xref: /openbmc/linux/security/keys/keyring.c (revision a2fb4d78)
1 /* Keyring handling
2  *
3  * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/seq_file.h>
18 #include <linux/err.h>
19 #include <keys/keyring-type.h>
20 #include <keys/user-type.h>
21 #include <linux/assoc_array_priv.h>
22 #include <linux/uaccess.h>
23 #include "internal.h"
24 
25 /*
26  * When plumbing the depths of the key tree, this sets a hard limit
27  * set on how deep we're willing to go.
28  */
29 #define KEYRING_SEARCH_MAX_DEPTH 6
30 
31 /*
32  * We keep all named keyrings in a hash to speed looking them up.
33  */
34 #define KEYRING_NAME_HASH_SIZE	(1 << 5)
35 
36 /*
37  * We mark pointers we pass to the associative array with bit 1 set if
38  * they're keyrings and clear otherwise.
39  */
40 #define KEYRING_PTR_SUBTYPE	0x2UL
41 
42 static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
43 {
44 	return (unsigned long)x & KEYRING_PTR_SUBTYPE;
45 }
46 static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
47 {
48 	void *object = assoc_array_ptr_to_leaf(x);
49 	return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
50 }
51 static inline void *keyring_key_to_ptr(struct key *key)
52 {
53 	if (key->type == &key_type_keyring)
54 		return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
55 	return key;
56 }
57 
58 static struct list_head	keyring_name_hash[KEYRING_NAME_HASH_SIZE];
59 static DEFINE_RWLOCK(keyring_name_lock);
60 
61 static inline unsigned keyring_hash(const char *desc)
62 {
63 	unsigned bucket = 0;
64 
65 	for (; *desc; desc++)
66 		bucket += (unsigned char)*desc;
67 
68 	return bucket & (KEYRING_NAME_HASH_SIZE - 1);
69 }
70 
71 /*
72  * The keyring key type definition.  Keyrings are simply keys of this type and
73  * can be treated as ordinary keys in addition to having their own special
74  * operations.
75  */
76 static int keyring_instantiate(struct key *keyring,
77 			       struct key_preparsed_payload *prep);
78 static void keyring_revoke(struct key *keyring);
79 static void keyring_destroy(struct key *keyring);
80 static void keyring_describe(const struct key *keyring, struct seq_file *m);
81 static long keyring_read(const struct key *keyring,
82 			 char __user *buffer, size_t buflen);
83 
84 struct key_type key_type_keyring = {
85 	.name		= "keyring",
86 	.def_datalen	= 0,
87 	.instantiate	= keyring_instantiate,
88 	.match		= user_match,
89 	.revoke		= keyring_revoke,
90 	.destroy	= keyring_destroy,
91 	.describe	= keyring_describe,
92 	.read		= keyring_read,
93 };
94 EXPORT_SYMBOL(key_type_keyring);
95 
96 /*
97  * Semaphore to serialise link/link calls to prevent two link calls in parallel
98  * introducing a cycle.
99  */
100 static DECLARE_RWSEM(keyring_serialise_link_sem);
101 
102 /*
103  * Publish the name of a keyring so that it can be found by name (if it has
104  * one).
105  */
106 static void keyring_publish_name(struct key *keyring)
107 {
108 	int bucket;
109 
110 	if (keyring->description) {
111 		bucket = keyring_hash(keyring->description);
112 
113 		write_lock(&keyring_name_lock);
114 
115 		if (!keyring_name_hash[bucket].next)
116 			INIT_LIST_HEAD(&keyring_name_hash[bucket]);
117 
118 		list_add_tail(&keyring->type_data.link,
119 			      &keyring_name_hash[bucket]);
120 
121 		write_unlock(&keyring_name_lock);
122 	}
123 }
124 
125 /*
126  * Initialise a keyring.
127  *
128  * Returns 0 on success, -EINVAL if given any data.
129  */
130 static int keyring_instantiate(struct key *keyring,
131 			       struct key_preparsed_payload *prep)
132 {
133 	int ret;
134 
135 	ret = -EINVAL;
136 	if (prep->datalen == 0) {
137 		assoc_array_init(&keyring->keys);
138 		/* make the keyring available by name if it has one */
139 		keyring_publish_name(keyring);
140 		ret = 0;
141 	}
142 
143 	return ret;
144 }
145 
146 /*
147  * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit.  Ideally we'd
148  * fold the carry back too, but that requires inline asm.
149  */
150 static u64 mult_64x32_and_fold(u64 x, u32 y)
151 {
152 	u64 hi = (u64)(u32)(x >> 32) * y;
153 	u64 lo = (u64)(u32)(x) * y;
154 	return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
155 }
156 
157 /*
158  * Hash a key type and description.
159  */
160 static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key)
161 {
162 	const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
163 	const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
164 	const char *description = index_key->description;
165 	unsigned long hash, type;
166 	u32 piece;
167 	u64 acc;
168 	int n, desc_len = index_key->desc_len;
169 
170 	type = (unsigned long)index_key->type;
171 
172 	acc = mult_64x32_and_fold(type, desc_len + 13);
173 	acc = mult_64x32_and_fold(acc, 9207);
174 	for (;;) {
175 		n = desc_len;
176 		if (n <= 0)
177 			break;
178 		if (n > 4)
179 			n = 4;
180 		piece = 0;
181 		memcpy(&piece, description, n);
182 		description += n;
183 		desc_len -= n;
184 		acc = mult_64x32_and_fold(acc, piece);
185 		acc = mult_64x32_and_fold(acc, 9207);
186 	}
187 
188 	/* Fold the hash down to 32 bits if need be. */
189 	hash = acc;
190 	if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
191 		hash ^= acc >> 32;
192 
193 	/* Squidge all the keyrings into a separate part of the tree to
194 	 * ordinary keys by making sure the lowest level segment in the hash is
195 	 * zero for keyrings and non-zero otherwise.
