1 /* Keyring handling 2 * 3 * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved. 4 * Written by David Howells (dhowells@redhat.com) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/sched.h> 15 #include <linux/slab.h> 16 #include <linux/security.h> 17 #include <linux/seq_file.h> 18 #include <linux/err.h> 19 #include <keys/keyring-type.h> 20 #include <keys/user-type.h> 21 #include <linux/assoc_array_priv.h> 22 #include <linux/uaccess.h> 23 #include "internal.h" 24 25 /* 26 * When plumbing the depths of the key tree, this sets a hard limit 27 * set on how deep we're willing to go. 28 */ 29 #define KEYRING_SEARCH_MAX_DEPTH 6 30 31 /* 32 * We keep all named keyrings in a hash to speed looking them up. 33 */ 34 #define KEYRING_NAME_HASH_SIZE (1 << 5) 35 36 /* 37 * We mark pointers we pass to the associative array with bit 1 set if 38 * they're keyrings and clear otherwise. 39 */ 40 #define KEYRING_PTR_SUBTYPE 0x2UL 41 42 static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x) 43 { 44 return (unsigned long)x & KEYRING_PTR_SUBTYPE; 45 } 46 static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x) 47 { 48 void *object = assoc_array_ptr_to_leaf(x); 49 return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE); 50 } 51 static inline void *keyring_key_to_ptr(struct key *key) 52 { 53 if (key->type == &key_type_keyring) 54 return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE); 55 return key; 56 } 57 58 static struct list_head keyring_name_hash[KEYRING_NAME_HASH_SIZE]; 59 static DEFINE_RWLOCK(keyring_name_lock); 60 61 static inline unsigned keyring_hash(const char *desc) 62 { 63 unsigned bucket = 0; 64 65 for (; *desc; desc++) 66 bucket += (unsigned char)*desc; 67 68 return bucket & (KEYRING_NAME_HASH_SIZE - 1); 69 } 70 71 /* 72 * The keyring key type definition. Keyrings are simply keys of this type and 73 * can be treated as ordinary keys in addition to having their own special 74 * operations. 75 */ 76 static int keyring_preparse(struct key_preparsed_payload *prep); 77 static void keyring_free_preparse(struct key_preparsed_payload *prep); 78 static int keyring_instantiate(struct key *keyring, 79 struct key_preparsed_payload *prep); 80 static void keyring_revoke(struct key *keyring); 81 static void keyring_destroy(struct key *keyring); 82 static void keyring_describe(const struct key *keyring, struct seq_file *m); 83 static long keyring_read(const struct key *keyring, 84 char __user *buffer, size_t buflen); 85 86 struct key_type key_type_keyring = { 87 .name = "keyring", 88 .def_datalen = 0, 89 .preparse = keyring_preparse, 90 .free_preparse = keyring_free_preparse, 91 .instantiate = keyring_instantiate, 92 .revoke = keyring_revoke, 93 .destroy = keyring_destroy, 94 .describe = keyring_describe, 95 .read = keyring_read, 96 }; 97 EXPORT_SYMBOL(key_type_keyring); 98 99 /* 100 * Semaphore to serialise link/link calls to prevent two link calls in parallel 101 * introducing a cycle. 102 */ 103 static DECLARE_RWSEM(keyring_serialise_link_sem); 104 105 /* 106 * Publish the name of a keyring so that it can be found by name (if it has 107 * one). 108 */ 109 static void keyring_publish_name(struct key *keyring) 110 { 111 int bucket; 112 113 if (keyring->description) { 114 bucket = keyring_hash(keyring->description); 115 116 write_lock(&keyring_name_lock); 117 118 if (!keyring_name_hash[bucket].next) 119 INIT_LIST_HEAD(&keyring_name_hash[bucket]); 120 121 list_add_tail(&keyring->name_link, 122 &keyring_name_hash[bucket]); 123 124 write_unlock(&keyring_name_lock); 125 } 126 } 127 128 /* 129 * Preparse a keyring payload 130 */ 131 static int keyring_preparse(struct key_preparsed_payload *prep) 132 { 133 return prep->datalen != 0 ? -EINVAL : 0; 134 } 135 136 /* 137 * Free a preparse of a user defined key payload 138 */ 139 static void keyring_free_preparse(struct key_preparsed_payload *prep) 140 { 141 } 142 143 /* 144 * Initialise a keyring. 145 * 146 * Returns 0 on success, -EINVAL if given any data. 147 */ 148 static int keyring_instantiate(struct key *keyring, 149 struct key_preparsed_payload *prep) 150 { 151 assoc_array_init(&keyring->keys); 152 /* make the keyring available by name if it has one */ 153 keyring_publish_name(keyring); 154 return 0; 155 } 156 157 /* 158 * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit. Ideally we'd 159 * fold the carry back too, but that requires inline asm. 160 */ 161 static u64 mult_64x32_and_fold(u64 x, u32 y) 162 { 163 u64 hi = (u64)(u32)(x >> 32) * y; 164 u64 lo = (u64)(u32)(x) * y; 165 return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32); 166 } 167 168 /* 169 * Hash a key type and description. 170 */ 171 static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key) 172 { 173 const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP; 174 const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK; 175 const char *description = index_key->description; 176 unsigned long hash, type; 177 u32 piece; 178 u64 acc; 179 int n, desc_len = index_key->desc_len; 180 181 type = (unsigned long)index_key->type; 182 183 acc = mult_64x32_and_fold(type, desc_len + 13); 184 acc = mult_64x32_and_fold(acc, 9207); 185 for (;;) { 186 n = desc_len; 187 if (n <= 0) 188 break; 189 if (n > 4) 190 n = 4; 191 piece = 0; 192 memcpy(&piece, description, n); 193 description += n; 194 desc_len -= n; 195 acc = mult_64x32_and_fold(acc, piece); 196 acc = mult_64x32_and_fold(acc, 9207); 197 } 198 199 /* Fold the hash down to 32 bits if need be. */ 200 hash = acc; 201 if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32) 202 hash ^= acc >> 32; 203 204 /* Squidge all the keyrings into a separate part of the tree to 205 * ordinary keys by making sure the lowest level segment in the hash is 206 * zero for keyrings and non-zero otherwise. 