xref: /openbmc/linux/security/keys/keyring.c (revision 79f08d9e)
1 /* Keyring handling
2  *
3  * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/seq_file.h>
18 #include <linux/err.h>
19 #include <keys/keyring-type.h>
20 #include <keys/user-type.h>
21 #include <linux/assoc_array_priv.h>
22 #include <linux/uaccess.h>
23 #include "internal.h"
24 
25 /*
26  * When plumbing the depths of the key tree, this sets a hard limit
27  * set on how deep we're willing to go.
28  */
29 #define KEYRING_SEARCH_MAX_DEPTH 6
30 
31 /*
32  * We keep all named keyrings in a hash to speed looking them up.
33  */
34 #define KEYRING_NAME_HASH_SIZE	(1 << 5)
35 
36 /*
37  * We mark pointers we pass to the associative array with bit 1 set if
38  * they're keyrings and clear otherwise.
39  */
40 #define KEYRING_PTR_SUBTYPE	0x2UL
41 
42 static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
43 {
44 	return (unsigned long)x & KEYRING_PTR_SUBTYPE;
45 }
46 static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
47 {
48 	void *object = assoc_array_ptr_to_leaf(x);
49 	return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
50 }
51 static inline void *keyring_key_to_ptr(struct key *key)
52 {
53 	if (key->type == &key_type_keyring)
54 		return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
55 	return key;
56 }
57 
58 static struct list_head	keyring_name_hash[KEYRING_NAME_HASH_SIZE];
59 static DEFINE_RWLOCK(keyring_name_lock);
60 
61 static inline unsigned keyring_hash(const char *desc)
62 {
63 	unsigned bucket = 0;
64 
65 	for (; *desc; desc++)
66 		bucket += (unsigned char)*desc;
67 
68 	return bucket & (KEYRING_NAME_HASH_SIZE - 1);
69 }
70 
71 /*
72  * The keyring key type definition.  Keyrings are simply keys of this type and
73  * can be treated as ordinary keys in addition to having their own special
74  * operations.
75  */
76 static int keyring_instantiate(struct key *keyring,
77 			       struct key_preparsed_payload *prep);
78 static void keyring_revoke(struct key *keyring);
79 static void keyring_destroy(struct key *keyring);
80 static void keyring_describe(const struct key *keyring, struct seq_file *m);
81 static long keyring_read(const struct key *keyring,
82 			 char __user *buffer, size_t buflen);
83 
84 struct key_type key_type_keyring = {
85 	.name		= "keyring",
86 	.def_datalen	= 0,
87 	.instantiate	= keyring_instantiate,
88 	.match		= user_match,
89 	.revoke		= keyring_revoke,
90 	.destroy	= keyring_destroy,
91 	.describe	= keyring_describe,
92 	.read		= keyring_read,
93 };
94 EXPORT_SYMBOL(key_type_keyring);
95 
96 /*
97  * Semaphore to serialise link/link calls to prevent two link calls in parallel
98  * introducing a cycle.
99  */
100 static DECLARE_RWSEM(keyring_serialise_link_sem);
101 
102 /*
103  * Publish the name of a keyring so that it can be found by name (if it has
104  * one).
105  */
106 static void keyring_publish_name(struct key *keyring)
107 {
108 	int bucket;
109 
110 	if (keyring->description) {
111 		bucket = keyring_hash(keyring->description);
112 
113 		write_lock(&keyring_name_lock);
114 
115 		if (!keyring_name_hash[bucket].next)
116 			INIT_LIST_HEAD(&keyring_name_hash[bucket]);
117 
118 		list_add_tail(&keyring->type_data.link,
119 			      &keyring_name_hash[bucket]);
120 
121 		write_unlock(&keyring_name_lock);
122 	}
123 }
124 
125 /*
126  * Initialise a keyring.
127  *
128  * Returns 0 on success, -EINVAL if given any data.
129  */
130 static int keyring_instantiate(struct key *keyring,
131 			       struct key_preparsed_payload *prep)
132 {
133 	int ret;
134 
135 	ret = -EINVAL;
136 	if (prep->datalen == 0) {
137 		assoc_array_init(&keyring->keys);
138 		/* make the keyring available by name if it has one */
139 		keyring_publish_name(keyring);
140 		ret = 0;
141 	}
142 
143 	return ret;
144 }
145 
146 /*
147  * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit.  Ideally we'd
148  * fold the carry back too, but that requires inline asm.
149  */
150 static u64 mult_64x32_and_fold(u64 x, u32 y)
151 {
152 	u64 hi = (u64)(u32)(x >> 32) * y;
153 	u64 lo = (u64)(u32)(x) * y;
154 	return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
155 }
156 
157 /*
158  * Hash a key type and description.
159  */
160 static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key)
161 {
162 	const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
163 	const unsigned long level_mask = ASSOC_ARRAY_LEVEL_STEP_MASK;
164 	const char *description = index_key->description;
165 	unsigned long hash, type;
166 	u32 piece;
167 	u64 acc;
168 	int n, desc_len = index_key->desc_len;
169 
170 	type = (unsigned long)index_key->type;
171 
172 	acc = mult_64x32_and_fold(type, desc_len + 13);
173 	acc = mult_64x32_and_fold(acc, 9207);
174 	for (;;) {
175 		n = desc_len;
176 		if (n <= 0)
177 			break;
178 		if (n > 4)
179 			n = 4;
180 		piece = 0;
181 		memcpy(&piece, description, n);
182 		description += n;
183 		desc_len -= n;
184 		acc = mult_64x32_and_fold(acc, piece);
185 		acc = mult_64x32_and_fold(acc, 9207);
186 	}
187 
188 	/* Fold the hash down to 32 bits if need be. */
189 	hash = acc;
190 	if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
191 		hash ^= acc >> 32;
192 
193 	/* Squidge all the keyrings into a separate part of the tree to
194 	 * ordinary keys by making sure the lowest level segment in the hash is
195 	 * zero for keyrings and non-zero otherwise.
