1 /* Keyring handling 2 * 3 * Copyright (C) 2004-2005, 2008 Red Hat, Inc. All Rights Reserved. 4 * Written by David Howells (dhowells@redhat.com) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/sched.h> 15 #include <linux/slab.h> 16 #include <linux/security.h> 17 #include <linux/seq_file.h> 18 #include <linux/err.h> 19 #include <keys/keyring-type.h> 20 #include <linux/uaccess.h> 21 #include "internal.h" 22 23 #define rcu_dereference_locked_keyring(keyring) \ 24 (rcu_dereference_protected( \ 25 (keyring)->payload.subscriptions, \ 26 rwsem_is_locked((struct rw_semaphore *)&(keyring)->sem))) 27 28 #define rcu_deref_link_locked(klist, index, keyring) \ 29 (rcu_dereference_protected( \ 30 (klist)->keys[index], \ 31 rwsem_is_locked((struct rw_semaphore *)&(keyring)->sem))) 32 33 #define MAX_KEYRING_LINKS \ 34 min_t(size_t, USHRT_MAX - 1, \ 35 ((PAGE_SIZE - sizeof(struct keyring_list)) / sizeof(struct key *))) 36 37 #define KEY_LINK_FIXQUOTA 1UL 38 39 /* 40 * When plumbing the depths of the key tree, this sets a hard limit 41 * set on how deep we're willing to go. 42 */ 43 #define KEYRING_SEARCH_MAX_DEPTH 6 44 45 /* 46 * We keep all named keyrings in a hash to speed looking them up. 47 */ 48 #define KEYRING_NAME_HASH_SIZE (1 << 5) 49 50 static struct list_head keyring_name_hash[KEYRING_NAME_HASH_SIZE]; 51 static DEFINE_RWLOCK(keyring_name_lock); 52 53 static inline unsigned keyring_hash(const char *desc) 54 { 55 unsigned bucket = 0; 56 57 for (; *desc; desc++) 58 bucket += (unsigned char)*desc; 59 60 return bucket & (KEYRING_NAME_HASH_SIZE - 1); 61 } 62 63 /* 64 * The keyring key type definition. Keyrings are simply keys of this type and 65 * can be treated as ordinary keys in addition to having their own special 66 * operations. 67 */ 68 static int keyring_instantiate(struct key *keyring, 69 const void *data, size_t datalen); 70 static int keyring_match(const struct key *keyring, const void *criterion); 71 static void keyring_revoke(struct key *keyring); 72 static void keyring_destroy(struct key *keyring); 73 static void keyring_describe(const struct key *keyring, struct seq_file *m); 74 static long keyring_read(const struct key *keyring, 75 char __user *buffer, size_t buflen); 76 77 struct key_type key_type_keyring = { 78 .name = "keyring", 79 .def_datalen = sizeof(struct keyring_list), 80 .instantiate = keyring_instantiate, 81 .match = keyring_match, 82 .revoke = keyring_revoke, 83 .destroy = keyring_destroy, 84 .describe = keyring_describe, 85 .read = keyring_read, 86 }; 87 EXPORT_SYMBOL(key_type_keyring); 88 89 /* 90 * Semaphore to serialise link/link calls to prevent two link calls in parallel 91 * introducing a cycle. 92 */ 93 static DECLARE_RWSEM(keyring_serialise_link_sem); 94 95 /* 96 * Publish the name of a keyring so that it can be found by name (if it has 97 * one). 98 */ 99 static void keyring_publish_name(struct key *keyring) 100 { 101 int bucket; 102 103 if (keyring->description) { 104 bucket = keyring_hash(keyring->description); 105 106 write_lock(&keyring_name_lock); 107 108 if (!keyring_name_hash[bucket].next) 109 INIT_LIST_HEAD(&keyring_name_hash[bucket]); 110 111 list_add_tail(&keyring->type_data.link, 112 &keyring_name_hash[bucket]); 113 114 write_unlock(&keyring_name_lock); 115 } 116 } 117 118 /* 119 * Initialise a keyring. 120 * 121 * Returns 0 on success, -EINVAL if given any data. 122 */ 123 static int keyring_instantiate(struct key *keyring, 124 const void *data, size_t datalen) 125 { 126 int ret; 127 128 ret = -EINVAL; 129 if (datalen == 0) { 130 /* make the keyring available by name if it has one */ 131 keyring_publish_name(keyring); 132 ret = 0; 133 } 134 135 return ret; 136 } 137 138 /* 139 * Match keyrings on their name 140 */ 141 static int keyring_match(const struct key *keyring, const void *description) 142 { 143 return keyring->description && 144 strcmp(keyring->description, description) == 0; 145 } 146 147 /* 148 * Clean up a keyring when it is destroyed. Unpublish its name if it had one 149 * and dispose of its data. 150 * 151 * The garbage collector detects the final key_put(), removes the keyring from 152 * the serial number tree and then does RCU synchronisation before coming here, 153 * so we shouldn't need to worry about code poking around here with the RCU 154 * readlock held by this time. 155 */ 156 static void keyring_destroy(struct key *keyring) 157 { 158 struct keyring_list *klist; 159 int loop; 160 161 if (keyring->description) { 162 write_lock(&keyring_name_lock); 