196 	 */
197 	if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
198 		return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
199 	if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
200 		return (hash + (hash << level_shift)) & ~fan_mask;
201 	return hash;
202 }
203 
204 /*
205  * Build the next index key chunk.
206  *
207  * On 32-bit systems the index key is laid out as:
208  *
209  *	0	4	5	9...
210  *	hash	desclen	typeptr	desc[]
211  *
212  * On 64-bit systems:
213  *
214  *	0	8	9	17...
215  *	hash	desclen	typeptr	desc[]
216  *
217  * We return it one word-sized chunk at a time.
218  */
219 static unsigned long keyring_get_key_chunk(const void *data, int level)
220 {
221 	const struct keyring_index_key *index_key = data;
222 	unsigned long chunk = 0;
223 	long offset = 0;
224 	int desc_len = index_key->desc_len, n = sizeof(chunk);
225 
226 	level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
227 	switch (level) {
228 	case 0:
229 		return hash_key_type_and_desc(index_key);
230 	case 1:
231 		return ((unsigned long)index_key->type << 8) | desc_len;
232 	case 2:
233 		if (desc_len == 0)
234 			return (u8)((unsigned long)index_key->type >>
235 				    (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
236 		n--;
237 		offset = 1;
238 	default:
239 		offset += sizeof(chunk) - 1;
240 		offset += (level - 3) * sizeof(chunk);
241 		if (offset >= desc_len)
242 			return 0;
243 		desc_len -= offset;
244 		if (desc_len > n)
245 			desc_len = n;
246 		offset += desc_len;
247 		do {
248 			chunk <<= 8;
249 			chunk |= ((u8*)index_key->description)[--offset];
250 		} while (--desc_len > 0);
251 
252 		if (level == 2) {
253 			chunk <<= 8;
254 			chunk |= (u8)((unsigned long)index_key->type >>
255 				      (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
256 		}
257 		return chunk;
258 	}
259 }
260 
261 static unsigned long keyring_get_object_key_chunk(const void *object, int level)
262 {
263 	const struct key *key = keyring_ptr_to_key(object);
264 	return keyring_get_key_chunk(&key->index_key, level);
265 }
266 
267 static bool keyring_compare_object(const void *object, const void *data)
268 {
269 	const struct keyring_index_key *index_key = data;
270 	const struct key *key = keyring_ptr_to_key(object);
271 
272 	return key->index_key.type == index_key->type &&
273 		key->index_key.desc_len == index_key->desc_len &&
274 		memcmp(key->index_key.description, index_key->description,
275 		       index_key->desc_len) == 0;
276 }
277 
278 /*
279  * Compare the index keys of a pair of objects and determine the bit position
280  * at which they differ - if they differ.
281  */
282 static int keyring_diff_objects(const void *object, const void *data)
283 {
284 	const struct key *key_a = keyring_ptr_to_key(object);
285 	const struct keyring_index_key *a = &key_a->index_key;
286 	const struct keyring_index_key *b = data;
287 	unsigned long seg_a, seg_b;
288 	int level, i;
289 
290 	level = 0;
291 	seg_a = hash_key_type_and_desc(a);
292 	seg_b = hash_key_type_and_desc(b);
293 	if ((seg_a ^ seg_b) != 0)
294 		goto differ;
295 
296 	/* The number of bits contributed by the hash is controlled by a
297 	 * constant in the assoc_array headers.  Everything else thereafter we
298 	 * can deal with as being machine word-size dependent.
299 	 */
300 	level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
301 	seg_a = a->desc_len;
302 	seg_b = b->desc_len;
303 	if ((seg_a ^ seg_b) != 0)
304 		goto differ;
305 
306 	/* The next bit may not work on big endian */
307 	level++;
308 	seg_a = (unsigned long)a->type;
309 	seg_b = (unsigned long)b->type;
310 	if ((seg_a ^ seg_b) != 0)
311 		goto differ;
312 
313 	level += sizeof(unsigned long);
314 	if (a->desc_len == 0)
315 		goto same;
316 
317 	i = 0;
318 	if (((unsigned long)a->description | (unsigned long)b->description) &
319 	    (sizeof(unsigned long) - 1)) {
320 		do {
321 			seg_a = *(unsigned long *)(a->description + i);
322 			seg_b = *(unsigned long *)(b->description + i);
323 			if ((seg_a ^ seg_b) != 0)
324 				goto differ_plus_i;
325 			i += sizeof(unsigned long);
326 		} while (i < (a->desc_len & (sizeof(unsigned long) - 1)));
327 	}
328 
329 	for (; i < a->desc_len; i++) {
330 		seg_a = *(unsigned char *)(a->description + i);
331 		seg_b = *(unsigned char *)(b->description + i);
332 		if ((seg_a ^ seg_b) != 0)
333 			goto differ_plus_i;
334 	}
335 
336 same:
337 	return -1;
338 
339 differ_plus_i:
340 	level += i;
341 differ:
342 	i = level * 8 + __ffs(seg_a ^ seg_b);
343 	return i;
344 }
345 
346 /*
347  * Free an object after stripping the keyring flag off of the pointer.
348  */
349 static void keyring_free_object(void *object)
350 {
351 	key_put(keyring_ptr_to_key(object));
352 }
353 
354 /*
355  * Operations for keyring management by the index-tree routines.
356  */
357 static const struct assoc_array_ops keyring_assoc_array_ops = {
358 	.get_key_chunk		= keyring_get_key_chunk,
359 	.get_object_key_chunk	= keyring_get_object_key_chunk,
360 	.compare_object		= keyring_compare_object,
361 	.diff_objects		= keyring_diff_objects,
362 	.free_object		= keyring_free_object,
363 };
364 
365 /*
366  * Clean up a keyring when it is destroyed.  Unpublish its name if it had one
367  * and dispose of its data.