196 	 */
197 	if (index_key->type != &key_type_keyring && (hash & level_mask) == 0)
198 		return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
199 	if (index_key->type == &key_type_keyring && (hash & level_mask) != 0)
200 		return (hash + (hash << level_shift)) & ~level_mask;
201 	return hash;
202 }
203 
204 /*
205  * Build the next index key chunk.
206  *
207  * On 32-bit systems the index key is laid out as:
208  *
209  *	0	4	5	9...
210  *	hash	desclen	typeptr	desc[]
211  *
212  * On 64-bit systems:
213  *
214  *	0	8	9	17...
215  *	hash	desclen	typeptr	desc[]
216  *
217  * We return it one word-sized chunk at a time.
218  */
219 static unsigned long keyring_get_key_chunk(const void *data, int level)
220 {
221 	const struct keyring_index_key *index_key = data;
222 	unsigned long chunk = 0;
223 	long offset = 0;
224 	int desc_len = index_key->desc_len, n = sizeof(chunk);
225 
226 	level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
227 	switch (level) {
228 	case 0:
229 		return hash_key_type_and_desc(index_key);
230 	case 1:
231 		return ((unsigned long)index_key->type << 8) | desc_len;
232 	case 2:
233 		if (desc_len == 0)
234 			return (u8)((unsigned long)index_key->type >>
235 				    (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
236 		n--;
237 		offset = 1;
238 	default:
239 		offset += sizeof(chunk) - 1;
240 		offset += (level - 3) * sizeof(chunk);
241 		if (offset >= desc_len)
242 			return 0;
243 		desc_len -= offset;
244 		if (desc_len > n)
245 			desc_len = n;
246 		offset += desc_len;
247 		do {
248 			chunk <<= 8;
249 			chunk |= ((u8*)index_key->description)[--offset];
250 		} while (--desc_len > 0);
251 
252 		if (level == 2) {
253 			chunk <<= 8;
254 			chunk |= (u8)((unsigned long)index_key->type >>
255 				      (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
256 		}
257 		return chunk;
258 	}
259 }
260 
261 static unsigned long keyring_get_object_key_chunk(const void *object, int level)
262 {
263 	const struct key *key = keyring_ptr_to_key(object);
264 	return keyring_get_key_chunk(&key->index_key, level);
265 }
266 
267 static bool keyring_compare_object(const void *object, const void *data)
268 {
269 	const struct keyring_index_key *index_key = data;
270 	const struct key *key = keyring_ptr_to_key(object);
271 
272 	return key->index_key.type == index_key->type &&
273 		key->index_key.desc_len == index_key->desc_len &&
274 		memcmp(key->index_key.description, index_key->description,
275 		       index_key->desc_len) == 0;
276 }
277 
278 /*
279  * Compare the index keys of a pair of objects and determine the bit position
280  * at which they differ - if they differ.
281  */
282 static int keyring_diff_objects(const void *_a, const void *_b)
283 {
284 	const struct key *key_a = keyring_ptr_to_key(_a);
285 	const struct key *key_b = keyring_ptr_to_key(_b);
286 	const struct keyring_index_key *a = &key_a->index_key;
287 	const struct keyring_index_key *b = &key_b->index_key;
288 	unsigned long seg_a, seg_b;
289 	int level, i;
290 
291 	level = 0;
292 	seg_a = hash_key_type_and_desc(a);
293 	seg_b = hash_key_type_and_desc(b);
294 	if ((seg_a ^ seg_b) != 0)
295 		goto differ;
296 
297 	/* The number of bits contributed by the hash is controlled by a
298 	 * constant in the assoc_array headers.  Everything else thereafter we
299 	 * can deal with as being machine word-size dependent.
300 	 */
301 	level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
302 	seg_a = a->desc_len;
303 	seg_b = b->desc_len;
304 	if ((seg_a ^ seg_b) != 0)
305 		goto differ;
306 
307 	/* The next bit may not work on big endian */
308 	level++;
309 	seg_a = (unsigned long)a->type;
310 	seg_b = (unsigned long)b->type;
311 	if ((seg_a ^ seg_b) != 0)
312 		goto differ;
313 
314 	level += sizeof(unsigned long);
315 	if (a->desc_len == 0)
316 		goto same;
317 
318 	i = 0;
319 	if (((unsigned long)a->description | (unsigned long)b->description) &
320 	    (sizeof(unsigned long) - 1)) {
321 		do {
322 			seg_a = *(unsigned long *)(a->description + i);
323 			seg_b = *(unsigned long *)(b->description + i);
324 			if ((seg_a ^ seg_b) != 0)
325 				goto differ_plus_i;
326 			i += sizeof(unsigned long);
327 		} while (i < (a->desc_len & (sizeof(unsigned long) - 1)));
328 	}
329 
330 	for (; i < a->desc_len; i++) {
331 		seg_a = *(unsigned char *)(a->description + i);
332 		seg_b = *(unsigned char *)(b->description + i);
333 		if ((seg_a ^ seg_b) != 0)
334 			goto differ_plus_i;
335 	}
336 
337 same:
338 	return -1;
339 
340 differ_plus_i:
341 	level += i;
342 differ:
343 	i = level * 8 + __ffs(seg_a ^ seg_b);
344 	return i;
345 }
346 
347 /*
348  * Free an object after stripping the keyring flag off of the pointer.
349  */
350 static void keyring_free_object(void *object)
351 {
352 	key_put(keyring_ptr_to_key(object));
353 }
354 
355 /*
356  * Operations for keyring management by the index-tree routines.