163 164 if (keyring->type_data.link.next != NULL && 165 !list_empty(&keyring->type_data.link)) 166 list_del(&keyring->type_data.link); 167 168 write_unlock(&keyring_name_lock); 169 } 170 171 klist = rcu_access_pointer(keyring->payload.subscriptions); 172 if (klist) { 173 for (loop = klist->nkeys - 1; loop >= 0; loop--) 174 key_put(rcu_access_pointer(klist->keys[loop])); 175 kfree(klist); 176 } 177 } 178 179 /* 180 * Describe a keyring for /proc. 181 */ 182 static void keyring_describe(const struct key *keyring, struct seq_file *m) 183 { 184 struct keyring_list *klist; 185 186 if (keyring->description) 187 seq_puts(m, keyring->description); 188 else 189 seq_puts(m, "[anon]"); 190 191 if (key_is_instantiated(keyring)) { 192 rcu_read_lock(); 193 klist = rcu_dereference(keyring->payload.subscriptions); 194 if (klist) 195 seq_printf(m, ": %u/%u", klist->nkeys, klist->maxkeys); 196 else 197 seq_puts(m, ": empty"); 198 rcu_read_unlock(); 199 } 200 } 201 202 /* 203 * Read a list of key IDs from the keyring's contents in binary form 204 * 205 * The keyring's semaphore is read-locked by the caller. 206 */ 207 static long keyring_read(const struct key *keyring, 208 char __user *buffer, size_t buflen) 209 { 210 struct keyring_list *klist; 211 struct key *key; 212 size_t qty, tmp; 213 int loop, ret; 214 215 ret = 0; 216 klist = rcu_dereference_locked_keyring(keyring); 217 if (klist) { 218 /* calculate how much data we could return */ 219 qty = klist->nkeys * sizeof(key_serial_t); 220 221 if (buffer && buflen > 0) { 222 if (buflen > qty) 223 buflen = qty; 224 225 /* copy the IDs of the subscribed keys into the 226 * buffer */ 227 ret = -EFAULT; 228 229 for (loop = 0; loop < klist->nkeys; loop++) { 230 key = rcu_deref_link_locked(klist, loop, 231 keyring); 232 233 tmp = sizeof(key_serial_t); 234 if (tmp > buflen) 235 tmp = buflen; 236 237 if (copy_to_user(buffer, 238 &key->serial, 239 tmp) != 0) 240 goto error; 241 242 buflen -= tmp; 243 if (buflen == 0) 244 break; 245 buffer += tmp; 246 } 247 } 248 249 ret = qty; 250 } 251 252 error: 253 return ret; 254 } 255 256 /* 257 * Allocate a keyring and link into the destination keyring. 258 */ 259 struct key *keyring_alloc(const char *description, uid_t uid, gid_t gid, 260 const struct cred *cred, unsigned long flags, 261 struct key *dest) 262 { 263 struct key *keyring; 264 int ret; 265 266 keyring = key_alloc(&key_type_keyring, description, 267 uid, gid, cred, 268 (KEY_POS_ALL & ~KEY_POS_SETATTR) | KEY_USR_ALL, 269 flags); 270 271 if (!IS_ERR(keyring)) { 272 ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL); 273 if (ret < 0) { 274 key_put(keyring); 275 keyring = ERR_PTR(ret); 276 } 277 } 278 279 return keyring; 280 } 281 282 /** 283 * keyring_search_aux - Search a keyring tree for a key matching some criteria 284 * @keyring_ref: A pointer to the keyring with possession indicator. 285 * @cred: The credentials to use for permissions checks. 286 * @type: The type of key to search for. 287 * @description: Parameter for @match. 288 * @match: Function to rule on whether or not a key is the one required. 289 * @no_state_check: Don't check if a matching key is bad 290 * 291 * Search the supplied keyring tree for a key that matches the criteria given. 292 * The root keyring and any linked keyrings must grant Search permission to the 293 * caller to be searchable and keys can only be found if they too grant Search 294 * to the caller. The possession flag on the root keyring pointer controls use 295 * of the possessor bits in permissions checking of the entire tree. In 296 * addition, the LSM gets to forbid keyring searches and key matches. 297 * 298 * The search is performed as a breadth-then-depth search up to the prescribed 299 * limit (KEYRING_SEARCH_MAX_DEPTH). 300 * 301 * Keys are matched to the type provided and are then filtered by the match 302 * function, which is given the description to use in any way it sees fit. The 303 * match function may use any attributes of a key that it wishes to to 304 * determine the match. Normally the match function from the key type would be 305 * used. 306 * 307 * RCU is used to prevent the keyring key lists from disappearing without the 308 * need to take lots of locks. 309 * 310 * Returns a pointer to the found key and increments the key usage count if 311 * successful; -EAGAIN if no matching keys were found, or if expired or revoked 312 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the 313 * specified keyring wasn't a keyring. 