1 /* Keyring handling 2 * 3 * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved. 4 * Written by David Howells (dhowells@redhat.com) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/sched.h> 15 #include <linux/slab.h> 16 #include <linux/security.h> 17 #include <linux/seq_file.h> 18 #include <linux/err.h> 19 #include <keys/keyring-type.h> 20 #include <keys/user-type.h> 21 #include <linux/assoc_array_priv.h> 22 #include <linux/uaccess.h> 23 #include "internal.h" 24 25 /* 26 * When plumbing the depths of the key tree, this sets a hard limit 27 * set on how deep we're willing to go. 28 */ 29 #define KEYRING_SEARCH_MAX_DEPTH 6 30 31 /* 32 * We keep all named keyrings in a hash to speed looking them up. 33 */ 34 #define KEYRING_NAME_HASH_SIZE (1 << 5) 35 36 /* 37 * We mark pointers we pass to the associative array with bit 1 set if 38 * they're keyrings and clear otherwise. 39 */ 40 #define KEYRING_PTR_SUBTYPE 0x2UL 41 42 static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x) 43 { 44 return (unsigned long)x & KEYRING_PTR_SUBTYPE; 45 } 46 static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x) 47 { 48 void *object = assoc_array_ptr_to_leaf(x); 49 return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE); 50 } 51 static inline void *keyring_key_to_ptr(struct key *key) 52 { 53 if (key->type == &key_type_keyring) 54 return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE); 55 return key; 56 } 57 58 static struct list_head keyring_name_hash[KEYRING_NAME_HASH_SIZE]; 59 static DEFINE_RWLOCK(keyring_name_lock); 60 61 static inline unsigned keyring_hash(const char *desc) 62 { 63 unsigned bucket = 0; 64 65 for (; *desc; desc++) 66 bucket += (unsigned char)*desc; 67 68 return bucket & (KEYRING_NAME_HASH_SIZE - 1); 69 } 70 71 /* 72 * The keyring key type definition. Keyrings are simply keys of this type and 73 * can be treated as ordinary keys in addition to having their own special 74 * operations. 75 */ 76 static int keyring_instantiate(struct key *keyring, 77 struct key_preparsed_payload *prep); 78 static void keyring_revoke(struct key *keyring); 79 static void keyring_destroy(struct key *keyring); 80 static void keyring_describe(const struct key *keyring, struct seq_file *m); 81 static long keyring_read(const struct key *keyring, 82 char __user *buffer, size_t buflen); 83 84 struct key_type key_type_keyring = { 85 .name = "keyring", 86 .def_datalen = 0, 87 .instantiate = keyring_instantiate, 88 .match = user_match, 89 .revoke = keyring_revoke, 90 .destroy = keyring_destroy, 91 .describe = keyring_describe, 92 .read = keyring_read, 93 }; 94 EXPORT_SYMBOL(key_type_keyring); 95 96 /* 97 * Semaphore to serialise link/link calls to prevent two link calls in parallel 98 * introducing a cycle. 99 */ 100 static DECLARE_RWSEM(keyring_serialise_link_sem); 101 102 /* 103 * Publish the name of a keyring so that it can be found by name (if it has 104 * one). 105 */ 106 static void keyring_publish_name(struct key *keyring) 107 { 108 int bucket; 109 110 if (keyring->description) { 111 bucket = keyring_hash(keyring->description); 112 113 write_lock(&keyring_name_lock); 114 115 if (!keyring_name_hash[bucket].next) 116 INIT_LIST_HEAD(&keyring_name_hash[bucket]); 117 118 list_add_tail(&keyring->type_data.link, 119 &keyring_name_hash[bucket]); 120 121 write_unlock(&keyring_name_lock); 122 } 123 } 124 125 /* 126 * Initialise a keyring. 127 * 128 * Returns 0 on success, -EINVAL if given any data. 129 */ 130 static int keyring_instantiate(struct key *keyring, 131 struct key_preparsed_payload *prep) 132 { 133 int ret; 134 135 ret = -EINVAL; 136 if (prep->datalen == 0) { 137 assoc_array_init(&keyring->keys); 138 /* make the keyring available by name if it has one */ 139 keyring_publish_name(keyring); 140 ret = 0; 141 } 142 143 return ret; 144 } 145 146 /* 147 * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit. Ideally we'd 148 * fold the carry back too, but that requires inline asm. 149 */ 150 static u64 mult_64x32_and_fold(u64 x, u32 y) 151 { 152 u64 hi = (u64)(u32)(x >> 32) * y; 153 u64 lo = (u64)(u32)(x) * y; 154 return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32); 155 } 156 157 /* 158 * Hash a key type and description. 159 */ 160 static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key) 161 { 162 const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP; 163 const unsigned long level_mask = ASSOC_ARRAY_LEVEL_STEP_MASK; 164 const char *description = index_key->description; 165 unsigned long hash, type; 166 u32 piece; 167 u64 acc; 168 int n, desc_len = index_key->desc_len; 169 170 type = (unsigned long)index_key->type; 171 172 acc = mult_64x32_and_fold(type, desc_len + 13); 173 acc = mult_64x32_and_fold(acc, 9207); 174 for (;;) { 175 n = desc_len; 176 if (n <= 0) 177 break; 178 if (n > 4) 179 n = 4; 180 piece = 0; 181 memcpy(&piece, description, n); 182 description += n; 183 desc_len -= n; 184 acc = mult_64x32_and_fold(acc, piece); 185 acc = mult_64x32_and_fold(acc, 9207); 186 } 187 188 /* Fold the hash down to 32 bits if need be. */ 189 hash = acc; 190 if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32) 191 hash ^= acc >> 32; 192 193 /* Squidge all the keyrings into a separate part of the tree to 194 * ordinary keys by making sure the lowest level segment in the hash is 195 * zero for keyrings and non-zero otherwise. 