357  */
358 static const struct assoc_array_ops keyring_assoc_array_ops = {
359 	.get_key_chunk		= keyring_get_key_chunk,
360 	.get_object_key_chunk	= keyring_get_object_key_chunk,
361 	.compare_object		= keyring_compare_object,
362 	.diff_objects		= keyring_diff_objects,
363 	.free_object		= keyring_free_object,
364 };
365 
366 /*
367  * Clean up a keyring when it is destroyed.  Unpublish its name if it had one
368  * and dispose of its data.
369  *
370  * The garbage collector detects the final key_put(), removes the keyring from
371  * the serial number tree and then does RCU synchronisation before coming here,
372  * so we shouldn't need to worry about code poking around here with the RCU
373  * readlock held by this time.
374  */
375 static void keyring_destroy(struct key *keyring)
376 {
377 	if (keyring->description) {
378 		write_lock(&keyring_name_lock);
379 
380 		if (keyring->type_data.link.next != NULL &&
381 		    !list_empty(&keyring->type_data.link))
382 			list_del(&keyring->type_data.link);
383 
384 		write_unlock(&keyring_name_lock);
385 	}
386 
387 	assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
388 }
389 
390 /*
391  * Describe a keyring for /proc.
392  */
393 static void keyring_describe(const struct key *keyring, struct seq_file *m)
394 {
395 	if (keyring->description)
396 		seq_puts(m, keyring->description);
397 	else
398 		seq_puts(m, "[anon]");
399 
400 	if (key_is_instantiated(keyring)) {
401 		if (keyring->keys.nr_leaves_on_tree != 0)
402 			seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
403 		else
404 			seq_puts(m, ": empty");
405 	}
406 }
407 
408 struct keyring_read_iterator_context {
409 	size_t			qty;
410 	size_t			count;
411 	key_serial_t __user	*buffer;
412 };
413 
414 static int keyring_read_iterator(const void *object, void *data)
415 {
416 	struct keyring_read_iterator_context *ctx = data;
417 	const struct key *key = keyring_ptr_to_key(object);
418 	int ret;
419 
420 	kenter("{%s,%d},,{%zu/%zu}",
421 	       key->type->name, key->serial, ctx->count, ctx->qty);
422 
423 	if (ctx->count >= ctx->qty)
424 		return 1;
425 
426 	ret = put_user(key->serial, ctx->buffer);
427 	if (ret < 0)
428 		return ret;
429 	ctx->buffer++;
430 	ctx->count += sizeof(key->serial);
431 	return 0;
432 }
433 
434 /*
435  * Read a list of key IDs from the keyring's contents in binary form
436  *
437  * The keyring's semaphore is read-locked by the caller.  This prevents someone
438  * from modifying it under us - which could cause us to read key IDs multiple
439  * times.
440  */
441 static long keyring_read(const struct key *keyring,
442 			 char __user *buffer, size_t buflen)
443 {
444 	struct keyring_read_iterator_context ctx;
445 	unsigned long nr_keys;
446 	int ret;
447 
448 	kenter("{%d},,%zu", key_serial(keyring), buflen);
449 
450 	if (buflen & (sizeof(key_serial_t) - 1))
451 		return -EINVAL;
452 
453 	nr_keys = keyring->keys.nr_leaves_on_tree;
454 	if (nr_keys == 0)
455 		return 0;
456 
457 	/* Calculate how much data we could return */
458 	ctx.qty = nr_keys * sizeof(key_serial_t);
459 
460 	if (!buffer || !buflen)
461 		return ctx.qty;
462 
463 	if (buflen > ctx.qty)
464 		ctx.qty = buflen;
465 
466 	/* Copy the IDs of the subscribed keys into the buffer */
467 	ctx.buffer = (key_serial_t __user *)buffer;
468 	ctx.count = 0;
469 	ret = assoc_array_iterate(&keyring->keys, keyring_read_iterator, &ctx);
470 	if (ret < 0) {
471 		kleave(" = %d [iterate]", ret);
472 		return ret;
473 	}
474 
475 	kleave(" = %zu [ok]", ctx.count);
476 	return ctx.count;
477 }
478 
479 /*
480  * Allocate a keyring and link into the destination keyring.
481  */
482 struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
483 			  const struct cred *cred, key_perm_t perm,
484 			  unsigned long flags, struct key *dest)
485 {
486 	struct key *keyring;
487 	int ret;
488 
489 	keyring = key_alloc(&key_type_keyring, description,
490 			    uid, gid, cred, perm, flags);
491 	if (!IS_ERR(keyring)) {
492 		ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
493 		if (ret < 0) {
494 			key_put(keyring);
495 			keyring = ERR_PTR(ret);
496 		}
497 	}
498 
499 	return keyring;
500 }
501 EXPORT_SYMBOL(keyring_alloc);
502 
503 /*
504  * Iteration function to consider each key found.