207 */ 208 if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0) 209 return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1; 210 if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0) 211 return (hash + (hash << level_shift)) & ~fan_mask; 212 return hash; 213 } 214 215 /* 216 * Build the next index key chunk. 217 * 218 * On 32-bit systems the index key is laid out as: 219 * 220 * 0 4 5 9... 221 * hash desclen typeptr desc[] 222 * 223 * On 64-bit systems: 224 * 225 * 0 8 9 17... 226 * hash desclen typeptr desc[] 227 * 228 * We return it one word-sized chunk at a time. 229 */ 230 static unsigned long keyring_get_key_chunk(const void *data, int level) 231 { 232 const struct keyring_index_key *index_key = data; 233 unsigned long chunk = 0; 234 long offset = 0; 235 int desc_len = index_key->desc_len, n = sizeof(chunk); 236 237 level /= ASSOC_ARRAY_KEY_CHUNK_SIZE; 238 switch (level) { 239 case 0: 240 return hash_key_type_and_desc(index_key); 241 case 1: 242 return ((unsigned long)index_key->type << 8) | desc_len; 243 case 2: 244 if (desc_len == 0) 245 return (u8)((unsigned long)index_key->type >> 246 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8)); 247 n--; 248 offset = 1; 249 default: 250 offset += sizeof(chunk) - 1; 251 offset += (level - 3) * sizeof(chunk); 252 if (offset >= desc_len) 253 return 0; 254 desc_len -= offset; 255 if (desc_len > n) 256 desc_len = n; 257 offset += desc_len; 258 do { 259 chunk <<= 8; 260 chunk |= ((u8*)index_key->description)[--offset]; 261 } while (--desc_len > 0); 262 263 if (level == 2) { 264 chunk <<= 8; 265 chunk |= (u8)((unsigned long)index_key->type >> 266 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8)); 267 } 268 return chunk; 269 } 270 } 271 272 static unsigned long keyring_get_object_key_chunk(const void *object, int level) 273 { 274 const struct key *key = keyring_ptr_to_key(object); 275 return keyring_get_key_chunk(&key->index_key, level); 276 } 277 278 static bool keyring_compare_object(const void *object, const void *data) 279 { 280 const struct keyring_index_key *index_key = data; 281 const struct key *key = keyring_ptr_to_key(object); 282 283 return key->index_key.type == index_key->type && 284 key->index_key.desc_len == index_key->desc_len && 285 memcmp(key->index_key.description, index_key->description, 286 index_key->desc_len) == 0; 287 } 288 289 /* 290 * Compare the index keys of a pair of objects and determine the bit position 291 * at which they differ - if they differ. 292 */ 293 static int keyring_diff_objects(const void *object, const void *data) 294 { 295 const struct key *key_a = keyring_ptr_to_key(object); 296 const struct keyring_index_key *a = &key_a->index_key; 297 const struct keyring_index_key *b = data; 298 unsigned long seg_a, seg_b; 299 int level, i; 300 301 level = 0; 302 seg_a = hash_key_type_and_desc(a); 303 seg_b = hash_key_type_and_desc(b); 304 if ((seg_a ^ seg_b) != 0) 305 goto differ; 306 307 /* The number of bits contributed by the hash is controlled by a 308 * constant in the assoc_array headers. Everything else thereafter we 309 * can deal with as being machine word-size dependent. 310 */ 311 level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8; 312 seg_a = a->desc_len; 313 seg_b = b->desc_len; 314 if ((seg_a ^ seg_b) != 0) 315 goto differ; 316 317 /* The next bit may not work on big endian */ 318 level++; 319 seg_a = (unsigned long)a->type; 320 seg_b = (unsigned long)b->type; 321 if ((seg_a ^ seg_b) != 0) 322 goto differ; 323 324 level += sizeof(unsigned long); 325 if (a->desc_len == 0) 326 goto same; 327 328 i = 0; 329 if (((unsigned long)a->description | (unsigned long)b->description) & 330 (sizeof(unsigned long) - 1)) { 331 do { 332 seg_a = *(unsigned long *)(a->description + i); 333 seg_b = *(unsigned long *)(b->description + i); 334 if ((seg_a ^ seg_b) != 0) 335 goto differ_plus_i; 336 i += sizeof(unsigned long); 337 } while (i < (a->desc_len & (sizeof(unsigned long) - 1))); 338 } 339 340 for (; i < a->desc_len; i++) { 341 seg_a = *(unsigned char *)(a->description + i); 342 seg_b = *(unsigned char *)(b->description + i); 343 if ((seg_a ^ seg_b) != 0) 344 goto differ_plus_i; 345 } 346 347 same: 348 return -1; 349 350 differ_plus_i: 351 level += i; 352 differ: 353 i = level * 8 + __ffs(seg_a ^ seg_b); 354 return i; 355 } 356 357 /* 358 * Free an object after stripping the keyring flag off of the pointer. 359 */ 360 static void keyring_free_object(void *object) 361 { 362 key_put(keyring_ptr_to_key(object)); 363 } 364 365 /* 366 * Operations for keyring management by the index-tree routines. 367 */ 368 static const struct assoc_array_ops keyring_assoc_array_ops = { 369 .get_key_chunk = keyring_get_key_chunk, 370 .get_object_key_chunk = keyring_get_object_key_chunk, 371 .compare_object = keyring_compare_object, 372 .diff_objects = keyring_diff_objects, 373 .free_object = keyring_free_object, 374 }; 375 376 /* 377 * Clean up a keyring when it is destroyed. Unpublish its name if it had one 378 * and dispose of its data. 379 * 380 * The garbage collector detects the final key_put(), removes the keyring from 381 * the serial number tree and then does RCU synchronisation before coming here, 382 * so we shouldn't need to worry about code poking around here with the RCU 383 * readlock held by this time. 384 */ 385 static void keyring_destroy(struct key *keyring) 386 { 387 if (keyring->description) { 388 write_lock(&keyring_name_lock); 389 390 if (keyring->name_link.next != NULL && 391 !list_empty(&keyring->name_link)) 392 list_del(&keyring->name_link); 393 394 write_unlock(&keyring_name_lock); 395 } 396 397 if (keyring->restrict_link) { 398 struct key_restriction *keyres = keyring->restrict_link; 399 400 key_put(keyres->key); 401 kfree(keyres); 402 } 403 404 assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops); 405 } 406 407 /* 408 * Describe a keyring for /proc. 409 */ 410 static void keyring_describe(const struct key *keyring, struct seq_file *m) 411 { 412 if (keyring->description) 413 seq_puts(m, keyring->description); 414 