196 */ 197 if (index_key->type != &key_type_keyring && (hash & level_mask) == 0) 198 return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1; 199 if (index_key->type == &key_type_keyring && (hash & level_mask) != 0) 200 return (hash + (hash << level_shift)) & ~level_mask; 201 return hash; 202 } 203 204 /* 205 * Build the next index key chunk. 206 * 207 * On 32-bit systems the index key is laid out as: 208 * 209 * 0 4 5 9... 210 * hash desclen typeptr desc[] 211 * 212 * On 64-bit systems: 213 * 214 * 0 8 9 17... 215 * hash desclen typeptr desc[] 216 * 217 * We return it one word-sized chunk at a time. 218 */ 219 static unsigned long keyring_get_key_chunk(const void *data, int level) 220 { 221 const struct keyring_index_key *index_key = data; 222 unsigned long chunk = 0; 223 long offset = 0; 224 int desc_len = index_key->desc_len, n = sizeof(chunk); 225 226 level /= ASSOC_ARRAY_KEY_CHUNK_SIZE; 227 switch (level) { 228 case 0: 229 return hash_key_type_and_desc(index_key); 230 case 1: 231 return ((unsigned long)index_key->type << 8) | desc_len; 232 case 2: 233 if (desc_len == 0) 234 return (u8)((unsigned long)index_key->type >> 235 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8)); 236 n--; 237 offset = 1; 238 default: 239 offset += sizeof(chunk) - 1; 240 offset += (level - 3) * sizeof(chunk); 241 if (offset >= desc_len) 242 return 0; 243 desc_len -= offset; 244 if (desc_len > n) 245 desc_len = n; 246 offset += desc_len; 247 do { 248 chunk <<= 8; 249 chunk |= ((u8*)index_key->description)[--offset]; 250 } while (--desc_len > 0); 251 252 if (level == 2) { 253 chunk <<= 8; 254 chunk |= (u8)((unsigned long)index_key->type >> 255 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8)); 256 } 257 return chunk; 258 } 259 } 260 261 static unsigned long keyring_get_object_key_chunk(const void *object, int level) 262 { 263 const struct key *key = keyring_ptr_to_key(object); 264 return keyring_get_key_chunk(&key->index_key, level); 265 } 266 267 static bool keyring_compare_object(const void *object, const void *data) 268 { 269 const struct keyring_index_key *index_key = data; 270 const struct key *key = keyring_ptr_to_key(object); 271 272 return key->index_key.type == index_key->type && 273 key->index_key.desc_len == index_key->desc_len && 274 memcmp(key->index_key.description, index_key->description, 275 index_key->desc_len) == 0; 276 } 277 278 /* 279 * Compare the index keys of a pair of objects and determine the bit position 280 * at which they differ - if they differ. 281 */ 282 static int keyring_diff_objects(const void *_a, const void *_b) 283 { 284 const struct key *key_a = keyring_ptr_to_key(_a); 285 const struct key *key_b = keyring_ptr_to_key(_b); 286 const struct keyring_index_key *a = &key_a->index_key; 287 const struct keyring_index_key *b = &key_b->index_key; 288 unsigned long seg_a, seg_b; 289 int level, i; 290 291 level = 0; 292 seg_a = hash_key_type_and_desc(a); 293 seg_b = hash_key_type_and_desc(b); 294 if ((seg_a ^ seg_b) != 0) 295 goto differ; 296 297 /* The number of bits contributed by the hash is controlled by a 298 * constant in the assoc_array headers. Everything else thereafter we 299 * can deal with as being machine word-size dependent. 300 */ 301 level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8; 302 seg_a = a->desc_len; 303 seg_b = b->desc_len; 304 if ((seg_a ^ seg_b) != 0) 305 goto differ; 306 307 /* The next bit may not work on big endian */ 308 level++; 309 seg_a = (unsigned long)a->type; 310 seg_b = (unsigned long)b->type; 311 if ((seg_a ^ seg_b) != 0) 312 goto differ; 313 314 level += sizeof(unsigned long); 315 if (a->desc_len == 0) 316 goto same; 317 318 i = 0; 319 if (((unsigned long)a->description | (unsigned long)b->description) & 320 (sizeof(unsigned long) - 1)) { 321 do { 322 seg_a = *(unsigned long *)(a->description + i); 323 seg_b = *(unsigned long *)(b->description + i); 324 if ((seg_a ^ seg_b) != 0) 325 goto differ_plus_i; 326 i += sizeof(unsigned long); 327 } while (i < (a->desc_len & (sizeof(unsigned long) - 1))); 328 } 329 330 for (; i < a->desc_len; i++) { 331 seg_a = *(unsigned char *)(a->description + i); 332 seg_b = *(unsigned char *)(b->description + i); 333 if ((seg_a ^ seg_b) != 0) 334 goto differ_plus_i; 335 } 336 337 same: 338 return -1; 339 340 differ_plus_i: 341 level += i; 342 differ: 343 i = level * 8 + __ffs(seg_a ^ seg_b); 344 return i; 345 } 346 347 /* 348 * Free an object after stripping the keyring flag off of the pointer. 349 */ 350 static void keyring_free_object(void *object) 351 { 352 key_put(keyring_ptr_to_key(object)); 353 } 354 355 /* 356 * Operations for keyring management by the index-tree routines. 