505  */
506 static int keyring_search_iterator(const void *object, void *iterator_data)
507 {
508 	struct keyring_search_context *ctx = iterator_data;
509 	const struct key *key = keyring_ptr_to_key(object);
510 	unsigned long kflags = key->flags;
511 
512 	kenter("{%d}", key->serial);
513 
514 	/* ignore keys not of this type */
515 	if (key->type != ctx->index_key.type) {
516 		kleave(" = 0 [!type]");
517 		return 0;
518 	}
519 
520 	/* skip invalidated, revoked and expired keys */
521 	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
522 		if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
523 			      (1 << KEY_FLAG_REVOKED))) {
524 			ctx->result = ERR_PTR(-EKEYREVOKED);
525 			kleave(" = %d [invrev]", ctx->skipped_ret);
526 			goto skipped;
527 		}
528 
529 		if (key->expiry && ctx->now.tv_sec >= key->expiry) {
530 			ctx->result = ERR_PTR(-EKEYEXPIRED);
531 			kleave(" = %d [expire]", ctx->skipped_ret);
532 			goto skipped;
533 		}
534 	}
535 
536 	/* keys that don't match */
537 	if (!ctx->match(key, ctx->match_data)) {
538 		kleave(" = 0 [!match]");
539 		return 0;
540 	}
541 
542 	/* key must have search permissions */
543 	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
544 	    key_task_permission(make_key_ref(key, ctx->possessed),
545 				ctx->cred, KEY_SEARCH) < 0) {
546 		ctx->result = ERR_PTR(-EACCES);
547 		kleave(" = %d [!perm]", ctx->skipped_ret);
548 		goto skipped;
549 	}
550 
551 	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
552 		/* we set a different error code if we pass a negative key */
553 		if (kflags & (1 << KEY_FLAG_NEGATIVE)) {
554 			smp_rmb();
555 			ctx->result = ERR_PTR(key->type_data.reject_error);
556 			kleave(" = %d [neg]", ctx->skipped_ret);
557 			goto skipped;
558 		}
559 	}
560 
561 	/* Found */
562 	ctx->result = make_key_ref(key, ctx->possessed);
563 	kleave(" = 1 [found]");
564 	return 1;
565 
566 skipped:
567 	return ctx->skipped_ret;
568 }
569 
570 /*
571  * Search inside a keyring for a key.  We can search by walking to it
572  * directly based on its index-key or we can iterate over the entire
573  * tree looking for it, based on the match function.
574  */
575 static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
576 {
577 	if ((ctx->flags & KEYRING_SEARCH_LOOKUP_TYPE) ==
578 	    KEYRING_SEARCH_LOOKUP_DIRECT) {
579 		const void *object;
580 
581 		object = assoc_array_find(&keyring->keys,
582 					  &keyring_assoc_array_ops,
583 					  &ctx->index_key);
584 		return object ? ctx->iterator(object, ctx) : 0;
585 	}
586 	return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
587 }
588 
589 /*
590  * Search a tree of keyrings that point to other keyrings up to the maximum
591  * depth.
592  */
593 static bool search_nested_keyrings(struct key *keyring,
594 				   struct keyring_search_context *ctx)
595 {
596 	struct {
597 		struct key *keyring;
598 		struct assoc_array_node *node;
599 		int slot;
600 	} stack[KEYRING_SEARCH_MAX_DEPTH];
601 
602 	struct assoc_array_shortcut *shortcut;
603 	struct assoc_array_node *node;
604 	struct assoc_array_ptr *ptr;
605 	struct key *key;
606 	int sp = 0, slot;
607 
608 	kenter("{%d},{%s,%s}",
609 	       keyring->serial,
610 	       ctx->index_key.type->name,
611 	       ctx->index_key.description);
612 
613 	if (ctx->index_key.description)
614 		ctx->index_key.desc_len = strlen(ctx->index_key.description);
615 
616 	/* Check to see if this top-level keyring is what we are looking for
617 	 * and whether it is valid or not.
618 	 */
619 	if (ctx->flags & KEYRING_SEARCH_LOOKUP_ITERATE ||
620 	    keyring_compare_object(keyring, &ctx->index_key)) {
621 		ctx->skipped_ret = 2;
622 		ctx->flags |= KEYRING_SEARCH_DO_STATE_CHECK;
623 		switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
624 		case 1:
625 			goto found;
626 		case 2:
627 			return false;
628 		default:
629 			break;
630 		}
631 	}
632 
633 	ctx->skipped_ret = 0;
634 	if (ctx->flags & KEYRING_SEARCH_NO_STATE_CHECK)
635 		ctx->flags &= ~KEYRING_SEARCH_DO_STATE_CHECK;
636 
637 	/* Start processing a new keyring */
638 descend_to_keyring:
639 	kdebug("descend to %d", keyring->serial);
640 	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
641 			      (1 << KEY_FLAG_REVOKED)))
642 		goto not_this_keyring;
643 
644 	/* Search through the keys in this keyring before its searching its
645 	 * subtrees.
646 	 */
647 	if (search_keyring(keyring, ctx))
648 		goto found;
649 
650 	/* Then manually iterate through the keyrings nested in this one.
651 	 *
652 	 * Start from the root node of the index tree.  Because of the way the
653 	 * hash function has been set up, keyrings cluster on the leftmost
654 	 * branch of the root node (root slot 0) or in the root node itself.
655 	 * Non-keyrings avoid the leftmost branch of the root entirely (root
656 	 * slots 1-15).
657 	 */
658 	ptr = ACCESS_ONCE(keyring->keys.root);
659 	if (!ptr)
660 		goto not_this_keyring;
661 
662 	if (assoc_array_ptr_is_shortcut(ptr)) {
663 		/* If the root is a shortcut, either the keyring only contains
664 		 * keyring pointers (everything clusters behind root slot 0) or
665 		 * doesn't contain any keyring pointers.
666 		 */
667 		shortcut = assoc_array_ptr_to_shortcut(ptr);
668 		smp_read_barrier_depends();
669 		if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
670 			goto not_this_keyring;
671 
672 		ptr = ACCESS_ONCE(shortcut->next_node);
673 		node = assoc_array_ptr_to_node(ptr);
674 		goto begin_node;
675 	}
676 
677 	node = assoc_array_ptr_to_node(ptr);
678 	smp_read_barrier_depends();
679 
680 	ptr = node->slots[0];
681 	if (!assoc_array_ptr_is_meta(ptr))
682 		goto begin_node;
683 
684 descend_to_node:
685 	/* Descend to a more distal node in this keyring's content tree and go
686 	 * through that.