314 * 315 * In the case of a successful return, the possession attribute from 316 * @keyring_ref is propagated to the returned key reference. 317 */ 318 key_ref_t keyring_search_aux(key_ref_t keyring_ref, 319 const struct cred *cred, 320 struct key_type *type, 321 const void *description, 322 key_match_func_t match, 323 bool no_state_check) 324 { 325 struct { 326 /* Need a separate keylist pointer for RCU purposes */ 327 struct key *keyring; 328 struct keyring_list *keylist; 329 int kix; 330 } stack[KEYRING_SEARCH_MAX_DEPTH]; 331 332 struct keyring_list *keylist; 333 struct timespec now; 334 unsigned long possessed, kflags; 335 struct key *keyring, *key; 336 key_ref_t key_ref; 337 long err; 338 int sp, nkeys, kix; 339 340 keyring = key_ref_to_ptr(keyring_ref); 341 possessed = is_key_possessed(keyring_ref); 342 key_check(keyring); 343 344 /* top keyring must have search permission to begin the search */ 345 err = key_task_permission(keyring_ref, cred, KEY_SEARCH); 346 if (err < 0) { 347 key_ref = ERR_PTR(err); 348 goto error; 349 } 350 351 key_ref = ERR_PTR(-ENOTDIR); 352 if (keyring->type != &key_type_keyring) 353 goto error; 354 355 rcu_read_lock(); 356 357 now = current_kernel_time(); 358 err = -EAGAIN; 359 sp = 0; 360 361 /* firstly we should check to see if this top-level keyring is what we 362 * are looking for */ 363 key_ref = ERR_PTR(-EAGAIN); 364 kflags = keyring->flags; 365 if (keyring->type == type && match(keyring, description)) { 366 key = keyring; 367 if (no_state_check) 368 goto found; 369 370 /* check it isn't negative and hasn't expired or been 371 * revoked */ 372 if (kflags & (1 << KEY_FLAG_REVOKED)) 373 goto error_2; 374 if (key->expiry && now.tv_sec >= key->expiry) 375 goto error_2; 376 key_ref = ERR_PTR(key->type_data.reject_error); 377 if (kflags & (1 << KEY_FLAG_NEGATIVE)) 378 goto error_2; 379 goto found; 380 } 381 382 /* otherwise, the top keyring must not be revoked, expired, or 383 * negatively instantiated if we are to search it */ 384 key_ref = ERR_PTR(-EAGAIN); 385 if (kflags & ((1 << KEY_FLAG_INVALIDATED) | 386 (1 << KEY_FLAG_REVOKED) | 387 (1 << KEY_FLAG_NEGATIVE)) || 388 (keyring->expiry && now.tv_sec >= keyring->expiry)) 389 goto error_2; 390 391 /* start processing a new keyring */ 392 descend: 393 kflags = keyring->flags; 394 if (kflags & ((1 << KEY_FLAG_INVALIDATED) | 395 (1 << KEY_FLAG_REVOKED))) 396 goto not_this_keyring; 397 398 keylist = rcu_dereference(keyring->payload.subscriptions); 399 if (!keylist) 400 goto not_this_keyring; 401 402 /* iterate through the keys in this keyring first */ 403 nkeys = keylist->nkeys; 404 smp_rmb(); 405 for (kix = 0; kix < nkeys; kix++) { 406 key = rcu_dereference(keylist->keys[kix]); 407 kflags = key->flags; 408 409 /* ignore keys not of this type */ 410 if (key->type != type) 411 continue; 412 413 /* skip invalidated, revoked and expired keys */ 414 if (!no_state_check) { 415 if (kflags & ((1 << KEY_FLAG_INVALIDATED) | 416 (1 << KEY_FLAG_REVOKED))) 417 continue; 418 419 if (key->expiry && now.tv_sec >= key->expiry) 420 continue; 421 } 422 423 /* keys that don't match */ 424 if (!match(key, description)) 425 continue; 426 427 /* key must have search permissions */ 428 if (key_task_permission(make_key_ref(key, possessed), 429 cred, KEY_SEARCH) < 0) 430 continue; 431 432 if (no_state_check) 433 goto found; 434 435 /* we set a different error code if we pass a negative key */ 436 if (kflags & (1 << KEY_FLAG_NEGATIVE)) { 437 err = key->type_data.reject_error; 438 continue; 439 } 440 441 goto found; 442 } 443 444 /* search through the keyrings nested in this one */ 445 kix = 0; 446 ascend: 447 nkeys = keylist->nkeys; 448 smp_rmb(); 449 for (; kix < nkeys; kix++) { 450 key = rcu_dereference(keylist->keys[kix]); 451 if (key->type != &key_type_keyring) 452 continue; 453 454 /* recursively search nested keyrings 455 * - only search keyrings for which we have search permission 456 */ 457 if (sp >= KEYRING_SEARCH_MAX_DEPTH) 458 continue; 459 460 if (key_task_permission(make_key_ref(key, possessed), 461 cred, KEY_SEARCH) < 0) 462 continue; 463 464 /* stack the current position */ 465 stack[sp].keyring = keyring; 466 stack[sp].keylist = keylist; 467 stack[sp].kix = kix; 468 sp++; 469 470 /* begin again with the new keyring */ 471 keyring = key; 472 goto descend; 473 } 474 475 /* the keyring we're looking at was disqualified or didn't contain a 476 * matching key */ 477 not_this_keyring: 478 if (sp > 0) { 479 /* resume the