else 415 seq_puts(m, "[anon]"); 416 417 if (key_is_instantiated(keyring)) { 418 if (keyring->keys.nr_leaves_on_tree != 0) 419 seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree); 420 else 421 seq_puts(m, ": empty"); 422 } 423 } 424 425 struct keyring_read_iterator_context { 426 size_t buflen; 427 size_t count; 428 key_serial_t __user *buffer; 429 }; 430 431 static int keyring_read_iterator(const void *object, void *data) 432 { 433 struct keyring_read_iterator_context *ctx = data; 434 const struct key *key = keyring_ptr_to_key(object); 435 int ret; 436 437 kenter("{%s,%d},,{%zu/%zu}", 438 key->type->name, key->serial, ctx->count, ctx->buflen); 439 440 if (ctx->count >= ctx->buflen) 441 return 1; 442 443 ret = put_user(key->serial, ctx->buffer); 444 if (ret < 0) 445 return ret; 446 ctx->buffer++; 447 ctx->count += sizeof(key->serial); 448 return 0; 449 } 450 451 /* 452 * Read a list of key IDs from the keyring's contents in binary form 453 * 454 * The keyring's semaphore is read-locked by the caller. This prevents someone 455 * from modifying it under us - which could cause us to read key IDs multiple 456 * times. 457 */ 458 static long keyring_read(const struct key *keyring, 459 char __user *buffer, size_t buflen) 460 { 461 struct keyring_read_iterator_context ctx; 462 unsigned long nr_keys; 463 int ret; 464 465 kenter("{%d},,%zu", key_serial(keyring), buflen); 466 467 if (buflen & (sizeof(key_serial_t) - 1)) 468 return -EINVAL; 469 470 nr_keys = keyring->keys.nr_leaves_on_tree; 471 if (nr_keys == 0) 472 return 0; 473 474 /* Calculate how much data we could return */ 475 if (!buffer || !buflen) 476 return nr_keys * sizeof(key_serial_t); 477 478 /* Copy the IDs of the subscribed keys into the buffer */ 479 ctx.buffer = (key_serial_t __user *)buffer; 480 ctx.buflen = buflen; 481 ctx.count = 0; 482 ret = assoc_array_iterate(&keyring->keys, keyring_read_iterator, &ctx); 483 if (ret < 0) { 484 kleave(" = %d [iterate]", ret); 485 return ret; 486 } 487 488 kleave(" = %zu [ok]", ctx.count); 489 return ctx.count; 490 } 491 492 /* 493 * Allocate a keyring and link into the destination keyring. 494 */ 495 struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid, 496 const struct cred *cred, key_perm_t perm, 497 unsigned long flags, 498 struct key_restriction *restrict_link, 499 struct key *dest) 500 { 501 struct key *keyring; 502 int ret; 503 504 keyring = key_alloc(&key_type_keyring, description, 505 uid, gid, cred, perm, flags, restrict_link); 506 if (!IS_ERR(keyring)) { 507 ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL); 508 if (ret < 0) { 509 key_put(keyring); 510 keyring = ERR_PTR(ret); 511 } 512 } 513 514 return keyring; 515 } 516 EXPORT_SYMBOL(keyring_alloc); 517 518 /** 519 * restrict_link_reject - Give -EPERM to restrict link 520 * @keyring: The keyring being added to. 521 * @type: The type of key being added. 522 * @payload: The payload of the key intended to be added. 523 * @data: Additional data for evaluating restriction. 524 * 525 * Reject the addition of any links to a keyring. It can be overridden by 526 * passing KEY_ALLOC_BYPASS_RESTRICTION to key_instantiate_and_link() when 527 * adding a key to a keyring. 528 * 529 * This is meant to be stored in a key_restriction structure which is passed 530 * in the restrict_link parameter to keyring_alloc(). 531 */ 532 int restrict_link_reject(struct key *keyring, 533 const struct key_type *type, 534 const union key_payload *payload, 535 struct key *restriction_key) 536 { 537 return -EPERM; 538 } 539 540 /* 541 * By default, we keys found by getting an exact match on their descriptions. 542 */ 543 bool key_default_cmp(const struct key *key, 544 const struct key_match_data *match_data) 545 { 546 return strcmp(key->description, match_data->raw_data) == 0; 547 } 548 549 /* 550 * Iteration function to consider each key found. 551 */ 552 static int keyring_search_iterator(const void *object, void *iterator_data) 553 { 554 struct keyring_search_context *ctx = iterator_data; 555 const struct key *key = keyring_ptr_to_key(object); 556 unsigned long kflags = key->flags; 557 558 kenter("{%d}", key->serial); 559 560 /* ignore keys not of this type */ 561 if (key->type != ctx->index_key.type) { 562 kleave(" = 0 [!type]"); 563 return 0; 564 } 565 566 /* skip invalidated, revoked and expired keys */ 567 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) { 568 if (kflags & ((1 << KEY_FLAG_INVALIDATED) | 569 (1 << KEY_FLAG_REVOKED))) { 570 ctx->result = ERR_PTR(-EKEYREVOKED); 571 kleave(" = %d [invrev]", ctx->skipped_ret); 572 goto skipped; 573 } 574 575 if (key->expiry && ctx->now.tv_sec >= key->expiry) { 576 if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED)) 577 ctx->result = ERR_PTR(-EKEYEXPIRED); 578 kleave(" = %d [expire]", ctx->skipped_ret); 579 goto skipped; 580 } 581 } 582 583 /* keys that don't match */ 584 if (!ctx->match_data.cmp(key, &ctx->match_data)) { 585 kleave(" = 0 [!match]"); 586 return 0; 587 } 588 589 /* key must have search permissions */ 590 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) && 591 key_task_permission(make_key_ref(key, ctx->possessed), 592 ctx->cred, KEY_NEED_SEARCH) < 0) { 593 ctx->result = ERR_PTR(-EACCES); 594 kleave(" = %d [!perm]", ctx->skipped_ret); 595 goto skipped; 596 } 597 598 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) { 599 /* we set a different error code if we pass a negative key */ 600 if (kflags & (1 << KEY_FLAG_NEGATIVE)) { 601 smp_rmb(); 602 ctx->result = ERR_PTR(key->reject_error); 603 kleave(" = %d [neg]", ctx->skipped_ret); 604 goto skipped; 605 } 606 } 607 608 /* Found */ 609 ctx->result = make_key_ref(key, ctx->possessed); 610 kleave(" = 1 [found]"); 611 return 1; 612 613 skipped: 614 return ctx->skipped_ret; 615 } 616 617 /* 618 * Search inside a keyring for a key. We can search by walking to it 619 * directly based on its index-key or we can iterate over the entire 620 * tree looking for it, based on the match function. 