687 	 */
688 	kdebug("descend");
689 	if (assoc_array_ptr_is_shortcut(ptr)) {
690 		shortcut = assoc_array_ptr_to_shortcut(ptr);
691 		smp_read_barrier_depends();
692 		ptr = ACCESS_ONCE(shortcut->next_node);
693 		BUG_ON(!assoc_array_ptr_is_node(ptr));
694 		node = assoc_array_ptr_to_node(ptr);
695 	}
696 
697 begin_node:
698 	kdebug("begin_node");
699 	smp_read_barrier_depends();
700 	slot = 0;
701 ascend_to_node:
702 	/* Go through the slots in a node */
703 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
704 		ptr = ACCESS_ONCE(node->slots[slot]);
705 
706 		if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
707 			goto descend_to_node;
708 
709 		if (!keyring_ptr_is_keyring(ptr))
710 			continue;
711 
712 		key = keyring_ptr_to_key(ptr);
713 
714 		if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
715 			if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
716 				ctx->result = ERR_PTR(-ELOOP);
717 				return false;
718 			}
719 			goto not_this_keyring;
720 		}
721 
722 		/* Search a nested keyring */
723 		if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
724 		    key_task_permission(make_key_ref(key, ctx->possessed),
725 					ctx->cred, KEY_SEARCH) < 0)
726 			continue;
727 
728 		/* stack the current position */
729 		stack[sp].keyring = keyring;
730 		stack[sp].node = node;
731 		stack[sp].slot = slot;
732 		sp++;
733 
734 		/* begin again with the new keyring */
735 		keyring = key;
736 		goto descend_to_keyring;
737 	}
738 
739 	/* We've dealt with all the slots in the current node, so now we need
740 	 * to ascend to the parent and continue processing there.
741 	 */
742 	ptr = ACCESS_ONCE(node->back_pointer);
743 	slot = node->parent_slot;
744 
745 	if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
746 		shortcut = assoc_array_ptr_to_shortcut(ptr);
747 		smp_read_barrier_depends();
748 		ptr = ACCESS_ONCE(shortcut->back_pointer);
749 		slot = shortcut->parent_slot;
750 	}
751 	if (!ptr)
752 		goto not_this_keyring;
753 	node = assoc_array_ptr_to_node(ptr);
754 	smp_read_barrier_depends();
755 	slot++;
756 
757 	/* If we've ascended to the root (zero backpointer), we must have just
758 	 * finished processing the leftmost branch rather than the root slots -
759 	 * so there can't be any more keyrings for us to find.
760 	 */
761 	if (node->back_pointer) {
762 		kdebug("ascend %d", slot);
763 		goto ascend_to_node;
764 	}
765 
766 	/* The keyring we're looking at was disqualified or didn't contain a
767 	 * matching key.
768 	 */
769 not_this_keyring:
770 	kdebug("not_this_keyring %d", sp);
771 	if (sp <= 0) {
772 		kleave(" = false");
773 		return false;
774 	}
775 
776 	/* Resume the processing of a keyring higher up in the tree */
777 	sp--;
778 	keyring = stack[sp].keyring;
779 	node = stack[sp].node;
780 	slot = stack[sp].slot + 1;
781 	kdebug("ascend to %d [%d]", keyring->serial, slot);
782 	goto ascend_to_node;
783 
784 	/* We found a viable match */
785 found:
786 	key = key_ref_to_ptr(ctx->result);
787 	key_check(key);
788 	if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
789 		key->last_used_at = ctx->now.tv_sec;
790 		keyring->last_used_at = ctx->now.tv_sec;
791 		while (sp > 0)
792 			stack[--sp].keyring->last_used_at = ctx->now.tv_sec;
793 	}
794 	kleave(" = true");
795 	return true;
796 }
797 
798 /**
799  * keyring_search_aux - Search a keyring tree for a key matching some criteria
800  * @keyring_ref: A pointer to the keyring with possession indicator.
801  * @ctx: The keyring search context.
802  *
803  * Search the supplied keyring tree for a key that matches the criteria given.
804  * The root keyring and any linked keyrings must grant Search permission to the
805  * caller to be searchable and keys can only be found if they too grant Search
806  * to the caller. The possession flag on the root keyring pointer controls use
807  * of the possessor bits in permissions checking of the entire tree.  In
808  * addition, the LSM gets to forbid keyring searches and key matches.
809  *
810  * The search is performed as a breadth-then-depth search up to the prescribed
811  * limit (KEYRING_SEARCH_MAX_DEPTH).
812  *
813  * Keys are matched to the type provided and are then filtered by the match
814  * function, which is given the description to use in any way it sees fit.  The
815  * match function may use any attributes of a key that it wishes to to
816  * determine the match.  Normally the match function from the key type would be
817  * used.
818  *
819  * RCU can be used to prevent the keyring key lists from disappearing without
820  * the need to take lots of locks.
821  *
822  * Returns a pointer to the found key and increments the key usage count if
823  * successful; -EAGAIN if no matching keys were found, or if expired or revoked
824  * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
825  * specified keyring wasn't a keyring.
826  *
827  * In the case of a successful return, the possession attribute from
828  * @keyring_ref is propagated to the returned key reference.
829  */
830 key_ref_t keyring_search_aux(key_ref_t keyring_ref,
831 			     struct keyring_search_context *ctx)
832 {
833 	struct key *keyring;
834 	long err;
835 
836 	ctx->iterator = keyring_search_iterator;
837 	ctx->possessed = is_key_possessed(keyring_ref);
838 	ctx->result = ERR_PTR(-EAGAIN);
839 
840 	keyring = key_ref_to_ptr(keyring_ref);
841 	key_check(keyring);
842 
843 	if (keyring->type != &key_type_keyring)
844 		return ERR_PTR(-ENOTDIR);
845 
846 	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
847 		err = key_task_permission(keyring_ref, ctx->cred, KEY_SEARCH);
848 		if (err < 0)
849 			return ERR_PTR(err);
850 	}
851 
852 	rcu_read_lock();
853 	ctx->now = current_kernel_time();
854 	if (search_nested_keyrings(keyring, ctx))
855 		__key_get(key_ref_to_ptr(ctx->result));
856 	rcu_read_unlock();
857 	return ctx->result;
858 }
859 
860 /**
861  * keyring_search - Search the supplied keyring tree for a matching key
862  * @keyring: The root of the keyring tree to be searched.