368  *
369  * The garbage collector detects the final key_put(), removes the keyring from
370  * the serial number tree and then does RCU synchronisation before coming here,
371  * so we shouldn't need to worry about code poking around here with the RCU
372  * readlock held by this time.
373  */
374 static void keyring_destroy(struct key *keyring)
375 {
376 	if (keyring->description) {
377 		write_lock(&keyring_name_lock);
378 
379 		if (keyring->type_data.link.next != NULL &&
380 		    !list_empty(&keyring->type_data.link))
381 			list_del(&keyring->type_data.link);
382 
383 		write_unlock(&keyring_name_lock);
384 	}
385 
386 	assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
387 }
388 
389 /*
390  * Describe a keyring for /proc.
391  */
392 static void keyring_describe(const struct key *keyring, struct seq_file *m)
393 {
394 	if (keyring->description)
395 		seq_puts(m, keyring->description);
396 	else
397 		seq_puts(m, "[anon]");
398 
399 	if (key_is_instantiated(keyring)) {
400 		if (keyring->keys.nr_leaves_on_tree != 0)
401 			seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
402 		else
403 			seq_puts(m, ": empty");
404 	}
405 }
406 
407 struct keyring_read_iterator_context {
408 	size_t			qty;
409 	size_t			count;
410 	key_serial_t __user	*buffer;
411 };
412 
413 static int keyring_read_iterator(const void *object, void *data)
414 {
415 	struct keyring_read_iterator_context *ctx = data;
416 	const struct key *key = keyring_ptr_to_key(object);
417 	int ret;
418 
419 	kenter("{%s,%d},,{%zu/%zu}",
420 	       key->type->name, key->serial, ctx->count, ctx->qty);
421 
422 	if (ctx->count >= ctx->qty)
423 		return 1;
424 
425 	ret = put_user(key->serial, ctx->buffer);
426 	if (ret < 0)
427 		return ret;
428 	ctx->buffer++;
429 	ctx->count += sizeof(key->serial);
430 	return 0;
431 }
432 
433 /*
434  * Read a list of key IDs from the keyring's contents in binary form
435  *
436  * The keyring's semaphore is read-locked by the caller.  This prevents someone
437  * from modifying it under us - which could cause us to read key IDs multiple
438  * times.
439  */
440 static long keyring_read(const struct key *keyring,
441 			 char __user *buffer, size_t buflen)
442 {
443 	struct keyring_read_iterator_context ctx;
444 	unsigned long nr_keys;
445 	int ret;
446 
447 	kenter("{%d},,%zu", key_serial(keyring), buflen);
448 
449 	if (buflen & (sizeof(key_serial_t) - 1))
450 		return -EINVAL;
451 
452 	nr_keys = keyring->keys.nr_leaves_on_tree;
453 	if (nr_keys == 0)
454 		return 0;
455 
456 	/* Calculate how much data we could return */
457 	ctx.qty = nr_keys * sizeof(key_serial_t);
458 
459 	if (!buffer || !buflen)
460 		return ctx.qty;
461 
462 	if (buflen > ctx.qty)
463 		ctx.qty = buflen;
464 
465 	/* Copy the IDs of the subscribed keys into the buffer */
466 	ctx.buffer = (key_serial_t __user *)buffer;
467 	ctx.count = 0;
468 	ret = assoc_array_iterate(&keyring->keys, keyring_read_iterator, &ctx);
469 	if (ret < 0) {
470 		kleave(" = %d [iterate]", ret);
471 		return ret;
472 	}
473 
474 	kleave(" = %zu [ok]", ctx.count);
475 	return ctx.count;
476 }
477 
478 /*
479  * Allocate a keyring and link into the destination keyring.
480  */
481 struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
482 			  const struct cred *cred, key_perm_t perm,
483 			  unsigned long flags, struct key *dest)
484 {
485 	struct key *keyring;
486 	int ret;
487 
488 	keyring = key_alloc(&key_type_keyring, description,
489 			    uid, gid, cred, perm, flags);
490 	if (!IS_ERR(keyring)) {
491 		ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
492 		if (ret < 0) {
493 			key_put(keyring);
494 			keyring = ERR_PTR(ret);
495 		}
496 	}
497 
498 	return keyring;
499 }
500 EXPORT_SYMBOL(keyring_alloc);
501 
502 /*
503  * Iteration function to consider each key found.
504  */
505 static int keyring_search_iterator(const void *object, void *iterator_data)
506 {
507 	struct keyring_search_context *ctx = iterator_data;
508 	const struct key *key = keyring_ptr_to_key(object);
509 	unsigned long kflags = key->flags;
510 
511 	kenter("{%d}", key->serial);
512 
513 	/* ignore keys not of this type */
514 	if (key->type != ctx->index_key.type) {
515 		kleave(" = 0 [!type]");
516 		return 0;
517 	}
518 
519 	/* skip invalidated, revoked and expired keys */
520 	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
521 		if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
522 			      (1 << KEY_FLAG_REVOKED))) {
523 			ctx->result = ERR_PTR(-EKEYREVOKED);
524 			kleave(" = %d [invrev]", ctx->skipped_ret);
525 			goto skipped;
526 		}
527 
528 		if (key->expiry && ctx->now.tv_sec >= key->expiry) {
529 			ctx->result = ERR_PTR(-EKEYEXPIRED);
530 			kleave(" = %d [expire]", ctx->skipped_ret);
531 			goto skipped;
532 		}
533 	}
534 
535 	/* keys that don't match */
536 	if (!ctx->match(key, ctx->match_data)) {
537 		kleave(" = 0 [!match]");
538 		return 0;
539 	}
540 
541 	/* key must have search permissions */
542 	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
543 	    key_task_permission(make_key_ref(key, ctx->possessed),
544 				ctx->cred, KEY_SEARCH) < 0) {
545 		ctx->result = ERR_PTR(-EACCES);
546 		kleave(" = %d [!perm]", ctx->skipped_ret);
547 		goto skipped;
548 	}
549 
550 	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
551 		/* we set a different error code if we pass a negative key */
552 		if (kflags & (1 << KEY_FLAG_NEGATIVE)) {
553 			smp_rmb();
554 			ctx->result = ERR_PTR(key->type_data.reject_error);
555 			kleave(" = %d [neg]", ctx->skipped_ret);
556 			goto skipped;
557 		}
558 	}
559 
560 	/* Found */
561 	ctx->result = make_key_ref(key, ctx->possessed);
562 	kleave(" = 1 [found]");
563 	return 1;
564 
565 skipped:
566 	return ctx->skipped_ret;
567 }
568 
569 /*
570  * Search inside a keyring for a key.  We can search by walking to it
571  * directly based on its index-key or we can iterate over the entire
572  * tree looking for it, based on the match function.