621 */ 622 static int search_keyring(struct key *keyring, struct keyring_search_context *ctx) 623 { 624 if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) { 625 const void *object; 626 627 object = assoc_array_find(&keyring->keys, 628 &keyring_assoc_array_ops, 629 &ctx->index_key); 630 return object ? ctx->iterator(object, ctx) : 0; 631 } 632 return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx); 633 } 634 635 /* 636 * Search a tree of keyrings that point to other keyrings up to the maximum 637 * depth. 638 */ 639 static bool search_nested_keyrings(struct key *keyring, 640 struct keyring_search_context *ctx) 641 { 642 struct { 643 struct key *keyring; 644 struct assoc_array_node *node; 645 int slot; 646 } stack[KEYRING_SEARCH_MAX_DEPTH]; 647 648 struct assoc_array_shortcut *shortcut; 649 struct assoc_array_node *node; 650 struct assoc_array_ptr *ptr; 651 struct key *key; 652 int sp = 0, slot; 653 654 kenter("{%d},{%s,%s}", 655 keyring->serial, 656 ctx->index_key.type->name, 657 ctx->index_key.description); 658 659 #define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK) 660 BUG_ON((ctx->flags & STATE_CHECKS) == 0 || 661 (ctx->flags & STATE_CHECKS) == STATE_CHECKS); 662 663 if (ctx->index_key.description) 664 ctx->index_key.desc_len = strlen(ctx->index_key.description); 665 666 /* Check to see if this top-level keyring is what we are looking for 667 * and whether it is valid or not. 668 */ 669 if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE || 670 keyring_compare_object(keyring, &ctx->index_key)) { 671 ctx->skipped_ret = 2; 672 switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) { 673 case 1: 674 goto found; 675 case 2: 676 return false; 677 default: 678 break; 679 } 680 } 681 682 ctx->skipped_ret = 0; 683 684 /* Start processing a new keyring */ 685 descend_to_keyring: 686 kdebug("descend to %d", keyring->serial); 687 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) | 688 (1 << KEY_FLAG_REVOKED))) 689 goto not_this_keyring; 690 691 /* Search through the keys in this keyring before its searching its 692 * subtrees. 693 */ 694 if (search_keyring(keyring, ctx)) 695 goto found; 696 697 /* Then manually iterate through the keyrings nested in this one. 698 * 699 * Start from the root node of the index tree. Because of the way the 700 * hash function has been set up, keyrings cluster on the leftmost 701 * branch of the root node (root slot 0) or in the root node itself. 702 * Non-keyrings avoid the leftmost branch of the root entirely (root 703 * slots 1-15). 704 */ 705 ptr = READ_ONCE(keyring->keys.root); 706 if (!ptr) 707 goto not_this_keyring; 708 709 if (assoc_array_ptr_is_shortcut(ptr)) { 710 /* If the root is a shortcut, either the keyring only contains 711 * keyring pointers (everything clusters behind root slot 0) or 712 * doesn't contain any keyring pointers. 713 */ 714 shortcut = assoc_array_ptr_to_shortcut(ptr); 715 smp_read_barrier_depends(); 716 if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0) 717 goto not_this_keyring; 718 719 ptr = READ_ONCE(shortcut->next_node); 720 node = assoc_array_ptr_to_node(ptr); 721 goto begin_node; 722 } 723 724 node = assoc_array_ptr_to_node(ptr); 725 smp_read_barrier_depends(); 726 727 ptr = node->slots[0]; 728 if (!assoc_array_ptr_is_meta(ptr)) 729 goto begin_node; 730 731 descend_to_node: 732 /* Descend to a more distal node in this keyring's content tree and go 733 * through that. 734 */ 735 kdebug("descend"); 736 if (assoc_array_ptr_is_shortcut(ptr)) { 737 shortcut = assoc_array_ptr_to_shortcut(ptr); 738 smp_read_barrier_depends(); 739 ptr = READ_ONCE(shortcut->next_node); 740 BUG_ON(!assoc_array_ptr_is_node(ptr)); 741 } 742 node = assoc_array_ptr_to_node(ptr); 743 744 begin_node: 745 kdebug("begin_node"); 746 smp_read_barrier_depends(); 747 slot = 0; 748 ascend_to_node: 749 /* Go through the slots in a node */ 750 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) { 751 ptr = READ_ONCE(node->slots[slot]); 752 753 if (assoc_array_ptr_is_meta(ptr) && node->back_pointer) 754 goto descend_to_node; 755 756 if (!keyring_ptr_is_keyring(ptr)) 757 continue; 758 759 key = keyring_ptr_to_key(ptr); 760 761 if (sp >= KEYRING_SEARCH_MAX_DEPTH) { 762 if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) { 763 ctx->result = ERR_PTR(-ELOOP); 764 return false; 765 } 766 goto not_this_keyring; 767 } 768 769 /* Search a nested keyring */ 770 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) && 771 key_task_permission(make_key_ref(key, ctx->possessed), 772 ctx->cred, KEY_NEED_SEARCH) < 0) 773 continue; 774 775 /* stack the current position */ 776 stack[sp].keyring = keyring; 777 stack[sp].node = node; 778 stack[sp].slot = slot; 779 sp++; 780 781 /* begin again with the new keyring */ 782 keyring = key; 783 goto descend_to_keyring; 784 } 785 786 /* We've dealt with all the slots in the current node, so now we need 787 * to ascend to the parent and continue processing there. 788 */ 789 ptr = READ_ONCE(node->back_pointer); 790 slot = node->parent_slot; 791 792 if (ptr && assoc_array_ptr_is_shortcut(ptr)) { 793 shortcut = assoc_array_ptr_to_shortcut(ptr); 794 smp_read_barrier_depends(); 795 ptr = READ_ONCE(shortcut->back_pointer); 796 slot = shortcut->parent_slot; 797 } 798 if (!ptr) 799 goto not_this_keyring; 800 node = assoc_array_ptr_to_node(ptr); 801 smp_read_barrier_depends(); 802 slot++; 803 804 /* If we've ascended to the root (zero backpointer), we must have just 805 * finished processing the leftmost branch rather than the root slots - 806 * so there can't be any more keyrings for us to find. 807 */ 808 if (node->back_pointer) { 809 kdebug("ascend %d", slot); 810 goto ascend_to_node; 811 } 812 813 /* The keyring we're looking at was disqualified or didn't contain a 814 * matching key. 815 */ 816 not_this_keyring: 817 kdebug("not_this_keyring %d", sp); 818 if (sp <= 0) { 819 kleave(" = false"); 820 return false; 821 } 822 823 /* Resume the processing of a keyring higher up in the tree */ 824 sp--; 825 keyring = stack[sp].keyring; 826 node = stack[sp].node; 827 slot = stack[sp].slot + 1; 828 kdebug("ascend to %d [%d]", keyring->serial, slot); 829 goto ascend_to_node; 830 831 /* We found a viable match */ 832 found: 833 key = key_ref_to_ptr(ctx->result); 834 key_check(key); 835 if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) { 836 key->last_used_at = ctx->now.tv_sec; 837 keyring->last_used_at = ctx->now.tv_sec; 838 while (sp > 0) 839 stack[--sp].keyring->last_used_at = ctx->now.tv_sec; 840 } 841 kleave(" = true"); 842 return true; 843 } 844 845 /** 846 * keyring_search_aux - Search a keyring tree for a key matching some criteria 847 * @keyring_ref: A pointer to the keyring with possession indicator. 