863  * @type: The type of keyring we want to find.
864  * @description: The name of the keyring we want to find.
865  *
866  * As keyring_search_aux() above, but using the current task's credentials and
867  * type's default matching function and preferred search method.
868  */
869 key_ref_t keyring_search(key_ref_t keyring,
870 			 struct key_type *type,
871 			 const char *description)
872 {
873 	struct keyring_search_context ctx = {
874 		.index_key.type		= type,
875 		.index_key.description	= description,
876 		.cred			= current_cred(),
877 		.match			= type->match,
878 		.match_data		= description,
879 		.flags			= (type->def_lookup_type |
880 					   KEYRING_SEARCH_DO_STATE_CHECK),
881 	};
882 
883 	if (!ctx.match)
884 		return ERR_PTR(-ENOKEY);
885 
886 	return keyring_search_aux(keyring, &ctx);
887 }
888 EXPORT_SYMBOL(keyring_search);
889 
890 /*
891  * Search the given keyring for a key that might be updated.
892  *
893  * The caller must guarantee that the keyring is a keyring and that the
894  * permission is granted to modify the keyring as no check is made here.  The
895  * caller must also hold a lock on the keyring semaphore.
896  *
897  * Returns a pointer to the found key with usage count incremented if
898  * successful and returns NULL if not found.  Revoked and invalidated keys are
899  * skipped over.
900  *
901  * If successful, the possession indicator is propagated from the keyring ref
902  * to the returned key reference.
903  */
904 key_ref_t find_key_to_update(key_ref_t keyring_ref,
905 			     const struct keyring_index_key *index_key)
906 {
907 	struct key *keyring, *key;
908 	const void *object;
909 
910 	keyring = key_ref_to_ptr(keyring_ref);
911 
912 	kenter("{%d},{%s,%s}",
913 	       keyring->serial, index_key->type->name, index_key->description);
914 
915 	object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
916 				  index_key);
917 
918 	if (object)
919 		goto found;
920 
921 	kleave(" = NULL");
922 	return NULL;
923 
924 found:
925 	key = keyring_ptr_to_key(object);
926 	if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
927 			  (1 << KEY_FLAG_REVOKED))) {
928 		kleave(" = NULL [x]");
929 		return NULL;
930 	}
931 	__key_get(key);
932 	kleave(" = {%d}", key->serial);
933 	return make_key_ref(key, is_key_possessed(keyring_ref));
934 }
935 
936 /*
937  * Find a keyring with the specified name.
938  *
939  * All named keyrings in the current user namespace are searched, provided they
940  * grant Search permission directly to the caller (unless this check is
941  * skipped).  Keyrings whose usage points have reached zero or who have been
942  * revoked are skipped.
943  *
944  * Returns a pointer to the keyring with the keyring's refcount having being
945  * incremented on success.  -ENOKEY is returned if a key could not be found.
946  */
947 struct key *find_keyring_by_name(const char *name, bool skip_perm_check)
948 {
949 	struct key *keyring;
950 	int bucket;
951 
952 	if (!name)
953 		return ERR_PTR(-EINVAL);
954 
955 	bucket = keyring_hash(name);
956 
957 	read_lock(&keyring_name_lock);
958 
959 	if (keyring_name_hash[bucket].next) {
960 		/* search this hash bucket for a keyring with a matching name
961 		 * that's readable and that hasn't been revoked */
962 		list_for_each_entry(keyring,
963 				    &keyring_name_hash[bucket],
964 				    type_data.link
965 				    ) {
966 			if (!kuid_has_mapping(current_user_ns(), keyring->user->uid))
967 				continue;
968 
969 			if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
970 				continue;
971 
972 			if (strcmp(keyring->description, name) != 0)
973 				continue;
974 
975 			if (!skip_perm_check &&
976 			    key_permission(make_key_ref(keyring, 0),
977 					   KEY_SEARCH) < 0)
978 				continue;
979 
980 			/* we've got a match but we might end up racing with
981 			 * key_cleanup() if the keyring is currently 'dead'
982 			 * (ie. it has a zero usage count) */
983 			if (!atomic_inc_not_zero(&keyring->usage))
984 				continue;
985 			keyring->last_used_at = current_kernel_time().tv_sec;
986 			goto out;
987 		}
988 	}
989 
990 	keyring = ERR_PTR(-ENOKEY);
991 out:
992 	read_unlock(&keyring_name_lock);
993 	return keyring;
994 }
995 
996 static int keyring_detect_cycle_iterator(const void *object,
997 					 void *iterator_data)
998 {
999 	struct keyring_search_context *ctx = iterator_data;
1000 	const struct key *key = keyring_ptr_to_key(object);
1001 
1002 	kenter("{%d}", key->serial);
1003 
1004 	BUG_ON(key != ctx->match_data);
1005 	ctx->result = ERR_PTR(-EDEADLK);
1006 	return 1;
1007 }
1008 
1009 /*
1010  * See if a cycle will will be created by inserting acyclic tree B in acyclic
1011  * tree A at the topmost level (ie: as a direct child of A).
1012  *
1013  * Since we are adding B to A at the top level, checking for cycles should just
1014  * be a matter of seeing if node A is somewhere in tree B.