573  */
574 static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
575 {
576 	if ((ctx->flags & KEYRING_SEARCH_LOOKUP_TYPE) ==
577 	    KEYRING_SEARCH_LOOKUP_DIRECT) {
578 		const void *object;
579 
580 		object = assoc_array_find(&keyring->keys,
581 					  &keyring_assoc_array_ops,
582 					  &ctx->index_key);
583 		return object ? ctx->iterator(object, ctx) : 0;
584 	}
585 	return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
586 }
587 
588 /*
589  * Search a tree of keyrings that point to other keyrings up to the maximum
590  * depth.
591  */
592 static bool search_nested_keyrings(struct key *keyring,
593 				   struct keyring_search_context *ctx)
594 {
595 	struct {
596 		struct key *keyring;
597 		struct assoc_array_node *node;
598 		int slot;
599 	} stack[KEYRING_SEARCH_MAX_DEPTH];
600 
601 	struct assoc_array_shortcut *shortcut;
602 	struct assoc_array_node *node;
603 	struct assoc_array_ptr *ptr;
604 	struct key *key;
605 	int sp = 0, slot;
606 
607 	kenter("{%d},{%s,%s}",
608 	       keyring->serial,
609 	       ctx->index_key.type->name,
610 	       ctx->index_key.description);
611 
612 	if (ctx->index_key.description)
613 		ctx->index_key.desc_len = strlen(ctx->index_key.description);
614 
615 	/* Check to see if this top-level keyring is what we are looking for
616 	 * and whether it is valid or not.
617 	 */
618 	if (ctx->flags & KEYRING_SEARCH_LOOKUP_ITERATE ||
619 	    keyring_compare_object(keyring, &ctx->index_key)) {
620 		ctx->skipped_ret = 2;
621 		ctx->flags |= KEYRING_SEARCH_DO_STATE_CHECK;
622 		switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
623 		case 1:
624 			goto found;
625 		case 2:
626 			return false;
627 		default:
628 			break;
629 		}
630 	}
631 
632 	ctx->skipped_ret = 0;
633 	if (ctx->flags & KEYRING_SEARCH_NO_STATE_CHECK)
634 		ctx->flags &= ~KEYRING_SEARCH_DO_STATE_CHECK;
635 
636 	/* Start processing a new keyring */
637 descend_to_keyring:
638 	kdebug("descend to %d", keyring->serial);
639 	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
640 			      (1 << KEY_FLAG_REVOKED)))
641 		goto not_this_keyring;
642 
643 	/* Search through the keys in this keyring before its searching its
644 	 * subtrees.
645 	 */
646 	if (search_keyring(keyring, ctx))
647 		goto found;
648 
649 	/* Then manually iterate through the keyrings nested in this one.
650 	 *
651 	 * Start from the root node of the index tree.  Because of the way the
652 	 * hash function has been set up, keyrings cluster on the leftmost
653 	 * branch of the root node (root slot 0) or in the root node itself.
654 	 * Non-keyrings avoid the leftmost branch of the root entirely (root
655 	 * slots 1-15).
656 	 */
657 	ptr = ACCESS_ONCE(keyring->keys.root);
658 	if (!ptr)
659 		goto not_this_keyring;
660 
661 	if (assoc_array_ptr_is_shortcut(ptr)) {
662 		/* If the root is a shortcut, either the keyring only contains
663 		 * keyring pointers (everything clusters behind root slot 0) or
664 		 * doesn't contain any keyring pointers.
665 		 */
666 		shortcut = assoc_array_ptr_to_shortcut(ptr);
667 		smp_read_barrier_depends();
668 		if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
669 			goto not_this_keyring;
670 
671 		ptr = ACCESS_ONCE(shortcut->next_node);
672 		node = assoc_array_ptr_to_node(ptr);
673 		goto begin_node;
674 	}
675 
676 	node = assoc_array_ptr_to_node(ptr);
677 	smp_read_barrier_depends();
678 
679 	ptr = node->slots[0];
680 	if (!assoc_array_ptr_is_meta(ptr))
681 		goto begin_node;
682 
683 descend_to_node:
684 	/* Descend to a more distal node in this keyring's content tree and go
685 	 * through that.