848 * @ctx: The keyring search context. 849 * 850 * Search the supplied keyring tree for a key that matches the criteria given. 851 * The root keyring and any linked keyrings must grant Search permission to the 852 * caller to be searchable and keys can only be found if they too grant Search 853 * to the caller. The possession flag on the root keyring pointer controls use 854 * of the possessor bits in permissions checking of the entire tree. In 855 * addition, the LSM gets to forbid keyring searches and key matches. 856 * 857 * The search is performed as a breadth-then-depth search up to the prescribed 858 * limit (KEYRING_SEARCH_MAX_DEPTH). 859 * 860 * Keys are matched to the type provided and are then filtered by the match 861 * function, which is given the description to use in any way it sees fit. The 862 * match function may use any attributes of a key that it wishes to to 863 * determine the match. Normally the match function from the key type would be 864 * used. 865 * 866 * RCU can be used to prevent the keyring key lists from disappearing without 867 * the need to take lots of locks. 868 * 869 * Returns a pointer to the found key and increments the key usage count if 870 * successful; -EAGAIN if no matching keys were found, or if expired or revoked 871 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the 872 * specified keyring wasn't a keyring. 873 * 874 * In the case of a successful return, the possession attribute from 875 * @keyring_ref is propagated to the returned key reference. 876 */ 877 key_ref_t keyring_search_aux(key_ref_t keyring_ref, 878 struct keyring_search_context *ctx) 879 { 880 struct key *keyring; 881 long err; 882 883 ctx->iterator = keyring_search_iterator; 884 ctx->possessed = is_key_possessed(keyring_ref); 885 ctx->result = ERR_PTR(-EAGAIN); 886 887 keyring = key_ref_to_ptr(keyring_ref); 888 key_check(keyring); 889 890 if (keyring->type != &key_type_keyring) 891 return ERR_PTR(-ENOTDIR); 892 893 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) { 894 err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH); 895 if (err < 0) 896 return ERR_PTR(err); 897 } 898 899 rcu_read_lock(); 900 ctx->now = current_kernel_time(); 901 if (search_nested_keyrings(keyring, ctx)) 902 __key_get(key_ref_to_ptr(ctx->result)); 903 rcu_read_unlock(); 904 return ctx->result; 905 } 906 907 /** 908 * keyring_search - Search the supplied keyring tree for a matching key 909 * @keyring: The root of the keyring tree to be searched. 910 * @type: The type of keyring we want to find. 911 * @description: The name of the keyring we want to find. 912 * 913 * As keyring_search_aux() above, but using the current task's credentials and 914 * type's default matching function and preferred search method. 915 */ 916 key_ref_t keyring_search(key_ref_t keyring, 917 struct key_type *type, 918 const char *description) 919 { 920 struct keyring_search_context ctx = { 921 .index_key.type = type, 922 .index_key.description = description, 923 .cred = current_cred(), 924 .match_data.cmp = key_default_cmp, 925 .match_data.raw_data = description, 926 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT, 927 .flags = KEYRING_SEARCH_DO_STATE_CHECK, 928 }; 929 key_ref_t key; 930 int ret; 931 932 if (type->match_preparse) { 933 ret = type->match_preparse(&ctx.match_data); 934 if (ret < 0) 935 return ERR_PTR(ret); 936 } 937 938 key = keyring_search_aux(keyring, &ctx); 939 940 if (type->match_free) 941 type->match_free(&ctx.match_data); 942 return key; 943 } 944 EXPORT_SYMBOL(keyring_search); 945 946 static struct key_restriction *keyring_restriction_alloc( 947 key_restrict_link_func_t check) 948 { 949 struct key_restriction *keyres = 950 kzalloc(sizeof(struct key_restriction), GFP_KERNEL); 951 952 if (!keyres) 953 return ERR_PTR(-ENOMEM); 954 955 keyres->check = check; 956 957 return keyres; 958 } 959 960 /* 961 * Semaphore to serialise restriction setup to prevent reference count 962 * cycles through restriction key pointers. 963 */ 964 static DECLARE_RWSEM(keyring_serialise_restrict_sem); 965 966 /* 967 * Check for restriction cycles that would prevent keyring garbage collection. 968 * keyring_serialise_restrict_sem must be held. 969 */ 970 static bool keyring_detect_restriction_cycle(const struct key *dest_keyring, 971 struct key_restriction *keyres) 972 { 973 while (keyres && keyres->key && 974 keyres->key->type == &key_type_keyring) { 975 if (keyres->key == dest_keyring) 976 return true; 977 978 keyres = keyres->key->restrict_link; 979 } 980 981 return false; 982 } 983 984 /** 985 * keyring_restrict - Look up and apply a restriction to a keyring 986 * 987 * @keyring: The keyring to be restricted 988 * @restriction: The restriction options to apply to the keyring 989 */ 990 int keyring_restrict(key_ref_t keyring_ref, const char *type, 991 const char *restriction) 992 { 993 struct key *keyring; 994 struct key_type *restrict_type = NULL; 995 struct key_restriction *restrict_link; 996 int ret = 0; 997 998 keyring = key_ref_to_ptr(keyring_ref); 999 key_check(keyring); 