357 */ 358 static const struct assoc_array_ops keyring_assoc_array_ops = { 359 .get_key_chunk = keyring_get_key_chunk, 360 .get_object_key_chunk = keyring_get_object_key_chunk, 361 .compare_object = keyring_compare_object, 362 .diff_objects = keyring_diff_objects, 363 .free_object = keyring_free_object, 364 }; 365 366 /* 367 * Clean up a keyring when it is destroyed. Unpublish its name if it had one 368 * and dispose of its data. 369 * 370 * The garbage collector detects the final key_put(), removes the keyring from 371 * the serial number tree and then does RCU synchronisation before coming here, 372 * so we shouldn't need to worry about code poking around here with the RCU 373 * readlock held by this time. 374 */ 375 static void keyring_destroy(struct key *keyring) 376 { 377 if (keyring->description) { 378 write_lock(&keyring_name_lock); 379 380 if (keyring->type_data.link.next != NULL && 381 !list_empty(&keyring->type_data.link)) 382 list_del(&keyring->type_data.link); 383 384 write_unlock(&keyring_name_lock); 385 } 386 387 assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops); 388 } 389 390 /* 391 * Describe a keyring for /proc. 392 */ 393 static void keyring_describe(const struct key *keyring, struct seq_file *m) 394 { 395 if (keyring->description) 396 seq_puts(m, keyring->description); 397 else 398 seq_puts(m, "[anon]"); 399 400 if (key_is_instantiated(keyring)) { 401 if (keyring->keys.nr_leaves_on_tree != 0) 402 seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree); 403 else 404 seq_puts(m, ": empty"); 405 } 406 } 407 408 struct keyring_read_iterator_context { 409 size_t qty; 410 size_t count; 411 key_serial_t __user *buffer; 412 }; 413 414 static int keyring_read_iterator(const void *object, void *data) 415 { 416 struct keyring_read_iterator_context *ctx = data; 417 const struct key *key = keyring_ptr_to_key(object); 418 int ret; 419 420 kenter("{%s,%d},,{%zu/%zu}", 421 key->type->name, key->serial, ctx->count, ctx->qty); 422 423 if (ctx->count >= ctx->qty) 424 return 1; 425 426 ret = put_user(key->serial, ctx->buffer); 427 if (ret < 0) 428 return ret; 429 ctx->buffer++; 430 ctx->count += sizeof(key->serial); 431 return 0; 432 } 433 434 /* 435 * Read a list of key IDs from the keyring's contents in binary form 436 * 437 * The keyring's semaphore is read-locked by the caller. This prevents someone 438 * from modifying it under us - which could cause us to read key IDs multiple 439 * times. 440 */ 441 static long keyring_read(const struct key *keyring, 442 char __user *buffer, size_t buflen) 443 { 444 struct keyring_read_iterator_context ctx; 445 unsigned long nr_keys; 446 int ret; 447 448 kenter("{%d},,%zu", key_serial(keyring), buflen); 449 450 if (buflen & (sizeof(key_serial_t) - 1)) 451 return -EINVAL; 452 453 nr_keys = keyring->keys.nr_leaves_on_tree; 454 if (nr_keys == 0) 455 return 0; 456 457 /* Calculate how much data we could return */ 458 ctx.qty = nr_keys * sizeof(key_serial_t); 459 460 if (!buffer || !buflen) 461 return ctx.qty; 462 463 if (buflen > ctx.qty) 464 ctx.qty = buflen; 465 466 /* Copy the IDs of the subscribed keys into the buffer */ 467 ctx.buffer = (key_serial_t __user *)buffer; 468 ctx.count = 0; 469 ret = assoc_array_iterate(&keyring->keys, keyring_read_iterator, &ctx); 470 if (ret < 0) { 471 kleave(" = %d [iterate]", ret); 472 return ret; 473 } 474 475 kleave(" = %zu [ok]", ctx.count); 476 return ctx.count; 477 } 478 479 /* 480 * Allocate a keyring and link into the destination keyring. 481 */ 482 struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid, 483 const struct cred *cred, key_perm_t perm, 484 unsigned long flags, struct key *dest) 485 { 486 struct key *keyring; 487 int ret; 488 489 keyring = key_alloc(&key_type_keyring, description, 490 uid, gid, cred, perm, flags); 491 if (!IS_ERR(keyring)) { 492 ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL); 493 if (ret < 0) { 494 key_put(keyring); 495 keyring = ERR_PTR(ret); 496 } 497 } 498 499 return keyring; 500 } 501 EXPORT_SYMBOL(keyring_alloc); 502 503 /* 504 * Iteration function to consider each key found. 505 */ 506 static int keyring_search_iterator(const void *object, void *iterator_data) 507 { 508 struct keyring_search_context *ctx = iterator_data; 509 const struct key *key = keyring_ptr_to_key(object); 510 unsigned long kflags = key->flags; 511 512 kenter("{%d}", key->serial); 513 514 /* ignore keys not of this type */ 515 if (key->type != ctx->index_key.type) { 516 kleave(" = 0 [!type]"); 517 return 0; 518 } 519 520 /* skip invalidated, revoked and expired keys */ 521 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) { 522 if (kflags & ((1 << KEY_FLAG_INVALIDATED) | 523 (1 << KEY_FLAG_REVOKED))) { 524 ctx->result = ERR_PTR(-EKEYREVOKED); 525 kleave(" = %d [invrev]", ctx->skipped_ret); 526 goto skipped; 527 } 528 529 if (key->expiry && ctx->now.tv_sec >= key->expiry) { 530 ctx->result = ERR_PTR(-EKEYEXPIRED); 531 kleave(" = %d [expire]", ctx->skipped_ret); 532 goto skipped; 533 } 534 } 535 536 /* keys that don't match */ 537 if (!ctx->match(key, ctx->match_data)) { 538 kleave(" = 0 [!match]"); 539 return 0; 540 } 541 542 /* key must have search permissions */ 543 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) && 544 key_task_permission(make_key_ref(key, ctx->possessed), 545 ctx->cred, KEY_SEARCH) < 0) { 546 ctx->result = ERR_PTR(-EACCES); 547 kleave(" = %d [!perm]", ctx->skipped_ret); 548 goto skipped; 549 } 550 551 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) { 552 /* we set a different error code if we pass a negative key */ 553 if (kflags & (1 << KEY_FLAG_NEGATIVE)) { 554 smp_rmb(); 555 ctx->result = ERR_PTR(key->type_data.reject_error); 556 kleave(" = %d [neg]", ctx->skipped_ret); 557 goto skipped; 558 } 559 } 560 561 /* Found */ 562 ctx->result = make_key_ref(key, ctx->possessed); 563 kleave(" = 1 [found]"); 564 return 1; 565 566 skipped: 567 return ctx->skipped_ret; 568 } 569 570 /* 571 * Search inside a keyring for a key. We can search by walking to it 572 * directly based on its index-key or we can iterate over the entire 573 * tree looking for it, based on the match function. 574 */ 575 static int search_keyring(struct key *keyring, struct keyring_search_context *ctx) 576 { 577 if ((ctx->flags & KEYRING_SEARCH_LOOKUP_TYPE) == 578 KEYRING_SEARCH_LOOKUP_DIRECT) { 579 const void *object; 580 581 object = assoc_array_find(&keyring->keys, 582 &keyring_assoc_array_ops, 583 &ctx->index_key); 584 return object ? ctx->iterator(object, ctx) : 0; 585 } 586 return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx); 587 } 588 589 /* 590 * Search a tree of keyrings that point to other keyrings up to the maximum 591 * depth. 592 */ 593 static bool search_nested_keyrings(struct key *keyring, 594 struct keyring_search_context *ctx) 595 { 596 struct { 597 struct key *keyring; 598 struct assoc_array_node *node; 599 int slot; 600 } stack[KEYRING_SEARCH_MAX_DEPTH]; 601 602 struct assoc_array_shortcut *shortcut; 603 struct assoc_array_node *node; 604 struct assoc_array_ptr *ptr; 605 struct key *key; 606 int sp = 0, slot; 607 608 kenter("{%d},{%s,%s}", 609 keyring->serial, 610 ctx->index_key.type->name, 611 ctx->index_key.description); 612 613 if (ctx->index_key.description) 614 ctx->index_key.desc_len = strlen(ctx->index_key.description); 615 616 /* Check to see if this top-level keyring is what we are looking for 617 * and whether it is valid or not. 618 */ 619 if (ctx->flags & KEYRING_SEARCH_LOOKUP_ITERATE || 620 keyring_compare_object(keyring, &ctx->index_key)) { 621 ctx->skipped_ret = 2; 622 ctx->flags |= KEYRING_SEARCH_DO_STATE_CHECK; 623 switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) { 624 case 1: 625 goto found; 626 case 2: 627 return false; 628 default: 629 break; 630 } 631 } 632 633 ctx->skipped_ret = 0; 634 if (ctx->flags & KEYRING_SEARCH_NO_STATE_CHECK) 635 ctx->flags &= ~KEYRING_SEARCH_DO_STATE_CHECK; 636 637 /* Start processing a new keyring */ 638 descend_to_keyring: 639 kdebug("descend to %d", keyring->serial); 640 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) | 641 (1 << KEY_FLAG_REVOKED))) 642 goto not_this_keyring; 643 644 /* Search through the keys in this keyring before its searching its 645 * subtrees. 646 */ 647 if (search_keyring(keyring, ctx)) 648 goto found; 649 650 /* Then manually iterate through the keyrings nested in this one. 651 * 652 * Start from the root node of the index tree. Because of the way the 653 * hash function has been set up, keyrings cluster on the leftmost 654 * branch of the root node (root slot 0) or in the root node itself. 655 * Non-keyrings avoid the leftmost branch of the root entirely (root 656 * slots 1-15). 657 */ 658 ptr = ACCESS_ONCE(keyring->keys.root); 659 if (!ptr) 660 goto not_this_keyring; 661 662 if (assoc_array_ptr_is_shortcut(ptr)) { 663 /* If the root is a shortcut, either the keyring only contains 664 * keyring pointers (everything clusters behind root slot 0) or 665 * doesn't contain any keyring pointers. 666 */ 667 shortcut = assoc_array_ptr_to_shortcut(ptr); 668 smp_read_barrier_depends(); 669 if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0) 670 goto not_this_keyring; 671 672 ptr = ACCESS_ONCE(shortcut->next_node); 673 node = assoc_array_ptr_to_node(ptr); 674 goto begin_node; 675 } 676 677 node = assoc_array_ptr_to_node(ptr); 678 smp_read_barrier_depends(); 679 680 ptr = node->slots[0]; 681 if (!assoc_array_ptr_is_meta(ptr)) 682 goto begin_node; 683 684 descend_to_node: 685 /* Descend to a more distal node in this keyring's content tree and go 686 * through that. 687 */ 688 kdebug("descend"); 689 if (assoc_array_ptr_is_shortcut(ptr)) { 690 shortcut = assoc_array_ptr_to_shortcut(ptr); 691 smp_read_barrier_depends(); 692 ptr = ACCESS_ONCE(shortcut->next_node); 693 BUG_ON(!assoc_array_ptr_is_node(ptr)); 694 node = assoc_array_ptr_to_node(ptr); 695 } 696 697 begin_node: 698 kdebug("begin_node"); 699 smp_read_barrier_depends(); 700 slot = 0; 701 ascend_to_node: 702 /* Go through the slots in a node */ 703 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) { 