686 	 */
687 	kdebug("descend");
688 	if (assoc_array_ptr_is_shortcut(ptr)) {
689 		shortcut = assoc_array_ptr_to_shortcut(ptr);
690 		smp_read_barrier_depends();
691 		ptr = ACCESS_ONCE(shortcut->next_node);
692 		BUG_ON(!assoc_array_ptr_is_node(ptr));
693 	}
694 	node = assoc_array_ptr_to_node(ptr);
695 
696 begin_node:
697 	kdebug("begin_node");
698 	smp_read_barrier_depends();
699 	slot = 0;
700 ascend_to_node:
701 	/* Go through the slots in a node */
702 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
703 		ptr = ACCESS_ONCE(node->slots[slot]);
704 
705 		if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
706 			goto descend_to_node;
707 
708 		if (!keyring_ptr_is_keyring(ptr))
709 			continue;
710 
711 		key = keyring_ptr_to_key(ptr);
712 
713 		if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
714 			if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
715 				ctx->result = ERR_PTR(-ELOOP);
716 				return false;
717 			}
718 			goto not_this_keyring;
719 		}
720 
721 		/* Search a nested keyring */
722 		if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
723 		    key_task_permission(make_key_ref(key, ctx->possessed),
724 					ctx->cred, KEY_SEARCH) < 0)
725 			continue;
726 
727 		/* stack the current position */
728 		stack[sp].keyring = keyring;
729 		stack[sp].node = node;
730 		stack[sp].slot = slot;
731 		sp++;
732 
733 		/* begin again with the new keyring */
734 		keyring = key;
735 		goto descend_to_keyring;
736 	}
737 
738 	/* We've dealt with all the slots in the current node, so now we need
739 	 * to ascend to the parent and continue processing there.
740 	 */
741 	ptr = ACCESS_ONCE(node->back_pointer);
742 	slot = node->parent_slot;
743 
744 	if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
745 		shortcut = assoc_array_ptr_to_shortcut(ptr);
746 		smp_read_barrier_depends();
747 		ptr = ACCESS_ONCE(shortcut->back_pointer);
748 		slot = shortcut->parent_slot;
749 	}
750 	if (!ptr)
751 		goto not_this_keyring;
752 	node = assoc_array_ptr_to_node(ptr);
753 	smp_read_barrier_depends();
754 	slot++;
755 
756 	/* If we've ascended to the root (zero backpointer), we must have just
757 	 * finished processing the leftmost branch rather than the root slots -
758 	 * so there can't be any more keyrings for us to find.
759 	 */
760 	if (node->back_pointer) {
761 		kdebug("ascend %d", slot);
762 		goto ascend_to_node;
763 	}
764 
765 	/* The keyring we're looking at was disqualified or didn't contain a
766 	 * matching key.
767 	 */
768 not_this_keyring:
769 	kdebug("not_this_keyring %d", sp);
770 	if (sp <= 0) {
771 		kleave(" = false");
772 		return false;
773 	}
774 
775 	/* Resume the processing of a keyring higher up in the tree */
776 	sp--;
777 	keyring = stack[sp].keyring;
778 	node = stack[sp].node;
779 	slot = stack[sp].slot + 1;
780 	kdebug("ascend to %d [%d]", keyring->serial, slot);
781 	goto ascend_to_node;
782 
783 	/* We found a viable match */
784 found:
785 	key = key_ref_to_ptr(ctx->result);
786 	key_check(key);
787 	if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
788 		key->last_used_at = ctx->now.tv_sec;
789 		keyring->last_used_at = ctx->now.tv_sec;
790 		while (sp > 0)
791 			stack[--sp].keyring->last_used_at = ctx->now.tv_sec;
792 	}
793 	kleave(" = true");
794 	return true;
795 }
796 
797 /**
798  * keyring_search_aux - Search a keyring tree for a key matching some criteria
799  * @keyring_ref: A pointer to the keyring with possession indicator.
800  * @ctx: The keyring search context.
801  *
802  * Search the supplied keyring tree for a key that matches the criteria given.
803  * The root keyring and any linked keyrings must grant Search permission to the
804  * caller to be searchable and keys can only be found if they too grant Search
805  * to the caller. The possession flag on the root keyring pointer controls use
806  * of the possessor bits in permissions checking of the entire tree.  In
807  * addition, the LSM gets to forbid keyring searches and key matches.
808  *
809  * The search is performed as a breadth-then-depth search up to the prescribed
810  * limit (KEYRING_SEARCH_MAX_DEPTH).
811  *
812  * Keys are matched to the type provided and are then filtered by the match
813  * function, which is given the description to use in any way it sees fit.  The
814  * match function may use any attributes of a key that it wishes to to
815  * determine the match.  Normally the match function from the key type would be
816  * used.
817  *
818  * RCU can be used to prevent the keyring key lists from disappearing without
819  * the need to take lots of locks.
820  *
821  * Returns a pointer to the found key and increments the key usage count if
822  * successful; -EAGAIN if no matching keys were found, or if expired or revoked
823  * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
824  * specified keyring wasn't a keyring.
825  *
826  * In the case of a successful return, the possession attribute from
827  * @keyring_ref is propagated to the returned key reference.
828  */
829 key_ref_t keyring_search_aux(key_ref_t keyring_ref,
830 			     struct keyring_search_context *ctx)
831 {
832 	struct key *keyring;
833 	long err;
834 
835 	ctx->iterator = keyring_search_iterator;
836 	ctx->possessed = is_key_possessed(keyring_ref);
837 	ctx->result = ERR_PTR(-EAGAIN);
838 
839 	keyring = key_ref_to_ptr(keyring_ref);
840 	key_check(keyring);
841 
842 	if (keyring->type != &key_type_keyring)
843 		return ERR_PTR(-ENOTDIR);
844 
845 	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
846 		err = key_task_permission(keyring_ref, ctx->cred, KEY_SEARCH);
847 		if (err < 0)
848 			return ERR_PTR(err);
849 	}
850 
851 	rcu_read_lock();
852 	ctx->now = current_kernel_time();
853 	if (search_nested_keyrings(keyring, ctx))
854 		__key_get(key_ref_to_ptr(ctx->result));
855 	rcu_read_unlock();
856 	return ctx->result;
857 }
858 
859 /**
860  * keyring_search - Search the supplied keyring tree for a matching key
861  * @keyring: The root of the keyring tree to be searched.