1000 1001 if (keyring->type != &key_type_keyring) 1002 return -ENOTDIR; 1003 1004 if (!type) { 1005 restrict_link = keyring_restriction_alloc(restrict_link_reject); 1006 } else { 1007 restrict_type = key_type_lookup(type); 1008 1009 if (IS_ERR(restrict_type)) 1010 return PTR_ERR(restrict_type); 1011 1012 if (!restrict_type->lookup_restriction) { 1013 ret = -ENOENT; 1014 goto error; 1015 } 1016 1017 restrict_link = restrict_type->lookup_restriction(restriction); 1018 } 1019 1020 if (IS_ERR(restrict_link)) { 1021 ret = PTR_ERR(restrict_link); 1022 goto error; 1023 } 1024 1025 down_write(&keyring->sem); 1026 down_write(&keyring_serialise_restrict_sem); 1027 1028 if (keyring->restrict_link) 1029 ret = -EEXIST; 1030 else if (keyring_detect_restriction_cycle(keyring, restrict_link)) 1031 ret = -EDEADLK; 1032 else 1033 keyring->restrict_link = restrict_link; 1034 1035 up_write(&keyring_serialise_restrict_sem); 1036 up_write(&keyring->sem); 1037 1038 if (ret < 0) { 1039 key_put(restrict_link->key); 1040 kfree(restrict_link); 1041 } 1042 1043 error: 1044 if (restrict_type) 1045 key_type_put(restrict_type); 1046 1047 return ret; 1048 } 1049 EXPORT_SYMBOL(keyring_restrict); 1050 1051 /* 1052 * Search the given keyring for a key that might be updated. 1053 * 1054 * The caller must guarantee that the keyring is a keyring and that the 1055 * permission is granted to modify the keyring as no check is made here. The 1056 * caller must also hold a lock on the keyring semaphore. 1057 * 1058 * Returns a pointer to the found key with usage count incremented if 1059 * successful and returns NULL if not found. Revoked and invalidated keys are 1060 * skipped over. 1061 * 1062 * If successful, the possession indicator is propagated from the keyring ref 1063 * to the returned key reference. 1064 */ 1065 key_ref_t find_key_to_update(key_ref_t keyring_ref, 1066 const struct keyring_index_key *index_key) 1067 { 1068 struct key *keyring, *key; 1069 const void *object; 1070 1071 keyring = key_ref_to_ptr(keyring_ref); 1072 1073 kenter("{%d},{%s,%s}", 1074 keyring->serial, index_key->type->name, index_key->description); 1075 1076 object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops, 1077 index_key); 1078 1079 if (object) 1080 goto found; 1081 1082 kleave(" = NULL"); 1083 return NULL; 1084 1085 found: 1086 key = keyring_ptr_to_key(object); 1087 if (key->flags & ((1 << KEY_FLAG_INVALIDATED) | 1088 (1 << KEY_FLAG_REVOKED))) { 1089 kleave(" = NULL [x]"); 1090 return NULL; 1091 } 1092 __key_get(key); 1093 kleave(" = {%d}", key->serial); 1094 return make_key_ref(key, is_key_possessed(keyring_ref)); 1095 } 1096 1097 /* 1098 * Find a keyring with the specified name. 1099 * 1100 * Only keyrings that have nonzero refcount, are not revoked, and are owned by a 1101 * user in the current user namespace are considered. If @uid_keyring is %true, 1102 * the keyring additionally must have been allocated as a user or user session 1103 * keyring; otherwise, it must grant Search permission directly to the caller. 1104 * 1105 * Returns a pointer to the keyring with the keyring's refcount having being 1106 * incremented on success. -ENOKEY is returned if a key could not be found. 1107 */ 1108 struct key *find_keyring_by_name(const char *name, bool uid_keyring) 1109 { 1110 struct key *keyring; 1111 int bucket; 1112 1113 if (!name) 1114 return ERR_PTR(-EINVAL); 1115 1116 bucket = keyring_hash(name); 1117 1118 read_lock(&keyring_name_lock); 1119 1120 if (keyring_name_hash[bucket].next) { 1121 /* search this hash bucket for a keyring with a matching name 1122 * that's readable and that hasn't been revoked */ 1123 list_for_each_entry(keyring, 1124 &keyring_name_hash[bucket], 1125 name_link 1126 ) { 1127 if (!kuid_has_mapping(current_user_ns(), keyring->user->uid)) 1128 continue; 1129 1130 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags)) 1131 continue; 1132 1133 if (strcmp(keyring->description, name) != 0) 1134 continue; 1135 1136 if (uid_keyring) { 1137 if (!test_bit(KEY_FLAG_UID_KEYRING, 1138 &keyring->flags)) 1139 continue; 1140 } else { 1141 if (key_permission(make_key_ref(keyring, 0), 1142 KEY_NEED_SEARCH) < 0) 1143 continue; 1144 } 1145 1146 /* we've got a match but we might end up racing with 1147 * key_cleanup() if the keyring is currently 'dead' 1148 * (ie. it has a zero usage count) */ 1149 if (!refcount_inc_not_zero(&keyring->usage)) 1150 continue; 1151 keyring->last_used_at = current_kernel_time().tv_sec; 1152 goto out; 1153 } 1154 } 1155 1156 keyring = ERR_PTR(-ENOKEY); 1157 out: 1158 read_unlock(&keyring_name_lock); 1159 return keyring; 1160 } 1161 1162 static int keyring_detect_cycle_iterator(const void *object, 1163 void *iterator_data) 1164 { 1165 struct keyring_search_context *ctx = iterator_data; 1166 const struct key *key = keyring_ptr_to_key(object); 1167 1168 kenter("{%d}", key->serial); 1169 1170 /* We might get a keyring with matching index-key that is nonetheless a 1171 * different keyring. */ 1172 if (key != ctx->match_data.raw_data) 1173 return 0; 1174 1175 ctx->result = ERR_PTR(-EDEADLK); 1176 return 1; 1177 } 1178 1179 /* 1180 * See if a cycle will will be created by inserting acyclic tree B in acyclic 1181 * tree A at the topmost level (ie: as a direct child of A). 1182 * 1183 * Since we are adding B to A at the top level, checking for cycles should just 1184 * be a matter of seeing if node A is somewhere in tree B. 1185 */ 1186 static int keyring_detect_cycle(struct key *A, struct key *B) 1187 { 1188 struct keyring_search_context ctx = { 1189 .index_key = A->index_key, 1190 .match_data.raw_data = A, 1191 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT, 1192 .iterator = keyring_detect_cycle_iterator, 1193 .flags = (KEYRING_SEARCH_NO_STATE_CHECK | 1194 KEYRING_SEARCH_NO_UPDATE_TIME | 1195 KEYRING_SEARCH_NO_CHECK_PERM | 1196 KEYRING_SEARCH_DETECT_TOO_DEEP), 1197 }; 1198 1199 rcu_read_lock(); 1200 search_nested_keyrings(B, &ctx); 1201 rcu_read_unlock(); 1202 return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result); 1203 } 1204 1205 /* 1206 * Preallocate memory so that a key can be linked into to a keyring. 