processing of a keyring higher up in the tree */ 480 sp--; 481 keyring = stack[sp].keyring; 482 keylist = stack[sp].keylist; 483 kix = stack[sp].kix + 1; 484 goto ascend; 485 } 486 487 key_ref = ERR_PTR(err); 488 goto error_2; 489 490 /* we found a viable match */ 491 found: 492 atomic_inc(&key->usage); 493 key->last_used_at = now.tv_sec; 494 keyring->last_used_at = now.tv_sec; 495 while (sp > 0) 496 stack[--sp].keyring->last_used_at = now.tv_sec; 497 key_check(key); 498 key_ref = make_key_ref(key, possessed); 499 error_2: 500 rcu_read_unlock(); 501 error: 502 return key_ref; 503 } 504 505 /** 506 * keyring_search - Search the supplied keyring tree for a matching key 507 * @keyring: The root of the keyring tree to be searched. 508 * @type: The type of keyring we want to find. 509 * @description: The name of the keyring we want to find. 510 * 511 * As keyring_search_aux() above, but using the current task's credentials and 512 * type's default matching function. 513 */ 514 key_ref_t keyring_search(key_ref_t keyring, 515 struct key_type *type, 516 const char *description) 517 { 518 if (!type->match) 519 return ERR_PTR(-ENOKEY); 520 521 return keyring_search_aux(keyring, current->cred, 522 type, description, type->match, false); 523 } 524 EXPORT_SYMBOL(keyring_search); 525 526 /* 527 * Search the given keyring only (no recursion). 528 * 529 * The caller must guarantee that the keyring is a keyring and that the 530 * permission is granted to search the keyring as no check is made here. 531 * 532 * RCU is used to make it unnecessary to lock the keyring key list here. 533 * 534 * Returns a pointer to the found key with usage count incremented if 535 * successful and returns -ENOKEY if not found. Revoked keys and keys not 536 * providing the requested permission are skipped over. 537 * 538 * If successful, the possession indicator is propagated from the keyring ref 539 * to the returned key reference. 540 */ 541 key_ref_t __keyring_search_one(key_ref_t keyring_ref, 542 const struct key_type *ktype, 543 const char *description, 544 key_perm_t perm) 545 { 546 struct keyring_list *klist; 547 unsigned long possessed; 548 struct key *keyring, *key; 549 int nkeys, loop; 550 551 keyring = key_ref_to_ptr(keyring_ref); 552 possessed = is_key_possessed(keyring_ref); 553 554 rcu_read_lock(); 555 556 klist = rcu_dereference(keyring->payload.subscriptions); 557 if (klist) { 558 nkeys = klist->nkeys; 559 smp_rmb(); 560 for (loop = 0; loop < nkeys ; loop++) { 561 key = rcu_dereference(klist->keys[loop]); 562 if (key->type == ktype && 563 (!key->type->match || 564 key->type->match(key, description)) && 565 key_permission(make_key_ref(key, possessed), 566 perm) == 0 && 567 !(key->flags & ((1 << KEY_FLAG_INVALIDATED) | 568 (1 << KEY_FLAG_REVOKED))) 569 ) 570 goto found; 571 } 572 } 573 574 rcu_read_unlock(); 575 return ERR_PTR(-ENOKEY); 576 577 found: 578 atomic_inc(&key->usage); 579 keyring->last_used_at = key->last_used_at = 580 current_kernel_time().tv_sec; 581 rcu_read_unlock(); 582 return make_key_ref(key, possessed); 583 } 584 585 /* 586 * Find a keyring with the specified name. 587 * 588 * All named keyrings in the current user namespace are searched, provided they 589 * grant Search permission directly to the caller (unless this check is 590 * skipped). Keyrings whose usage points have reached zero or who have been 591 * revoked are skipped. 592 * 593 * Returns a pointer to the keyring with the keyring's refcount having being 594 * incremented on success. -ENOKEY is returned if a key could not be found. 595 */ 596 struct key *find_keyring_by_name(const char *name, bool skip_perm_check) 597 { 598 struct key *keyring; 599 int bucket; 600 601 if (!name) 602 return ERR_PTR(-EINVAL); 603 604 bucket = keyring_hash(name); 605 606 read_lock(&keyring_name_lock); 607 608 if (keyring_name_hash[bucket].next) { 609 /* search this hash bucket for a keyring with a matching name 610 * that's readable and that hasn't been revoked */ 611 list_for_each_entry(keyring, 612 &keyring_name_hash[bucket], 613 type_data.link 614 ) { 615 if (keyring->user->user_ns != current_user_ns()) 616 continue; 617 618 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags)) 619 continue; 620 621 if (strcmp(keyring->description, name) != 0) 622 continue; 623 624 if (!skip_perm_check && 625 key_permission(make_key_ref(keyring, 0), 626 KEY_SEARCH) < 0) 627 continue; 628 629 /* we've got a match but we might end up racing with 630 * key_cleanup() if the keyring is currently 'dead' 631 * (ie. it has a zero usage count) */ 632 if (!atomic_inc_not_zero(&keyring->usage)) 633 continue; 634 keyring->last_used_at = current_kernel_time().tv_sec; 635 goto out; 636 } 637 } 638 639 keyring = ERR_PTR(-ENOKEY); 640 out: 641 read_unlock(&keyring_name_lock); 642 return keyring; 643 } 644 645 /* 646 * See if a cycle will will be created by inserting acyclic tree B in acyclic 647 * tree A at the topmost level (ie: as a direct child of A). 