862  * @type: The type of keyring we want to find.
863  * @description: The name of the keyring we want to find.
864  *
865  * As keyring_search_aux() above, but using the current task's credentials and
866  * type's default matching function and preferred search method.
867  */
868 key_ref_t keyring_search(key_ref_t keyring,
869 			 struct key_type *type,
870 			 const char *description)
871 {
872 	struct keyring_search_context ctx = {
873 		.index_key.type		= type,
874 		.index_key.description	= description,
875 		.cred			= current_cred(),
876 		.match			= type->match,
877 		.match_data		= description,
878 		.flags			= (type->def_lookup_type |
879 					   KEYRING_SEARCH_DO_STATE_CHECK),
880 	};
881 
882 	if (!ctx.match)
883 		return ERR_PTR(-ENOKEY);
884 
885 	return keyring_search_aux(keyring, &ctx);
886 }
887 EXPORT_SYMBOL(keyring_search);
888 
889 /*
890  * Search the given keyring for a key that might be updated.
891  *
892  * The caller must guarantee that the keyring is a keyring and that the
893  * permission is granted to modify the keyring as no check is made here.  The
894  * caller must also hold a lock on the keyring semaphore.
895  *
896  * Returns a pointer to the found key with usage count incremented if
897  * successful and returns NULL if not found.  Revoked and invalidated keys are
898  * skipped over.
899  *
900  * If successful, the possession indicator is propagated from the keyring ref
901  * to the returned key reference.
902  */
903 key_ref_t find_key_to_update(key_ref_t keyring_ref,
904 			     const struct keyring_index_key *index_key)
905 {
906 	struct key *keyring, *key;
907 	const void *object;
908 
909 	keyring = key_ref_to_ptr(keyring_ref);
910 
911 	kenter("{%d},{%s,%s}",
912 	       keyring->serial, index_key->type->name, index_key->description);
913 
914 	object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
915 				  index_key);
916 
917 	if (object)
918 		goto found;
919 
920 	kleave(" = NULL");
921 	return NULL;
922 
923 found:
924 	key = keyring_ptr_to_key(object);
925 	if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
926 			  (1 << KEY_FLAG_REVOKED))) {
927 		kleave(" = NULL [x]");
928 		return NULL;
929 	}
930 	__key_get(key);
931 	kleave(" = {%d}", key->serial);
932 	return make_key_ref(key, is_key_possessed(keyring_ref));
933 }
934 
935 /*
936  * Find a keyring with the specified name.
937  *
938  * All named keyrings in the current user namespace are searched, provided they
939  * grant Search permission directly to the caller (unless this check is
940  * skipped).  Keyrings whose usage points have reached zero or who have been
941  * revoked are skipped.
942  *
943  * Returns a pointer to the keyring with the keyring's refcount having being
944  * incremented on success.  -ENOKEY is returned if a key could not be found.
945  */
946 struct key *find_keyring_by_name(const char *name, bool skip_perm_check)
947 {
948 	struct key *keyring;
949 	int bucket;
950 
951 	if (!name)
952 		return ERR_PTR(-EINVAL);
953 
954 	bucket = keyring_hash(name);
955 
956 	read_lock(&keyring_name_lock);
957 
958 	if (keyring_name_hash[bucket].next) {
959 		/* search this hash bucket for a keyring with a matching name
960 		 * that's readable and that hasn't been revoked */
961 		list_for_each_entry(keyring,
962 				    &keyring_name_hash[bucket],
963 				    type_data.link
964 				    ) {
965 			if (!kuid_has_mapping(current_user_ns(), keyring->user->uid))
966 				continue;
967 
968 			if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
969 				continue;
970 
971 			if (strcmp(keyring->description, name) != 0)
972 				continue;
973 
974 			if (!skip_perm_check &&
975 			    key_permission(make_key_ref(keyring, 0),
976 					   KEY_SEARCH) < 0)
977 				continue;
978 
979 			/* we've got a match but we might end up racing with
980 			 * key_cleanup() if the keyring is currently 'dead'
981 			 * (ie. it has a zero usage count) */
982 			if (!atomic_inc_not_zero(&keyring->usage))
983 				continue;
984 			keyring->last_used_at = current_kernel_time().tv_sec;
985 			goto out;
986 		}
987 	}
988 
989 	keyring = ERR_PTR(-ENOKEY);
990 out:
991 	read_unlock(&keyring_name_lock);
992 	return keyring;
993 }
994 
995 static int keyring_detect_cycle_iterator(const void *object,
996 					 void *iterator_data)
997 {
998 	struct keyring_search_context *ctx = iterator_data;
999 	const struct key *key = keyring_ptr_to_key(object);
1000 
1001 	kenter("{%d}", key->serial);
1002 
1003 	/* We might get a keyring with matching index-key that is nonetheless a
1004 	 * different keyring. */
1005 	if (key != ctx->match_data)
1006 		return 0;
1007 
1008 	ctx->result = ERR_PTR(-EDEADLK);
1009 	return 1;
1010 }
1011 
1012 /*
1013  * See if a cycle will will be created by inserting acyclic tree B in acyclic
1014  * tree A at the topmost level (ie: as a direct child of A).
1015  *
1016  * Since we are adding B to A at the top level, checking for cycles should just
1017  * be a matter of seeing if node A is somewhere in tree B.