704 ptr = ACCESS_ONCE(node->slots[slot]); 705 706 if (assoc_array_ptr_is_meta(ptr) && node->back_pointer) 707 goto descend_to_node; 708 709 if (!keyring_ptr_is_keyring(ptr)) 710 continue; 711 712 key = keyring_ptr_to_key(ptr); 713 714 if (sp >= KEYRING_SEARCH_MAX_DEPTH) { 715 if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) { 716 ctx->result = ERR_PTR(-ELOOP); 717 return false; 718 } 719 goto not_this_keyring; 720 } 721 722 /* Search a nested keyring */ 723 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) && 724 key_task_permission(make_key_ref(key, ctx->possessed), 725 ctx->cred, KEY_SEARCH) < 0) 726 continue; 727 728 /* stack the current position */ 729 stack[sp].keyring = keyring; 730 stack[sp].node = node; 731 stack[sp].slot = slot; 732 sp++; 733 734 /* begin again with the new keyring */ 735 keyring = key; 736 goto descend_to_keyring; 737 } 738 739 /* We've dealt with all the slots in the current node, so now we need 740 * to ascend to the parent and continue processing there. 741 */ 742 ptr = ACCESS_ONCE(node->back_pointer); 743 slot = node->parent_slot; 744 745 if (ptr && assoc_array_ptr_is_shortcut(ptr)) { 746 shortcut = assoc_array_ptr_to_shortcut(ptr); 747 smp_read_barrier_depends(); 748 ptr = ACCESS_ONCE(shortcut->back_pointer); 749 slot = shortcut->parent_slot; 750 } 751 if (!ptr) 752 goto not_this_keyring; 753 node = assoc_array_ptr_to_node(ptr); 754 smp_read_barrier_depends(); 755 slot++; 756 757 /* If we've ascended to the root (zero backpointer), we must have just 758 * finished processing the leftmost branch rather than the root slots - 759 * so there can't be any more keyrings for us to find. 760 */ 761 if (node->back_pointer) { 762 kdebug("ascend %d", slot); 763 goto ascend_to_node; 764 } 765 766 /* The keyring we're looking at was disqualified or didn't contain a 767 * matching key. 768 */ 769 not_this_keyring: 770 kdebug("not_this_keyring %d", sp); 771 if (sp <= 0) { 772 kleave(" = false"); 773 return false; 774 } 775 776 /* Resume the processing of a keyring higher up in the tree */ 777 sp--; 778 keyring = stack[sp].keyring; 779 node = stack[sp].node; 780 slot = stack[sp].slot + 1; 781 kdebug("ascend to %d [%d]", keyring->serial, slot); 782 goto ascend_to_node; 783 784 /* We found a viable match */ 785 found: 786 key = key_ref_to_ptr(ctx->result); 787 key_check(key); 788 if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) { 789 key->last_used_at = ctx->now.tv_sec; 790 keyring->last_used_at = ctx->now.tv_sec; 791 while (sp > 0) 792 stack[--sp].keyring->last_used_at = ctx->now.tv_sec; 793 } 794 kleave(" = true"); 795 return true; 796 } 797 798 /** 799 * keyring_search_aux - Search a keyring tree for a key matching some criteria 800 * @keyring_ref: A pointer to the keyring with possession indicator. 801 * @ctx: The keyring search context. 802 * 803 * Search the supplied keyring tree for a key that matches the criteria given. 804 * The root keyring and any linked keyrings must grant Search permission to the 805 * caller to be searchable and keys can only be found if they too grant Search 806 * to the caller. The possession flag on the root keyring pointer controls use 807 * of the possessor bits in permissions checking of the entire tree. In 808 * addition, the LSM gets to forbid keyring searches and key matches. 809 * 810 * The search is performed as a breadth-then-depth search up to the prescribed 811 * limit (KEYRING_SEARCH_MAX_DEPTH). 812 * 813 * Keys are matched to the type provided and are then filtered by the match 814 * function, which is given the description to use in any way it sees fit. The 815 * match function may use any attributes of a key that it wishes to to 816 * determine the match. Normally the match function from the key type would be 817 * used. 818 * 819 * RCU can be used to prevent the keyring key lists from disappearing without 820 * the need to take lots of locks. 821 * 822 * Returns a pointer to the found key and increments the key usage count if 823 * successful; -EAGAIN if no matching keys were found, or if expired or revoked 824 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the 825 * specified keyring wasn't a keyring. 826 * 827 * In the case of a successful return, the possession attribute from 828 * @keyring_ref is propagated to the returned key reference. 829 */ 830 key_ref_t keyring_search_aux(key_ref_t keyring_ref, 831 struct keyring_search_context *ctx) 832 { 833 struct key *keyring; 834 long err; 835 836 ctx->iterator = keyring_search_iterator; 837 ctx->possessed = is_key_possessed(keyring_ref); 838 ctx->result = ERR_PTR(-EAGAIN); 839 840 keyring = key_ref_to_ptr(keyring_ref); 841 key_check(keyring); 842 843 if (keyring->type != &key_type_keyring) 844 return ERR_PTR(-ENOTDIR); 845 846 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) { 847 err = key_task_permission(keyring_ref, ctx->cred, KEY_SEARCH); 848 if (err < 0) 849 return ERR_PTR(err); 850 } 851 852 rcu_read_lock(); 853 ctx->now = current_kernel_time(); 854 if (search_nested_keyrings(keyring, ctx)) 855 __key_get(key_ref_to_ptr(ctx->result)); 856 rcu_read_unlock(); 857 return ctx->result; 858 } 859 860 /** 861 * keyring_search - Search the supplied keyring tree for a matching key 862 * @keyring: The root of the keyring tree to be searched. 