648 * 649 * Since we are adding B to A at the top level, checking for cycles should just 650 * be a matter of seeing if node A is somewhere in tree B. 651 */ 652 static int keyring_detect_cycle(struct key *A, struct key *B) 653 { 654 struct { 655 struct keyring_list *keylist; 656 int kix; 657 } stack[KEYRING_SEARCH_MAX_DEPTH]; 658 659 struct keyring_list *keylist; 660 struct key *subtree, *key; 661 int sp, nkeys, kix, ret; 662 663 rcu_read_lock(); 664 665 ret = -EDEADLK; 666 if (A == B) 667 goto cycle_detected; 668 669 subtree = B; 670 sp = 0; 671 672 /* start processing a new keyring */ 673 descend: 674 if (test_bit(KEY_FLAG_REVOKED, &subtree->flags)) 675 goto not_this_keyring; 676 677 keylist = rcu_dereference(subtree->payload.subscriptions); 678 if (!keylist) 679 goto not_this_keyring; 680 kix = 0; 681 682 ascend: 683 /* iterate through the remaining keys in this keyring */ 684 nkeys = keylist->nkeys; 685 smp_rmb(); 686 for (; kix < nkeys; kix++) { 687 key = rcu_dereference(keylist->keys[kix]); 688 689 if (key == A) 690 goto cycle_detected; 691 692 /* recursively check nested keyrings */ 693 if (key->type == &key_type_keyring) { 694 if (sp >= KEYRING_SEARCH_MAX_DEPTH) 695 goto too_deep; 696 697 /* stack the current position */ 698 stack[sp].keylist = keylist; 699 stack[sp].kix = kix; 700 sp++; 701 702 /* begin again with the new keyring */ 703 subtree = key; 704 goto descend; 705 } 706 } 707 708 /* the keyring we're looking at was disqualified or didn't contain a 709 * matching key */ 710 not_this_keyring: 711 if (sp > 0) { 712 /* resume the checking of a keyring higher up in the tree */ 713 sp--; 714 keylist = stack[sp].keylist; 715 kix = stack[sp].kix + 1; 716 goto ascend; 717 } 718 719 ret = 0; /* no cycles detected */ 720 721 error: 722 rcu_read_unlock(); 723 return ret; 724 725 too_deep: 726 ret = -ELOOP; 727 goto error; 728 729 cycle_detected: 730 ret = -EDEADLK; 731 goto error; 732 } 733 734 /* 735 * Dispose of a keyring list after the RCU grace period, freeing the unlinked 736 * key 737 */ 738 static void keyring_unlink_rcu_disposal(struct rcu_head *rcu) 739 { 740 struct keyring_list *klist = 741 container_of(rcu, struct keyring_list, rcu); 742 743 if (klist->delkey != USHRT_MAX) 744 key_put(rcu_access_pointer(klist->keys[klist->delkey])); 745 kfree(klist); 746 } 747 748 /* 749 * Preallocate memory so that a key can be linked into to a keyring. 750 */ 751 int __key_link_begin(struct key *keyring, const struct key_type *type, 752 const char *description, unsigned long *_prealloc) 753 __acquires(&keyring->sem) 754 __acquires(&keyring_serialise_link_sem) 755 { 756 struct keyring_list *klist, *nklist; 757 unsigned long prealloc; 758 unsigned max; 759 time_t lowest_lru; 760 size_t size; 761 int loop, lru, ret; 762 763 kenter("%d,%s,%s,", key_serial(keyring), type->name, description); 764 765 if (keyring->type != &key_type_keyring) 766 return -ENOTDIR; 767 768 down_write(&keyring->sem); 769 770 ret = -EKEYREVOKED; 771 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags)) 772 goto error_krsem; 773 774 /* serialise link/link calls to prevent parallel calls causing a cycle 775 * when linking two keyring in opposite orders */ 776 if (type == &key_type_keyring) 777 down_write(&keyring_serialise_link_sem); 778 779 klist = rcu_dereference_locked_keyring(keyring); 780 781 /* see if there's a matching key we can displace */ 782 lru = -1; 783 if (klist && klist->nkeys > 0) { 784 lowest_lru = TIME_T_MAX; 785 for (loop = klist->nkeys - 1; loop >= 0; loop--) { 786 struct key *key = rcu_deref_link_locked(klist, loop, 787 keyring); 788 if (key->type == type && 789 strcmp(key->description, description) == 0) { 790 /* Found a match - we'll replace the link with 791 * one to the new key. We record the slot 792 * position. 