1018  */
1019 static int keyring_detect_cycle(struct key *A, struct key *B)
1020 {
1021 	struct keyring_search_context ctx = {
1022 		.index_key	= A->index_key,
1023 		.match_data	= A,
1024 		.iterator	= keyring_detect_cycle_iterator,
1025 		.flags		= (KEYRING_SEARCH_LOOKUP_DIRECT |
1026 				   KEYRING_SEARCH_NO_STATE_CHECK |
1027 				   KEYRING_SEARCH_NO_UPDATE_TIME |
1028 				   KEYRING_SEARCH_NO_CHECK_PERM |
1029 				   KEYRING_SEARCH_DETECT_TOO_DEEP),
1030 	};
1031 
1032 	rcu_read_lock();
1033 	search_nested_keyrings(B, &ctx);
1034 	rcu_read_unlock();
1035 	return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
1036 }
1037 
1038 /*
1039  * Preallocate memory so that a key can be linked into to a keyring.
1040  */
1041 int __key_link_begin(struct key *keyring,
1042 		     const struct keyring_index_key *index_key,
1043 		     struct assoc_array_edit **_edit)
1044 	__acquires(&keyring->sem)
1045 	__acquires(&keyring_serialise_link_sem)
1046 {
1047 	struct assoc_array_edit *edit;
1048 	int ret;
1049 
1050 	kenter("%d,%s,%s,",
1051 	       keyring->serial, index_key->type->name, index_key->description);
1052 
1053 	BUG_ON(index_key->desc_len == 0);
1054 
1055 	if (keyring->type != &key_type_keyring)
1056 		return -ENOTDIR;
1057 
1058 	down_write(&keyring->sem);
1059 
1060 	ret = -EKEYREVOKED;
1061 	if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1062 		goto error_krsem;
1063 
1064 	/* serialise link/link calls to prevent parallel calls causing a cycle
1065 	 * when linking two keyring in opposite orders */
1066 	if (index_key->type == &key_type_keyring)
1067 		down_write(&keyring_serialise_link_sem);
1068 
1069 	/* Create an edit script that will insert/replace the key in the
1070 	 * keyring tree.
1071 	 */
1072 	edit = assoc_array_insert(&keyring->keys,
1073 				  &keyring_assoc_array_ops,
1074 				  index_key,
1075 				  NULL);
1076 	if (IS_ERR(edit)) {
1077 		ret = PTR_ERR(edit);
1078 		goto error_sem;
1079 	}
1080 
1081 	/* If we're not replacing a link in-place then we're going to need some
1082 	 * extra quota.
1083 	 */
1084 	if (!edit->dead_leaf) {
1085 		ret = key_payload_reserve(keyring,
1086 					  keyring->datalen + KEYQUOTA_LINK_BYTES);
1087 		if (ret < 0)
1088 			goto error_cancel;
1089 	}
1090 
1091 	*_edit = edit;
1092 	kleave(" = 0");
1093 	return 0;
1094 
1095 error_cancel:
1096 	assoc_array_cancel_edit(edit);
1097 error_sem:
1098 	if (index_key->type == &key_type_keyring)
1099 		up_write(&keyring_serialise_link_sem);
1100 error_krsem:
1101 	up_write(&keyring->sem);
1102 	kleave(" = %d", ret);
1103 	return ret;
1104 }
1105 
1106 /*
1107  * Check already instantiated keys aren't going to be a problem.
1108  *
1109  * The caller must have called __key_link_begin(). Don't need to call this for
1110  * keys that were created since __key_link_begin() was called.
1111  */
1112 int __key_link_check_live_key(struct key *keyring, struct key *key)
1113 {
1114 	if (key->type == &key_type_keyring)
1115 		/* check that we aren't going to create a cycle by linking one
1116 		 * keyring to another */
1117 		return keyring_detect_cycle(keyring, key);
1118 	return 0;
1119 }
1120 
1121 /*
1122  * Link a key into to a keyring.
1123  *
1124  * Must be called with __key_link_begin() having being called.  Discards any
1125  * already extant link to matching key if there is one, so that each keyring
1126  * holds at most one link to any given key of a particular type+description
1127  * combination.
1128  */
1129 void __key_link(struct key *key, struct assoc_array_edit **_edit)
1130 {
1131 	__key_get(key);
1132 	assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
1133 	assoc_array_apply_edit(*_edit);
1134 	*_edit = NULL;
1135 }
1136 
1137 /*
1138  * Finish linking a key into to a keyring.
1139  *
1140  * Must be called with __key_link_begin() having being called.
1141  */
1142 void __key_link_end(struct key *keyring,
1143 		    const struct keyring_index_key *index_key,
1144 		    struct assoc_array_edit *edit)
1145 	__releases(&keyring->sem)
1146 	__releases(&keyring_serialise_link_sem)
1147 {
1148 	BUG_ON(index_key->type == NULL);
1149 	kenter("%d,%s,", keyring->serial, index_key->type->name);
1150 
1151 	if (index_key->type == &key_type_keyring)
1152 		up_write(&keyring_serialise_link_sem);
1153 
1154 	if (edit && !edit->dead_leaf) {
1155 		key_payload_reserve(keyring,
1156 				    keyring->datalen - KEYQUOTA_LINK_BYTES);
1157 		assoc_array_cancel_edit(edit);
1158 	}
1159 	up_write(&keyring->sem);
1160 }
1161 
1162 /**
1163  * key_link - Link a key to a keyring
1164  * @keyring: The keyring to make the link in.
1165  * @key: The key to link to.
1166  *
1167  * Make a link in a keyring to a key, such that the keyring holds a reference
1168  * on that key and the key can potentially be found by searching that keyring.
1169  *
1170  * This function will write-lock the keyring's semaphore and will consume some
1171  * of the user's key data quota to hold the link.
1172  *
1173  * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
1174  * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
1175  * full, -EDQUOT if there is insufficient key data quota remaining to add
1176  * another link or -ENOMEM if there's insufficient memory.
1177  *
1178  * It is assumed that the caller has checked that it is permitted for a link to
1179  * be made (the keyring should have Write permission and the key Link
1180  * permission).