1015  */
1016 static int keyring_detect_cycle(struct key *A, struct key *B)
1017 {
1018 	struct keyring_search_context ctx = {
1019 		.index_key	= A->index_key,
1020 		.match_data	= A,
1021 		.iterator	= keyring_detect_cycle_iterator,
1022 		.flags		= (KEYRING_SEARCH_LOOKUP_DIRECT |
1023 				   KEYRING_SEARCH_NO_STATE_CHECK |
1024 				   KEYRING_SEARCH_NO_UPDATE_TIME |
1025 				   KEYRING_SEARCH_NO_CHECK_PERM |
1026 				   KEYRING_SEARCH_DETECT_TOO_DEEP),
1027 	};
1028 
1029 	rcu_read_lock();
1030 	search_nested_keyrings(B, &ctx);
1031 	rcu_read_unlock();
1032 	return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
1033 }
1034 
1035 /*
1036  * Preallocate memory so that a key can be linked into to a keyring.
1037  */
1038 int __key_link_begin(struct key *keyring,
1039 		     const struct keyring_index_key *index_key,
1040 		     struct assoc_array_edit **_edit)
1041 	__acquires(&keyring->sem)
1042 	__acquires(&keyring_serialise_link_sem)
1043 {
1044 	struct assoc_array_edit *edit;
1045 	int ret;
1046 
1047 	kenter("%d,%s,%s,",
1048 	       keyring->serial, index_key->type->name, index_key->description);
1049 
1050 	BUG_ON(index_key->desc_len == 0);
1051 
1052 	if (keyring->type != &key_type_keyring)
1053 		return -ENOTDIR;
1054 
1055 	down_write(&keyring->sem);
1056 
1057 	ret = -EKEYREVOKED;
1058 	if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1059 		goto error_krsem;
1060 
1061 	/* serialise link/link calls to prevent parallel calls causing a cycle
1062 	 * when linking two keyring in opposite orders */
1063 	if (index_key->type == &key_type_keyring)
1064 		down_write(&keyring_serialise_link_sem);
1065 
1066 	/* Create an edit script that will insert/replace the key in the
1067 	 * keyring tree.
1068 	 */
1069 	edit = assoc_array_insert(&keyring->keys,
1070 				  &keyring_assoc_array_ops,
1071 				  index_key,
1072 				  NULL);
1073 	if (IS_ERR(edit)) {
1074 		ret = PTR_ERR(edit);
1075 		goto error_sem;
1076 	}
1077 
1078 	/* If we're not replacing a link in-place then we're going to need some
1079 	 * extra quota.
1080 	 */
1081 	if (!edit->dead_leaf) {
1082 		ret = key_payload_reserve(keyring,
1083 					  keyring->datalen + KEYQUOTA_LINK_BYTES);
1084 		if (ret < 0)
1085 			goto error_cancel;
1086 	}
1087 
1088 	*_edit = edit;
1089 	kleave(" = 0");
1090 	return 0;
1091 
1092 error_cancel:
1093 	assoc_array_cancel_edit(edit);
1094 error_sem:
1095 	if (index_key->type == &key_type_keyring)
1096 		up_write(&keyring_serialise_link_sem);
1097 error_krsem:
1098 	up_write(&keyring->sem);
1099 	kleave(" = %d", ret);
1100 	return ret;
1101 }
1102 
1103 /*
1104  * Check already instantiated keys aren't going to be a problem.
1105  *
1106  * The caller must have called __key_link_begin(). Don't need to call this for
1107  * keys that were created since __key_link_begin() was called.
1108  */
1109 int __key_link_check_live_key(struct key *keyring, struct key *key)
1110 {
1111 	if (key->type == &key_type_keyring)
1112 		/* check that we aren't going to create a cycle by linking one
1113 		 * keyring to another */
1114 		return keyring_detect_cycle(keyring, key);
1115 	return 0;
1116 }
1117 
1118 /*
1119  * Link a key into to a keyring.
1120  *
1121  * Must be called with __key_link_begin() having being called.  Discards any
1122  * already extant link to matching key if there is one, so that each keyring
1123  * holds at most one link to any given key of a particular type+description
1124  * combination.
1125  */
1126 void __key_link(struct key *key, struct assoc_array_edit **_edit)
1127 {
1128 	__key_get(key);
1129 	assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
1130 	assoc_array_apply_edit(*_edit);
1131 	*_edit = NULL;
1132 }
1133 
1134 /*
1135  * Finish linking a key into to a keyring.
1136  *
1137  * Must be called with __key_link_begin() having being called.
1138  */
1139 void __key_link_end(struct key *keyring,
1140 		    const struct keyring_index_key *index_key,
1141 		    struct assoc_array_edit *edit)
1142 	__releases(&keyring->sem)
1143 	__releases(&keyring_serialise_link_sem)
1144 {
1145 	BUG_ON(index_key->type == NULL);
1146 	kenter("%d,%s,", keyring->serial, index_key->type->name);
1147 
1148 	if (index_key->type == &key_type_keyring)
1149 		up_write(&keyring_serialise_link_sem);
1150 
1151 	if (edit && !edit->dead_leaf) {
1152 		key_payload_reserve(keyring,
1153 				    keyring->datalen - KEYQUOTA_LINK_BYTES);
1154 		assoc_array_cancel_edit(edit);
1155 	}
1156 	up_write(&keyring->sem);
1157 }
1158 
1159 /**
1160  * key_link - Link a key to a keyring
1161  * @keyring: The keyring to make the link in.
1162  * @key: The key to link to.
1163  *
1164  * Make a link in a keyring to a key, such that the keyring holds a reference
1165  * on that key and the key can potentially be found by searching that keyring.
1166  *
1167  * This function will write-lock the keyring's semaphore and will consume some
1168  * of the user's key data quota to hold the link.
1169  *
1170  * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
1171  * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
1172  * full, -EDQUOT if there is insufficient key data quota remaining to add
1173  * another link or -ENOMEM if there's insufficient memory.
1174  *
1175  * It is assumed that the caller has checked that it is permitted for a link to
1176  * be made (the keyring should have Write permission and the key Link
1177  * permission).