863 * @type: The type of keyring we want to find. 864 * @description: The name of the keyring we want to find. 865 * 866 * As keyring_search_aux() above, but using the current task's credentials and 867 * type's default matching function and preferred search method. 868 */ 869 key_ref_t keyring_search(key_ref_t keyring, 870 struct key_type *type, 871 const char *description) 872 { 873 struct keyring_search_context ctx = { 874 .index_key.type = type, 875 .index_key.description = description, 876 .cred = current_cred(), 877 .match = type->match, 878 .match_data = description, 879 .flags = (type->def_lookup_type | 880 KEYRING_SEARCH_DO_STATE_CHECK), 881 }; 882 883 if (!ctx.match) 884 return ERR_PTR(-ENOKEY); 885 886 return keyring_search_aux(keyring, &ctx); 887 } 888 EXPORT_SYMBOL(keyring_search); 889 890 /* 891 * Search the given keyring for a key that might be updated. 892 * 893 * The caller must guarantee that the keyring is a keyring and that the 894 * permission is granted to modify the keyring as no check is made here. The 895 * caller must also hold a lock on the keyring semaphore. 896 * 897 * Returns a pointer to the found key with usage count incremented if 898 * successful and returns NULL if not found. Revoked and invalidated keys are 899 * skipped over. 900 * 901 * If successful, the possession indicator is propagated from the keyring ref 902 * to the returned key reference. 903 */ 904 key_ref_t find_key_to_update(key_ref_t keyring_ref, 905 const struct keyring_index_key *index_key) 906 { 907 struct key *keyring, *key; 908 const void *object; 909 910 keyring = key_ref_to_ptr(keyring_ref); 911 912 kenter("{%d},{%s,%s}", 913 keyring->serial, index_key->type->name, index_key->description); 914 915 object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops, 916 index_key); 917 918 if (object) 919 goto found; 920 921 kleave(" = NULL"); 922 return NULL; 923 924 found: 925 key = keyring_ptr_to_key(object); 926 if (key->flags & ((1 << KEY_FLAG_INVALIDATED) | 927 (1 << KEY_FLAG_REVOKED))) { 928 kleave(" = NULL [x]"); 929 return NULL; 930 } 931 __key_get(key); 932 kleave(" = {%d}", key->serial); 933 return make_key_ref(key, is_key_possessed(keyring_ref)); 934 } 935 936 /* 937 * Find a keyring with the specified name. 938 * 939 * All named keyrings in the current user namespace are searched, provided they 940 * grant Search permission directly to the caller (unless this check is 941 * skipped). Keyrings whose usage points have reached zero or who have been 942 * revoked are skipped. 943 * 944 * Returns a pointer to the keyring with the keyring's refcount having being 945 * incremented on success. -ENOKEY is returned if a key could not be found. 946 */ 947 struct key *find_keyring_by_name(const char *name, bool skip_perm_check) 948 { 949 struct key *keyring; 950 int bucket; 951 952 if (!name) 953 return ERR_PTR(-EINVAL); 954 955 bucket = keyring_hash(name); 956 957 read_lock(&keyring_name_lock); 958 959 if (keyring_name_hash[bucket].next) { 960 /* search this hash bucket for a keyring with a matching name 961 * that's readable and that hasn't been revoked */ 962 list_for_each_entry(keyring, 963 &keyring_name_hash[bucket], 964 type_data.link 965 ) { 966 if (!kuid_has_mapping(current_user_ns(), keyring->user->uid)) 967 continue; 968 969 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags)) 970 continue; 971 972 if (strcmp(keyring->description, name) != 0) 973 continue; 974 975 if (!skip_perm_check && 976 key_permission(make_key_ref(keyring, 0), 977 KEY_SEARCH) < 0) 978 continue; 979 980 /* we've got a match but we might end up racing with 981 * key_cleanup() if the keyring is currently 'dead' 982 * (ie. it has a zero usage count) */ 983 if (!atomic_inc_not_zero(&keyring->usage)) 984 continue; 985 keyring->last_used_at = current_kernel_time().tv_sec; 986 goto out; 987 } 988 } 989 990 keyring = ERR_PTR(-ENOKEY); 991 out: 992 read_unlock(&keyring_name_lock); 993 return keyring; 994 } 995 996 static int keyring_detect_cycle_iterator(const void *object, 997 void *iterator_data) 998 { 999 struct keyring_search_context *ctx = iterator_data; 1000 const struct key *key = keyring_ptr_to_key(object); 1001 1002 kenter("{%d}", key->serial); 1003 1004 BUG_ON(key != ctx->match_data); 1005 ctx->result = ERR_PTR(-EDEADLK); 1006 return 1; 1007 } 1008 1009 /* 1010 * See if a cycle will will be created by inserting acyclic tree B in acyclic 1011 * tree A at the topmost level (ie: as a direct child of A). 