1181  */
1182 int key_link(struct key *keyring, struct key *key)
1183 {
1184 	struct assoc_array_edit *edit;
1185 	int ret;
1186 
1187 	kenter("{%d,%d}", keyring->serial, atomic_read(&keyring->usage));
1188 
1189 	key_check(keyring);
1190 	key_check(key);
1191 
1192 	if (test_bit(KEY_FLAG_TRUSTED_ONLY, &keyring->flags) &&
1193 	    !test_bit(KEY_FLAG_TRUSTED, &key->flags))
1194 		return -EPERM;
1195 
1196 	ret = __key_link_begin(keyring, &key->index_key, &edit);
1197 	if (ret == 0) {
1198 		kdebug("begun {%d,%d}", keyring->serial, atomic_read(&keyring->usage));
1199 		ret = __key_link_check_live_key(keyring, key);
1200 		if (ret == 0)
1201 			__key_link(key, &edit);
1202 		__key_link_end(keyring, &key->index_key, edit);
1203 	}
1204 
1205 	kleave(" = %d {%d,%d}", ret, keyring->serial, atomic_read(&keyring->usage));
1206 	return ret;
1207 }
1208 EXPORT_SYMBOL(key_link);
1209 
1210 /**
1211  * key_unlink - Unlink the first link to a key from a keyring.
1212  * @keyring: The keyring to remove the link from.
1213  * @key: The key the link is to.
1214  *
1215  * Remove a link from a keyring to a key.
1216  *
1217  * This function will write-lock the keyring's semaphore.
1218  *
1219  * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1220  * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1221  * memory.
1222  *
1223  * It is assumed that the caller has checked that it is permitted for a link to
1224  * be removed (the keyring should have Write permission; no permissions are
1225  * required on the key).
1226  */
1227 int key_unlink(struct key *keyring, struct key *key)
1228 {
1229 	struct assoc_array_edit *edit;
1230 	int ret;
1231 
1232 	key_check(keyring);
1233 	key_check(key);
1234 
1235 	if (keyring->type != &key_type_keyring)
1236 		return -ENOTDIR;
1237 
1238 	down_write(&keyring->sem);
1239 
1240 	edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
1241 				  &key->index_key);
1242 	if (IS_ERR(edit)) {
1243 		ret = PTR_ERR(edit);
1244 		goto error;
1245 	}
1246 	ret = -ENOENT;
1247 	if (edit == NULL)
1248 		goto error;
1249 
1250 	assoc_array_apply_edit(edit);
1251 	key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
1252 	ret = 0;
1253 
1254 error:
1255 	up_write(&keyring->sem);
1256 	return ret;
1257 }
1258 EXPORT_SYMBOL(key_unlink);
1259 
1260 /**
1261  * keyring_clear - Clear a keyring
1262  * @keyring: The keyring to clear.
1263  *
1264  * Clear the contents of the specified keyring.
1265  *
1266  * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1267  */
1268 int keyring_clear(struct key *keyring)
1269 {
1270 	struct assoc_array_edit *edit;
1271 	int ret;
1272 
1273 	if (keyring->type != &key_type_keyring)
1274 		return -ENOTDIR;
1275 
1276 	down_write(&keyring->sem);
1277 
1278 	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1279 	if (IS_ERR(edit)) {
1280 		ret = PTR_ERR(edit);
1281 	} else {
1282 		if (edit)
1283 			assoc_array_apply_edit(edit);
1284 		key_payload_reserve(keyring, 0);
1285 		ret = 0;
1286 	}
1287 
1288 	up_write(&keyring->sem);
1289 	return ret;
1290 }
1291 EXPORT_SYMBOL(keyring_clear);
1292 
1293 /*
1294  * Dispose of the links from a revoked keyring.
1295  *
1296  * This is called with the key sem write-locked.
1297  */
1298 static void keyring_revoke(struct key *keyring)
1299 {
1300 	struct assoc_array_edit *edit;
1301 
1302 	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1303 	if (!IS_ERR(edit)) {
1304 		if (edit)
1305 			assoc_array_apply_edit(edit);
1306 		key_payload_reserve(keyring, 0);
1307 	}
1308 }
1309 
1310 static bool keyring_gc_select_iterator(void *object, void *iterator_data)
1311 {
1312 	struct key *key = keyring_ptr_to_key(object);
1313 	time_t *limit = iterator_data;
1314 
1315 	if (key_is_dead(key, *limit))
1316 		return false;
1317 	key_get(key);
1318 	return true;
1319 }
1320 
1321 static int keyring_gc_check_iterator(const void *object, void *iterator_data)
1322 {
1323 	const struct key *key = keyring_ptr_to_key(object);
1324 	time_t *limit = iterator_data;
1325 
1326 	key_check(key);
1327 	return key_is_dead(key, *limit);
1328 }
1329 
1330 /*
1331  * Garbage collect pointers from a keyring.
1332  *
1333  * Not called with any locks held.  The keyring's key struct will not be
1334  * deallocated under us as only our caller may deallocate it.
1335  */
1336 void keyring_gc(struct key *keyring, time_t limit)
1337 {
1338 	int result;
1339 
1340 	kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1341 
1342 	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
1343 			      (1 << KEY_FLAG_REVOKED)))
1344 		goto dont_gc;
1345 
1346 	/* scan the keyring looking for dead keys */
1347 	rcu_read_lock();
1348 	result = assoc_array_iterate(&keyring->keys,
1349 				     keyring_gc_check_iterator, &limit);
1350 	rcu_read_unlock();
1351 	if (result == true)
1352 		goto do_gc;
1353 
1354 dont_gc:
1355 	kleave(" [no gc]");
1356 	return;
1357 
1358 do_gc:
1359 	down_write(&keyring->sem);
1360 	assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
1361 		       keyring_gc_select_iterator, &limit);
1362 	up_write(&keyring->sem);
1363 	kleave(" [gc]");
1364 }
1365