793 */ 794 klist->delkey = loop; 795 prealloc = 0; 796 goto done; 797 } 798 if (key->last_used_at < lowest_lru) { 799 lowest_lru = key->last_used_at; 800 lru = loop; 801 } 802 } 803 } 804 805 /* If the keyring is full then do an LRU discard */ 806 if (klist && 807 klist->nkeys == klist->maxkeys && 808 klist->maxkeys >= MAX_KEYRING_LINKS) { 809 kdebug("LRU discard %d\n", lru); 810 klist->delkey = lru; 811 prealloc = 0; 812 goto done; 813 } 814 815 /* check that we aren't going to overrun the user's quota */ 816 ret = key_payload_reserve(keyring, 817 keyring->datalen + KEYQUOTA_LINK_BYTES); 818 if (ret < 0) 819 goto error_sem; 820 821 if (klist && klist->nkeys < klist->maxkeys) { 822 /* there's sufficient slack space to append directly */ 823 klist->delkey = klist->nkeys; 824 prealloc = KEY_LINK_FIXQUOTA; 825 } else { 826 /* grow the key list */ 827 max = 4; 828 if (klist) { 829 max += klist->maxkeys; 830 if (max > MAX_KEYRING_LINKS) 831 max = MAX_KEYRING_LINKS; 832 BUG_ON(max <= klist->maxkeys); 833 } 834 835 size = sizeof(*klist) + sizeof(struct key *) * max; 836 837 ret = -ENOMEM; 838 nklist = kmalloc(size, GFP_KERNEL); 839 if (!nklist) 840 goto error_quota; 841 842 nklist->maxkeys = max; 843 if (klist) { 844 memcpy(nklist->keys, klist->keys, 845 sizeof(struct key *) * klist->nkeys); 846 nklist->delkey = klist->nkeys; 847 nklist->nkeys = klist->nkeys + 1; 848 klist->delkey = USHRT_MAX; 849 } else { 850 nklist->nkeys = 1; 851 nklist->delkey = 0; 852 } 853 854 /* add the key into the new space */ 855 RCU_INIT_POINTER(nklist->keys[nklist->delkey], NULL); 856 prealloc = (unsigned long)nklist | KEY_LINK_FIXQUOTA; 857 } 858 859 done: 860 *_prealloc = prealloc; 861 kleave(" = 0"); 862 return 0; 863 864 error_quota: 865 /* undo the quota changes */ 866 key_payload_reserve(keyring, 867 keyring->datalen - KEYQUOTA_LINK_BYTES); 868 error_sem: 869 if (type == &key_type_keyring) 870 up_write(&keyring_serialise_link_sem); 871 error_krsem: 872 up_write(&keyring->sem); 873 kleave(" = %d", ret); 874 return ret; 875 } 876 877 /* 878 * Check already instantiated keys aren't going to be a problem. 879 * 880 * The caller must have called __key_link_begin(). Don't need to call this for 881 * keys that were created since __key_link_begin() was called. 882 */ 883 int __key_link_check_live_key(struct key *keyring, struct key *key) 884 { 885 if (key->type == &key_type_keyring) 886 /* check that we aren't going to create a cycle by linking one 887 * keyring to another */ 888 return keyring_detect_cycle(keyring, key); 889 return 0; 890 } 891 892 /* 893 * Link a key into to a keyring. 894 * 895 * Must be called with __key_link_begin() having being called. Discards any 896 * already extant link to matching key if there is one, so that each keyring 897 * holds at most one link to any given key of a particular type+description 898 * combination. 899 */ 900 void __key_link(struct key *keyring, struct key *key, 901 unsigned long *_prealloc) 902 { 903 struct keyring_list *klist, *nklist; 904 struct key *discard; 905 906 nklist = (struct keyring_list *)(*_prealloc & ~KEY_LINK_FIXQUOTA); 907 *_prealloc = 0; 908 909 kenter("%d,%d,%p", keyring->serial, key->serial, nklist); 910 911 klist = rcu_dereference_locked_keyring(keyring); 912 913 atomic_inc(&key->usage); 914 keyring->last_used_at = key->last_used_at = 915 current_kernel_time().tv_sec; 916 917 /* there's a matching key we can displace or an empty slot in a newly 918 * allocated list we can fill */ 919 if (nklist) { 920 kdebug("reissue %hu/%hu/%hu", 921 nklist->delkey, nklist->nkeys, nklist->maxkeys); 922 923 RCU_INIT_POINTER(nklist->keys[nklist->delkey], key); 924 925 rcu_assign_pointer(keyring->payload.subscriptions, nklist); 926 927 /* dispose of the old keyring list and, if there was one, the 928 * displaced key */ 929 if (klist) { 930 kdebug("dispose %hu/%hu/%hu", 931 klist->delkey, klist->nkeys, klist->maxkeys); 932 call_rcu(&klist->rcu, keyring_unlink_rcu_disposal); 933 } 934 } else if (klist->delkey < klist->nkeys) { 935 kdebug("replace %hu/%hu/%hu", 936 klist->delkey, klist->nkeys, klist->maxkeys); 937 938 discard = rcu_dereference_protected( 939 klist->keys[klist->delkey], 940 rwsem_is_locked(&keyring->sem)); 941 rcu_assign_pointer(klist->keys[klist->delkey], key); 942 /* The garbage collector will take care of RCU 943 * synchronisation */ 944 key_put(discard); 945 } else { 946 /* there's sufficient slack space to append directly */ 947 kdebug("append %hu/%hu/%hu", 948 klist->delkey, klist->nkeys, klist->maxkeys); 949 950 RCU_INIT_POINTER(klist->keys[klist->delkey], key); 951 smp_wmb(); 952 klist->nkeys++; 953 } 954 } 955 956 /* 957 * Finish linking a key into to a keyring. 