1207 */ 1208 int __key_link_begin(struct key *keyring, 1209 const struct keyring_index_key *index_key, 1210 struct assoc_array_edit **_edit) 1211 __acquires(&keyring->sem) 1212 __acquires(&keyring_serialise_link_sem) 1213 { 1214 struct assoc_array_edit *edit; 1215 int ret; 1216 1217 kenter("%d,%s,%s,", 1218 keyring->serial, index_key->type->name, index_key->description); 1219 1220 BUG_ON(index_key->desc_len == 0); 1221 1222 if (keyring->type != &key_type_keyring) 1223 return -ENOTDIR; 1224 1225 down_write(&keyring->sem); 1226 1227 ret = -EKEYREVOKED; 1228 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags)) 1229 goto error_krsem; 1230 1231 /* serialise link/link calls to prevent parallel calls causing a cycle 1232 * when linking two keyring in opposite orders */ 1233 if (index_key->type == &key_type_keyring) 1234 down_write(&keyring_serialise_link_sem); 1235 1236 /* Create an edit script that will insert/replace the key in the 1237 * keyring tree. 1238 */ 1239 edit = assoc_array_insert(&keyring->keys, 1240 &keyring_assoc_array_ops, 1241 index_key, 1242 NULL); 1243 if (IS_ERR(edit)) { 1244 ret = PTR_ERR(edit); 1245 goto error_sem; 1246 } 1247 1248 /* If we're not replacing a link in-place then we're going to need some 1249 * extra quota. 1250 */ 1251 if (!edit->dead_leaf) { 1252 ret = key_payload_reserve(keyring, 1253 keyring->datalen + KEYQUOTA_LINK_BYTES); 1254 if (ret < 0) 1255 goto error_cancel; 1256 } 1257 1258 *_edit = edit; 1259 kleave(" = 0"); 1260 return 0; 1261 1262 error_cancel: 1263 assoc_array_cancel_edit(edit); 1264 error_sem: 1265 if (index_key->type == &key_type_keyring) 1266 up_write(&keyring_serialise_link_sem); 1267 error_krsem: 1268 up_write(&keyring->sem); 1269 kleave(" = %d", ret); 1270 return ret; 1271 } 1272 1273 /* 1274 * Check already instantiated keys aren't going to be a problem. 1275 * 1276 * The caller must have called __key_link_begin(). Don't need to call this for 1277 * keys that were created since __key_link_begin() was called. 1278 */ 1279 int __key_link_check_live_key(struct key *keyring, struct key *key) 1280 { 1281 if (key->type == &key_type_keyring) 1282 /* check that we aren't going to create a cycle by linking one 1283 * keyring to another */ 1284 return keyring_detect_cycle(keyring, key); 1285 return 0; 1286 } 1287 1288 /* 1289 * Link a key into to a keyring. 1290 * 1291 * Must be called with __key_link_begin() having being called. Discards any 1292 * already extant link to matching key if there is one, so that each keyring 1293 * holds at most one link to any given key of a particular type+description 1294 * combination. 1295 */ 1296 void __key_link(struct key *key, struct assoc_array_edit **_edit) 1297 { 1298 __key_get(key); 1299 assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key)); 1300 assoc_array_apply_edit(*_edit); 1301 *_edit = NULL; 1302 } 1303 1304 /* 1305 * Finish linking a key into to a keyring. 1306 * 1307 * Must be called with __key_link_begin() having being called. 1308 */ 1309 void __key_link_end(struct key *keyring, 1310 const struct keyring_index_key *index_key, 1311 struct assoc_array_edit *edit) 1312 __releases(&keyring->sem) 1313 __releases(&keyring_serialise_link_sem) 1314 { 1315 BUG_ON(index_key->type == NULL); 1316 kenter("%d,%s,", keyring->serial, index_key->type->name); 1317 1318 if (index_key->type == &key_type_keyring) 1319 up_write(&keyring_serialise_link_sem); 1320 1321 if (edit) { 1322 if (!edit->dead_leaf) { 1323 key_payload_reserve(keyring, 1324 keyring->datalen - KEYQUOTA_LINK_BYTES); 1325 } 1326 assoc_array_cancel_edit(edit); 1327 } 1328 up_write(&keyring->sem); 1329 } 1330 1331 /* 1332 * Check addition of keys to restricted keyrings. 1333 */ 1334 static int __key_link_check_restriction(struct key *keyring, struct key *key) 1335 { 1336 if (!keyring->restrict_link || !keyring->restrict_link->check) 1337 return 0; 1338 return keyring->restrict_link->check(keyring, key->type, &key->payload, 1339 keyring->restrict_link->key); 1340 } 1341 1342 /** 1343 * key_link - Link a key to a keyring 1344 * @keyring: The keyring to make the link in. 1345 * @key: The key to link to. 1346 * 1347 * Make a link in a keyring to a key, such that the keyring holds a reference 1348 * on that key and the key can potentially be found by searching that keyring. 1349 * 1350 * This function will write-lock the keyring's semaphore and will consume some 1351 * of the user's key data quota to hold the link. 1352 * 1353 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, 1354 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is 1355 * full, -EDQUOT if there is insufficient key data quota remaining to add 1356 * another link or -ENOMEM if there's insufficient memory. 1357 * 1358 * It is assumed that the caller has checked that it is permitted for a link to 1359 * be made (the keyring should have Write permission and the key Link 1360 * permission). 1361 */ 1362 int key_link(struct key *keyring, struct key *key) 1363 { 1364 struct assoc_array_edit *edit; 1365 int ret; 1366 1367 kenter("{%d,%d}", keyring->serial, refcount_read(&keyring->usage)); 1368 1369 key_check(keyring); 1370 key_check(key); 1371 1372 ret = __key_link_begin(keyring, &key->index_key, &edit); 1373 if (ret == 0) { 1374 kdebug("begun {%d,%d}", keyring->serial, refcount_read(&keyring->usage)); 1375 ret = __key_link_check_restriction(keyring, key); 1376 if (ret == 0) 1377 ret = __key_link_check_live_key(keyring, key); 1378 if (ret == 0) 1379 __key_link(key, &edit); 1380 __key_link_end(keyring, &key->index_key, edit); 1381 } 1382 1383 kleave(" = %d {%d,%d}", ret, keyring->serial, refcount_read(&keyring->usage)); 1384 return ret; 1385 } 1386 EXPORT_SYMBOL(key_link); 1387 1388 /** 1389 * key_unlink - Unlink the first link to a key from a keyring. 