1178  */
1179 int key_link(struct key *keyring, struct key *key)
1180 {
1181 	struct assoc_array_edit *edit;
1182 	int ret;
1183 
1184 	kenter("{%d,%d}", keyring->serial, atomic_read(&keyring->usage));
1185 
1186 	key_check(keyring);
1187 	key_check(key);
1188 
1189 	if (test_bit(KEY_FLAG_TRUSTED_ONLY, &keyring->flags) &&
1190 	    !test_bit(KEY_FLAG_TRUSTED, &key->flags))
1191 		return -EPERM;
1192 
1193 	ret = __key_link_begin(keyring, &key->index_key, &edit);
1194 	if (ret == 0) {
1195 		kdebug("begun {%d,%d}", keyring->serial, atomic_read(&keyring->usage));
1196 		ret = __key_link_check_live_key(keyring, key);
1197 		if (ret == 0)
1198 			__key_link(key, &edit);
1199 		__key_link_end(keyring, &key->index_key, edit);
1200 	}
1201 
1202 	kleave(" = %d {%d,%d}", ret, keyring->serial, atomic_read(&keyring->usage));
1203 	return ret;
1204 }
1205 EXPORT_SYMBOL(key_link);
1206 
1207 /**
1208  * key_unlink - Unlink the first link to a key from a keyring.
1209  * @keyring: The keyring to remove the link from.
1210  * @key: The key the link is to.
1211  *
1212  * Remove a link from a keyring to a key.
1213  *
1214  * This function will write-lock the keyring's semaphore.
1215  *
1216  * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1217  * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1218  * memory.
1219  *
1220  * It is assumed that the caller has checked that it is permitted for a link to
1221  * be removed (the keyring should have Write permission; no permissions are
1222  * required on the key).
1223  */
1224 int key_unlink(struct key *keyring, struct key *key)
1225 {
1226 	struct assoc_array_edit *edit;
1227 	int ret;
1228 
1229 	key_check(keyring);
1230 	key_check(key);
1231 
1232 	if (keyring->type != &key_type_keyring)
1233 		return -ENOTDIR;
1234 
1235 	down_write(&keyring->sem);
1236 
1237 	edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
1238 				  &key->index_key);
1239 	if (IS_ERR(edit)) {
1240 		ret = PTR_ERR(edit);
1241 		goto error;
1242 	}
1243 	ret = -ENOENT;
1244 	if (edit == NULL)
1245 		goto error;
1246 
1247 	assoc_array_apply_edit(edit);
1248 	key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
1249 	ret = 0;
1250 
1251 error:
1252 	up_write(&keyring->sem);
1253 	return ret;
1254 }
1255 EXPORT_SYMBOL(key_unlink);
1256 
1257 /**
1258  * keyring_clear - Clear a keyring
1259  * @keyring: The keyring to clear.
1260  *
1261  * Clear the contents of the specified keyring.
1262  *
1263  * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1264  */
1265 int keyring_clear(struct key *keyring)
1266 {
1267 	struct assoc_array_edit *edit;
1268 	int ret;
1269 
1270 	if (keyring->type != &key_type_keyring)
1271 		return -ENOTDIR;
1272 
1273 	down_write(&keyring->sem);
1274 
1275 	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1276 	if (IS_ERR(edit)) {
1277 		ret = PTR_ERR(edit);
1278 	} else {
1279 		if (edit)
1280 			assoc_array_apply_edit(edit);
1281 		key_payload_reserve(keyring, 0);
1282 		ret = 0;
1283 	}
1284 
1285 	up_write(&keyring->sem);
1286 	return ret;
1287 }
1288 EXPORT_SYMBOL(keyring_clear);
1289 
1290 /*
1291  * Dispose of the links from a revoked keyring.
1292  *
1293  * This is called with the key sem write-locked.
1294  */
1295 static void keyring_revoke(struct key *keyring)
1296 {
1297 	struct assoc_array_edit *edit;
1298 
1299 	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1300 	if (!IS_ERR(edit)) {
1301 		if (edit)
1302 			assoc_array_apply_edit(edit);
1303 		key_payload_reserve(keyring, 0);
1304 	}
1305 }
1306 
1307 static bool keyring_gc_select_iterator(void *object, void *iterator_data)
1308 {
1309 	struct key *key = keyring_ptr_to_key(object);
1310 	time_t *limit = iterator_data;
1311 
1312 	if (key_is_dead(key, *limit))
1313 		return false;
1314 	key_get(key);
1315 	return true;
1316 }
1317 
1318 static int keyring_gc_check_iterator(const void *object, void *iterator_data)
1319 {
1320 	const struct key *key = keyring_ptr_to_key(object);
1321 	time_t *limit = iterator_data;
1322 
1323 	key_check(key);
1324 	return key_is_dead(key, *limit);
1325 }
1326 
1327 /*
1328  * Garbage collect pointers from a keyring.
1329  *
1330  * Not called with any locks held.  The keyring's key struct will not be
1331  * deallocated under us as only our caller may deallocate it.
1332  */
1333 void keyring_gc(struct key *keyring, time_t limit)
1334 {
1335 	int result;
1336 
1337 	kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1338 
1339 	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
1340 			      (1 << KEY_FLAG_REVOKED)))
1341 		goto dont_gc;
1342 
1343 	/* scan the keyring looking for dead keys */
1344 	rcu_read_lock();
1345 	result = assoc_array_iterate(&keyring->keys,
1346 				     keyring_gc_check_iterator, &limit);
1347 	rcu_read_unlock();
1348 	if (result == true)
1349 		goto do_gc;
1350 
1351 dont_gc:
1352 	kleave(" [no gc]");
1353 	return;
1354 
1355 do_gc:
1356 	down_write(&keyring->sem);
1357 	assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
1358 		       keyring_gc_select_iterator, &limit);
1359 	up_write(&keyring->sem);
1360 	kleave(" [gc]");
1361 }
1362