958 * 959 * Must be called with __key_link_begin() having being called. 960 */ 961 void __key_link_end(struct key *keyring, struct key_type *type, 962 unsigned long prealloc) 963 __releases(&keyring->sem) 964 __releases(&keyring_serialise_link_sem) 965 { 966 BUG_ON(type == NULL); 967 BUG_ON(type->name == NULL); 968 kenter("%d,%s,%lx", keyring->serial, type->name, prealloc); 969 970 if (type == &key_type_keyring) 971 up_write(&keyring_serialise_link_sem); 972 973 if (prealloc) { 974 if (prealloc & KEY_LINK_FIXQUOTA) 975 key_payload_reserve(keyring, 976 keyring->datalen - 977 KEYQUOTA_LINK_BYTES); 978 kfree((struct keyring_list *)(prealloc & ~KEY_LINK_FIXQUOTA)); 979 } 980 up_write(&keyring->sem); 981 } 982 983 /** 984 * key_link - Link a key to a keyring 985 * @keyring: The keyring to make the link in. 986 * @key: The key to link to. 987 * 988 * Make a link in a keyring to a key, such that the keyring holds a reference 989 * on that key and the key can potentially be found by searching that keyring. 990 * 991 * This function will write-lock the keyring's semaphore and will consume some 992 * of the user's key data quota to hold the link. 993 * 994 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, 995 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is 996 * full, -EDQUOT if there is insufficient key data quota remaining to add 997 * another link or -ENOMEM if there's insufficient memory. 998 * 999 * It is assumed that the caller has checked that it is permitted for a link to 1000 * be made (the keyring should have Write permission and the key Link 1001 * permission). 1002 */ 1003 int key_link(struct key *keyring, struct key *key) 1004 { 1005 unsigned long prealloc; 1006 int ret; 1007 1008 key_check(keyring); 1009 key_check(key); 1010 1011 ret = __key_link_begin(keyring, key->type, key->description, &prealloc); 1012 if (ret == 0) { 1013 ret = __key_link_check_live_key(keyring, key); 1014 if (ret == 0) 1015 __key_link(keyring, key, &prealloc); 1016 __key_link_end(keyring, key->type, prealloc); 1017 } 1018 1019 return ret; 1020 } 1021 EXPORT_SYMBOL(key_link); 1022 1023 /** 1024 * key_unlink - Unlink the first link to a key from a keyring. 1025 * @keyring: The keyring to remove the link from. 1026 * @key: The key the link is to. 1027 * 1028 * Remove a link from a keyring to a key. 1029 * 1030 * This function will write-lock the keyring's semaphore. 1031 * 1032 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if 1033 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient 1034 * memory. 1035 * 1036 * It is assumed that the caller has checked that it is permitted for a link to 1037 * be removed (the keyring should have Write permission; no permissions are 1038 * required on the key). 1039 */ 1040 int key_unlink(struct key *keyring, struct key *key) 1041 { 1042 struct keyring_list *klist, *nklist; 1043 int loop, ret; 1044 1045 key_check(keyring); 1046 key_check(key); 1047 1048 ret = -ENOTDIR; 1049 if (keyring->type != &key_type_keyring) 1050 goto error; 1051 1052 down_write(&keyring->sem); 1053 1054 klist = rcu_dereference_locked_keyring(keyring); 1055 if (klist) { 1056 /* search the keyring for the key */ 1057 for (loop = 0; loop < klist->nkeys; loop++) 1058 if (rcu_access_pointer(klist->keys[loop]) == key) 1059 goto key_is_present; 1060 } 1061 1062 up_write(&keyring->sem); 1063 ret = -ENOENT; 1064 goto error; 1065 1066 key_is_present: 1067 /* we need to copy the key list for RCU purposes */ 1068 nklist = kmalloc(sizeof(*klist) + 1069 sizeof(struct key *) * klist->maxkeys, 1070 GFP_KERNEL); 1071 if (!nklist) 1072 goto nomem; 1073 nklist->maxkeys = klist->maxkeys; 1074 nklist->nkeys = klist->nkeys - 1; 1075 1076 if (loop > 0) 1077 memcpy(&nklist->keys[0], 1078 &klist->keys[0], 1079 loop * sizeof(struct key *)); 1080 1081 if (loop < nklist->nkeys) 1082 memcpy(&nklist->keys[loop], 1083 &klist->keys[loop + 1], 1084 (nklist->nkeys - loop) * sizeof(struct key *)); 1085 1086 /* adjust the user's quota */ 1087 key_payload_reserve(keyring, 1088 keyring->datalen - KEYQUOTA_LINK_BYTES); 1089 1090 rcu_assign_pointer(keyring->payload.subscriptions, nklist); 1091 1092 up_write(&keyring->sem); 1093 1094 /* schedule for later cleanup */ 1095 klist->delkey = loop; 1096 call_rcu(&klist->rcu, keyring_unlink_rcu_disposal); 1097 1098 ret = 0; 1099 1100 error: 1101 return ret; 1102 nomem: 1103 ret = -ENOMEM; 1104 up_write(&keyring->sem); 1105 goto error; 1106 } 1107 EXPORT_SYMBOL(key_unlink); 1108 1109 /* 1110 * Dispose of a keyring list after the RCU grace period, releasing the keys it 1111 * links to. 1112 */ 1113 static void keyring_clear_rcu_disposal(struct rcu_head *rcu) 1114 { 1115 struct keyring_list *klist; 1116 int loop; 1117 1118 klist = container_of(rcu, struct keyring_list, rcu); 1119 1120 for (loop = klist->nkeys - 1; loop >= 0; loop--) 1121 key_put(rcu_access_pointer(klist->keys[loop])); 1122 1123 kfree(klist); 1124 } 1125 1126 /** 1127 * keyring_clear - Clear a keyring 1128 * @keyring: The keyring to clear. 