1390 * @keyring: The keyring to remove the link from. 1391 * @key: The key the link is to. 1392 * 1393 * Remove a link from a keyring to a key. 1394 * 1395 * This function will write-lock the keyring's semaphore. 1396 * 1397 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if 1398 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient 1399 * memory. 1400 * 1401 * It is assumed that the caller has checked that it is permitted for a link to 1402 * be removed (the keyring should have Write permission; no permissions are 1403 * required on the key). 1404 */ 1405 int key_unlink(struct key *keyring, struct key *key) 1406 { 1407 struct assoc_array_edit *edit; 1408 int ret; 1409 1410 key_check(keyring); 1411 key_check(key); 1412 1413 if (keyring->type != &key_type_keyring) 1414 return -ENOTDIR; 1415 1416 down_write(&keyring->sem); 1417 1418 edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops, 1419 &key->index_key); 1420 if (IS_ERR(edit)) { 1421 ret = PTR_ERR(edit); 1422 goto error; 1423 } 1424 ret = -ENOENT; 1425 if (edit == NULL) 1426 goto error; 1427 1428 assoc_array_apply_edit(edit); 1429 key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES); 1430 ret = 0; 1431 1432 error: 1433 up_write(&keyring->sem); 1434 return ret; 1435 } 1436 EXPORT_SYMBOL(key_unlink); 1437 1438 /** 1439 * keyring_clear - Clear a keyring 1440 * @keyring: The keyring to clear. 1441 * 1442 * Clear the contents of the specified keyring. 1443 * 1444 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring. 1445 */ 1446 int keyring_clear(struct key *keyring) 1447 { 1448 struct assoc_array_edit *edit; 1449 int ret; 1450 1451 if (keyring->type != &key_type_keyring) 1452 return -ENOTDIR; 1453 1454 down_write(&keyring->sem); 1455 1456 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops); 1457 if (IS_ERR(edit)) { 1458 ret = PTR_ERR(edit); 1459 } else { 1460 if (edit) 1461 assoc_array_apply_edit(edit); 1462 key_payload_reserve(keyring, 0); 1463 ret = 0; 1464 } 1465 1466 up_write(&keyring->sem); 1467 return ret; 1468 } 1469 EXPORT_SYMBOL(keyring_clear); 1470 1471 /* 1472 * Dispose of the links from a revoked keyring. 1473 * 1474 * This is called with the key sem write-locked. 1475 */ 1476 static void keyring_revoke(struct key *keyring) 1477 { 1478 struct assoc_array_edit *edit; 1479 1480 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops); 1481 if (!IS_ERR(edit)) { 1482 if (edit) 1483 assoc_array_apply_edit(edit); 1484 key_payload_reserve(keyring, 0); 1485 } 1486 } 1487 1488 static bool keyring_gc_select_iterator(void *object, void *iterator_data) 1489 { 1490 struct key *key = keyring_ptr_to_key(object); 1491 time_t *limit = iterator_data; 1492 1493 if (key_is_dead(key, *limit)) 1494 return false; 1495 key_get(key); 1496 return true; 1497 } 1498 1499 static int keyring_gc_check_iterator(const void *object, void *iterator_data) 1500 { 1501 const struct key *key = keyring_ptr_to_key(object); 1502 time_t *limit = iterator_data; 1503 1504 key_check(key); 1505 return key_is_dead(key, *limit); 1506 } 1507 1508 /* 1509 * Garbage collect pointers from a keyring. 1510 * 1511 * Not called with any locks held. The keyring's key struct will not be 1512 * deallocated under us as only our caller may deallocate it. 1513 */ 1514 void keyring_gc(struct key *keyring, time_t limit) 1515 { 1516 int result; 1517 1518 kenter("%x{%s}", keyring->serial, keyring->description ?: ""); 1519 1520 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) | 1521 (1 << KEY_FLAG_REVOKED))) 1522 goto dont_gc; 1523 1524 /* scan the keyring looking for dead keys */ 1525 rcu_read_lock(); 1526 result = assoc_array_iterate(&keyring->keys, 1527 keyring_gc_check_iterator, &limit); 1528 rcu_read_unlock(); 1529 if (result == true) 1530 goto do_gc; 1531 1532 dont_gc: 1533 kleave(" [no gc]"); 1534 return; 1535 1536 do_gc: 1537 down_write(&keyring->sem); 1538 assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops, 1539 keyring_gc_select_iterator, &limit); 1540 up_write(&keyring->sem); 1541 kleave(" [gc]"); 1542 } 1543 1544 /* 1545 * Garbage collect restriction pointers from a keyring. 1546 * 1547 * Keyring restrictions are associated with a key type, and must be cleaned 1548 * up if the key type is unregistered. The restriction is altered to always 1549 * reject additional keys so a keyring cannot be opened up by unregistering 1550 * a key type. 1551 * 1552 * Not called with any keyring locks held. The keyring's key struct will not 1553 * be deallocated under us as only our caller may deallocate it. 1554 * 1555 * The caller is required to hold key_types_sem and dead_type->sem. This is 1556 * fulfilled by key_gc_keytype() holding the locks on behalf of 1557 * key_garbage_collector(), which it invokes on a workqueue. 1558 */ 1559 void keyring_restriction_gc(struct key *keyring, struct key_type *dead_type) 1560 { 1561 struct key_restriction *keyres; 1562 1563 kenter("%x{%s}", keyring->serial, keyring->description ?: ""); 1564 1565 /* 1566 * keyring->restrict_link is only assigned at key allocation time 1567 * or with the key type locked, so the only values that could be 1568 * concurrently assigned to keyring->restrict_link are for key 1569 * types other than dead_type. Given this, it's ok to check 1570 * the key type before acquiring keyring->sem. 1571 */ 1572 if (!dead_type || !keyring->restrict_link || 1573 keyring->restrict_link->keytype != dead_type) { 1574 kleave(" [no restriction gc]"); 1575 return; 1576 } 1577 1578 /* Lock the keyring to ensure that a link is not in progress */ 1579 down_write(&keyring->sem); 1580 1581 keyres = keyring->restrict_link; 1582 1583 keyres->check = restrict_link_reject; 1584 1585 key_put(keyres->key); 1586 keyres->key = NULL; 1587 keyres->keytype = NULL; 1588 1589 up_write(&keyring->sem); 1590 1591 kleave(" [restriction gc]"); 1592 } 1593