1778 	    keyring->restrict_link->keytype != dead_type) {
1779 		kleave(" [no restriction gc]");
1780 		return;
1781 	}
1782 
1783 	/* Lock the keyring to ensure that a link is not in progress */
1784 	down_write(&keyring->sem);
1785 
1786 	keyres = keyring->restrict_link;
1787 
1788 	keyres->check = restrict_link_reject;
1789 
1790 	key_put(keyres->key);
1791 	keyres->key = NULL;
1792 	keyres->keytype = NULL;
1793 
1794 	up_write(&keyring->sem);
1795 
1796 	kleave(" [restriction gc]");
1797 }
1798