1129 * 1130 * Clear the contents of the specified keyring. 1131 * 1132 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring. 1133 */ 1134 int keyring_clear(struct key *keyring) 1135 { 1136 struct keyring_list *klist; 1137 int ret; 1138 1139 ret = -ENOTDIR; 1140 if (keyring->type == &key_type_keyring) { 1141 /* detach the pointer block with the locks held */ 1142 down_write(&keyring->sem); 1143 1144 klist = rcu_dereference_locked_keyring(keyring); 1145 if (klist) { 1146 /* adjust the quota */ 1147 key_payload_reserve(keyring, 1148 sizeof(struct keyring_list)); 1149 1150 rcu_assign_pointer(keyring->payload.subscriptions, 1151 NULL); 1152 } 1153 1154 up_write(&keyring->sem); 1155 1156 /* free the keys after the locks have been dropped */ 1157 if (klist) 1158 call_rcu(&klist->rcu, keyring_clear_rcu_disposal); 1159 1160 ret = 0; 1161 } 1162 1163 return ret; 1164 } 1165 EXPORT_SYMBOL(keyring_clear); 1166 1167 /* 1168 * Dispose of the links from a revoked keyring. 1169 * 1170 * This is called with the key sem write-locked. 1171 */ 1172 static void keyring_revoke(struct key *keyring) 1173 { 1174 struct keyring_list *klist; 1175 1176 klist = rcu_dereference_locked_keyring(keyring); 1177 1178 /* adjust the quota */ 1179 key_payload_reserve(keyring, 0); 1180 1181 if (klist) { 1182 rcu_assign_pointer(keyring->payload.subscriptions, NULL); 1183 call_rcu(&klist->rcu, keyring_clear_rcu_disposal); 1184 } 1185 } 1186 1187 /* 1188 * Collect garbage from the contents of a keyring, replacing the old list with 1189 * a new one with the pointers all shuffled down. 1190 * 1191 * Dead keys are classed as oned that are flagged as being dead or are revoked, 1192 * expired or negative keys that were revoked or expired before the specified 1193 * limit. 1194 */ 1195 void keyring_gc(struct key *keyring, time_t limit) 1196 { 1197 struct keyring_list *klist, *new; 1198 struct key *key; 1199 int loop, keep, max; 1200 1201 kenter("{%x,%s}", key_serial(keyring), keyring->description); 1202 1203 down_write(&keyring->sem); 1204 1205 klist = rcu_dereference_locked_keyring(keyring); 1206 if (!klist) 1207 goto no_klist; 1208 1209 /* work out how many subscriptions we're keeping */ 1210 keep = 0; 1211 for (loop = klist->nkeys - 1; loop >= 0; loop--) 1212 if (!key_is_dead(rcu_deref_link_locked(klist, loop, keyring), 1213 limit)) 1214 keep++; 1215 1216 if (keep == klist->nkeys) 1217 goto just_return; 1218 1219 /* allocate a new keyring payload */ 1220 max = roundup(keep, 4); 1221 new = kmalloc(sizeof(struct keyring_list) + max * sizeof(struct key *), 1222 GFP_KERNEL); 1223 if (!new) 1224 goto nomem; 1225 new->maxkeys = max; 1226 new->nkeys = 0; 1227 new->delkey = 0; 1228 1229 /* install the live keys 1230 * - must take care as expired keys may be updated back to life 1231 */ 1232 keep = 0; 1233 for (loop = klist->nkeys - 1; loop >= 0; loop--) { 1234 key = rcu_deref_link_locked(klist, loop, keyring); 1235 if (!key_is_dead(key, limit)) { 1236 if (keep >= max) 1237 goto discard_new; 1238 RCU_INIT_POINTER(new->keys[keep++], key_get(key)); 1239 } 1240 } 1241 new->nkeys = keep; 1242 1243 /* adjust the quota */ 1244 key_payload_reserve(keyring, 1245 sizeof(struct keyring_list) + 1246 KEYQUOTA_LINK_BYTES * keep); 1247 1248 if (keep == 0) { 1249 rcu_assign_pointer(keyring->payload.subscriptions, NULL); 1250 kfree(new); 1251 } else { 1252 rcu_assign_pointer(keyring->payload.subscriptions, new); 1253 } 1254 1255 up_write(&keyring->sem); 1256 1257 call_rcu(&klist->rcu, keyring_clear_rcu_disposal); 1258 kleave(" [yes]"); 1259 return; 1260 1261 discard_new: 1262 new->nkeys = keep; 1263 keyring_clear_rcu_disposal(&new->rcu); 1264 up_write(&keyring->sem); 1265 kleave(" [discard]"); 1266 return; 1267 1268 just_return: 1269 up_write(&keyring->sem); 1270 kleave(" [no dead]"); 1271 return; 1272 1273 no_klist: 1274 up_write(&keyring->sem); 1275 kleave(" [no_klist]"); 1276 return; 1277 1278 nomem: 1279 up_write(&keyring->sem); 1280 kleave(" [oom]"); 1281 } 1282