1012 * 1013 * Since we are adding B to A at the top level, checking for cycles should just 1014 * be a matter of seeing if node A is somewhere in tree B. 1015 */ 1016 static int keyring_detect_cycle(struct key *A, struct key *B) 1017 { 1018 struct keyring_search_context ctx = { 1019 .index_key = A->index_key, 1020 .match_data = A, 1021 .iterator = keyring_detect_cycle_iterator, 1022 .flags = (KEYRING_SEARCH_LOOKUP_DIRECT | 1023 KEYRING_SEARCH_NO_STATE_CHECK | 1024 KEYRING_SEARCH_NO_UPDATE_TIME | 1025 KEYRING_SEARCH_NO_CHECK_PERM | 1026 KEYRING_SEARCH_DETECT_TOO_DEEP), 1027 }; 1028 1029 rcu_read_lock(); 1030 search_nested_keyrings(B, &ctx); 1031 rcu_read_unlock(); 1032 return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result); 1033 } 1034 1035 /* 1036 * Preallocate memory so that a key can be linked into to a keyring. 1037 */ 1038 int __key_link_begin(struct key *keyring, 1039 const struct keyring_index_key *index_key, 1040 struct assoc_array_edit **_edit) 1041 __acquires(&keyring->sem) 1042 __acquires(&keyring_serialise_link_sem) 1043 { 1044 struct assoc_array_edit *edit; 1045 int ret; 1046 1047 kenter("%d,%s,%s,", 1048 keyring->serial, index_key->type->name, index_key->description); 1049 1050 BUG_ON(index_key->desc_len == 0); 1051 1052 if (keyring->type != &key_type_keyring) 1053 return -ENOTDIR; 1054 1055 down_write(&keyring->sem); 1056 1057 ret = -EKEYREVOKED; 1058 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags)) 1059 goto error_krsem; 1060 1061 /* serialise link/link calls to prevent parallel calls causing a cycle 1062 * when linking two keyring in opposite orders */ 1063 if (index_key->type == &key_type_keyring) 1064 down_write(&keyring_serialise_link_sem); 1065 1066 /* Create an edit script that will insert/replace the key in the 1067 * keyring tree. 1068 */ 1069 edit = assoc_array_insert(&keyring->keys, 1070 &keyring_assoc_array_ops, 1071 index_key, 1072 NULL); 1073 if (IS_ERR(edit)) { 1074 ret = PTR_ERR(edit); 1075 goto error_sem; 1076 } 1077 1078 /* If we're not replacing a link in-place then we're going to need some 1079 * extra quota. 1080 */ 1081 if (!edit->dead_leaf) { 1082 ret = key_payload_reserve(keyring, 1083 keyring->datalen + KEYQUOTA_LINK_BYTES); 1084 if (ret < 0) 1085 goto error_cancel; 1086 } 1087 1088 *_edit = edit; 1089 kleave(" = 0"); 1090 return 0; 1091 1092 error_cancel: 1093 assoc_array_cancel_edit(edit); 1094 error_sem: 1095 if (index_key->type == &key_type_keyring) 1096 up_write(&keyring_serialise_link_sem); 1097 error_krsem: 1098 up_write(&keyring->sem); 1099 kleave(" = %d", ret); 1100 return ret; 1101 } 1102 1103 /* 1104 * Check already instantiated keys aren't going to be a problem. 1105 * 1106 * The caller must have called __key_link_begin(). Don't need to call this for 1107 * keys that were created since __key_link_begin() was called. 1108 */ 1109 int __key_link_check_live_key(struct key *keyring, struct key *key) 1110 { 1111 if (key->type == &key_type_keyring) 1112 /* check that we aren't going to create a cycle by linking one 1113 * keyring to another */ 1114 return keyring_detect_cycle(keyring, key); 1115 return 0; 1116 } 1117 1118 /* 1119 * Link a key into to a keyring. 1120 * 1121 * Must be called with __key_link_begin() having being called. Discards any 1122 * already extant link to matching key if there is one, so that each keyring 1123 * holds at most one link to any given key of a particular type+description 1124 * combination. 1125 */ 1126 void __key_link(struct key *key, struct assoc_array_edit **_edit) 1127 { 1128 __key_get(key); 1129 assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key)); 1130 assoc_array_apply_edit(*_edit); 1131 *_edit = NULL; 1132 } 1133 1134 /* 1135 * Finish linking a key into to a keyring. 1136 * 1137 * Must be called with __key_link_begin() having being called. 1138 */ 1139 void __key_link_end(struct key *keyring, 1140 const struct keyring_index_key *index_key, 1141 struct assoc_array_edit *edit) 1142 __releases(&keyring->sem) 1143 __releases(&keyring_serialise_link_sem) 1144 { 1145 BUG_ON(index_key->type == NULL); 1146 kenter("%d,%s,", keyring->serial, index_key->type->name); 1147 1148 if (index_key->type == &key_type_keyring) 1149 up_write(&keyring_serialise_link_sem); 1150 1151 if (edit && !edit->dead_leaf) { 1152 key_payload_reserve(keyring, 1153 keyring->datalen - KEYQUOTA_LINK_BYTES); 1154 assoc_array_cancel_edit(edit); 1155 } 1156 up_write(&keyring->sem); 1157 } 1158 1159 /** 1160 * key_link - Link a key to a keyring 1161 * @keyring: The keyring to make the link in. 1162 * @key: The key to link to. 1163 * 1164 * Make a link in a keyring to a key, such that the keyring holds a reference 1165 * on that key and the key can potentially be found by searching that keyring. 1166 * 1167 * This function will write-lock the keyring's semaphore and will consume some 1168 * of the user's key data quota to hold the link. 1169 * 1170 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, 1171 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is 1172 * full, -EDQUOT if there is insufficient key data quota remaining to add 1173 * another link or -ENOMEM if there's insufficient memory. 1174 * 1175 * It is assumed that the caller has checked that it is permitted for a link to 1176 * be made (the keyring should have Write permission and the key Link 1177 * permission). 1178 */ 1179 int key_link(struct key *keyring, struct key *key) 1180 { 1181 struct assoc_array_edit *edit; 1182 int ret; 1183 1184 kenter("{%d,%d}", keyring->serial, atomic_read(&keyring->usage)); 1185 1186 key_check(keyring); 1187 key_check(key); 1188 1189 if (test_bit(KEY_FLAG_TRUSTED_ONLY, &keyring->flags) && 1190 !test_bit(KEY_FLAG_TRUSTED, &key->flags)) 1191 return -EPERM; 1192 1193 ret = __key_link_begin(keyring, &key->index_key, &edit); 1194 if (ret == 0) { 1195 kdebug("begun {%d,%d}", keyring->serial, atomic_read(&keyring->usage)); 1196 ret = __key_link_check_live_key(keyring, key); 1197 if (ret == 0) 1198 __key_link(key, &edit); 1199 __key_link_end(keyring, &key->index_key, edit); 1200 } 1201 1202 kleave(" = %d {%d,%d}", ret, keyring->serial, atomic_read(&keyring->usage)); 1203 return ret; 1204 } 1205 EXPORT_SYMBOL(key_link); 1206 1207 /** 1208 * key_unlink - Unlink the first link to a key from a keyring. 1209 * @keyring: The keyring to remove the link from. 1210 * @key: The key the link is to. 1211 * 1212 * Remove a link from a keyring to a key. 1213 * 1214 * This function will write-lock the keyring's semaphore. 1215 * 1216 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if 1217 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient 1218 * memory. 1219 * 1220 * It is assumed that the caller has checked that it is permitted for a link to 1221 * be removed (the keyring should have Write permission; no permissions are 1222 * required on the key). 1223 */ 1224 int key_unlink(struct key *keyring, struct key *key) 1225 { 1226 struct assoc_array_edit *edit; 1227 int ret; 1228 1229 key_check(keyring); 1230 key_check(key); 1231 1232 if (keyring->type != &key_type_keyring) 1233 return -ENOTDIR; 1234 1235 down_write(&keyring->sem); 1236 1237 edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops, 1238 &key->index_key); 1239 if (IS_ERR(edit)) { 1240 ret = PTR_ERR(edit); 1241 goto error; 1242 } 1243 ret = -ENOENT; 1244 if (edit == NULL) 1245 goto error; 1246 1247 assoc_array_apply_edit(edit); 1248 key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES); 1249 ret = 0; 1250 1251 error: 1252 up_write(&keyring->sem); 1253 return ret; 1254 } 1255 EXPORT_SYMBOL(key_unlink); 1256 1257 /** 1258 * keyring_clear - Clear a keyring 1259 * @keyring: The keyring to clear. 1260 * 1261 * Clear the contents of the specified keyring. 1262 * 1263 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring. 1264 */ 1265 int keyring_clear(struct key *keyring) 1266 { 1267 struct assoc_array_edit *edit; 1268 int ret; 1269 1270 if (keyring->type != &key_type_keyring) 1271 return -ENOTDIR; 1272 1273 down_write(&keyring->sem); 1274 1275 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops); 1276 if (IS_ERR(edit)) { 1277 ret = PTR_ERR(edit); 1278 } else { 1279 if (edit) 1280 assoc_array_apply_edit(edit); 1281 key_payload_reserve(keyring, 0); 1282 ret = 0; 1283 } 1284 1285 up_write(&keyring->sem); 1286 return ret; 1287 } 1288 EXPORT_SYMBOL(keyring_clear); 1289 1290 /* 1291 * Dispose of the links from a revoked keyring. 1292 * 1293 * This is called with the key sem write-locked. 1294 */ 1295 static void keyring_revoke(struct key *keyring) 1296 { 1297 struct assoc_array_edit *edit; 1298 1299 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops); 1300 if (!IS_ERR(edit)) { 1301 if (edit) 1302 assoc_array_apply_edit(edit); 1303 key_payload_reserve(keyring, 0); 1304 } 1305 } 1306 1307 static bool keyring_gc_select_iterator(void *object, void *iterator_data) 1308 { 1309 struct key *key = keyring_ptr_to_key(object); 1310 time_t *limit = iterator_data; 1311 1312 if (key_is_dead(key, *limit)) 1313 return false; 1314 key_get(key); 1315 return true; 1316 } 1317 1318 static int keyring_gc_check_iterator(const void *object, void *iterator_data) 1319 { 1320 const struct key *key = keyring_ptr_to_key(object); 1321 time_t *limit = iterator_data; 1322 1323 key_check(key); 1324 return key_is_dead(key, *limit); 1325 } 1326 1327 /* 1328 * Garbage collect pointers from a keyring. 1329 * 1330 * Not called with any locks held. The keyring's key struct will not be 1331 * deallocated under us as only our caller may deallocate it. 1332 */ 1333 void keyring_gc(struct key *keyring, time_t limit) 1334 { 1335 int result; 1336 1337 kenter("%x{%s}", keyring->serial, keyring->description ?: ""); 1338 1339 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) | 1340 (1 << KEY_FLAG_REVOKED))) 1341 goto dont_gc; 1342 1343 /* scan the keyring looking for dead keys */ 1344 rcu_read_lock(); 1345 result = assoc_array_iterate(&keyring->keys, 1346 keyring_gc_check_iterator, &limit); 1347 rcu_read_unlock(); 1348 if (result == true) 1349 goto do_gc; 1350 1351 dont_gc: 1352 kleave(" [no gc]"); 1353 return; 1354 1355 do_gc: 1356 down_write(&keyring->sem); 1357 assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops, 1358 keyring_gc_select_iterator, &limit); 1359 up_write(&keyring->sem); 1360 kleave(" [gc]"); 1361 } 1362