1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* Keyring handling 3 * 4 * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 8 #include <linux/export.h> 9 #include <linux/init.h> 10 #include <linux/sched.h> 11 #include <linux/slab.h> 12 #include <linux/security.h> 13 #include <linux/seq_file.h> 14 #include <linux/err.h> 15 #include <linux/user_namespace.h> 16 #include <linux/nsproxy.h> 17 #include <keys/keyring-type.h> 18 #include <keys/user-type.h> 19 #include <linux/assoc_array_priv.h> 20 #include <linux/uaccess.h> 21 #include <net/net_namespace.h> 22 #include "internal.h" 23 24 /* 25 * When plumbing the depths of the key tree, this sets a hard limit 26 * set on how deep we're willing to go. 27 */ 28 #define KEYRING_SEARCH_MAX_DEPTH 6 29 30 /* 31 * We mark pointers we pass to the associative array with bit 1 set if 32 * they're keyrings and clear otherwise. 33 */ 34 #define KEYRING_PTR_SUBTYPE 0x2UL 35 36 static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x) 37 { 38 return (unsigned long)x & KEYRING_PTR_SUBTYPE; 39 } 40 static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x) 41 { 42 void *object = assoc_array_ptr_to_leaf(x); 43 return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE); 44 } 45 static inline void *keyring_key_to_ptr(struct key *key) 46 { 47 if (key->type == &key_type_keyring) 48 return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE); 49 return key; 50 } 51 52 static DEFINE_RWLOCK(keyring_name_lock); 53 54 /* 55 * Clean up the bits of user_namespace that belong to us. 56 */ 57 void key_free_user_ns(struct user_namespace *ns) 58 { 59 write_lock(&keyring_name_lock); 60 list_del_init(&ns->keyring_name_list); 61 write_unlock(&keyring_name_lock); 62 63 key_put(ns->user_keyring_register); 64 #ifdef CONFIG_PERSISTENT_KEYRINGS 65 key_put(ns->persistent_keyring_register); 66 #endif 67 } 68 69 /* 70 * The keyring key type definition. Keyrings are simply keys of this type and 71 * can be treated as ordinary keys in addition to having their own special 72 * operations. 73 */ 74 static int keyring_preparse(struct key_preparsed_payload *prep); 75 static void keyring_free_preparse(struct key_preparsed_payload *prep); 76 static int keyring_instantiate(struct key *keyring, 77 struct key_preparsed_payload *prep); 78 static void keyring_revoke(struct key *keyring); 79 static void keyring_destroy(struct key *keyring); 80 static void keyring_describe(const struct key *keyring, struct seq_file *m); 81 static long keyring_read(const struct key *keyring, 82 char __user *buffer, size_t buflen); 83 84 struct key_type key_type_keyring = { 85 .name = "keyring", 86 .def_datalen = 0, 87 .preparse = keyring_preparse, 88 .free_preparse = keyring_free_preparse, 89 .instantiate = keyring_instantiate, 90 .revoke = keyring_revoke, 91 .destroy = keyring_destroy, 92 .describe = keyring_describe, 93 .read = keyring_read, 94 }; 95 EXPORT_SYMBOL(key_type_keyring); 96 97 /* 98 * Semaphore to serialise link/link calls to prevent two link calls in parallel 99 * introducing a cycle. 100 */ 101 static DEFINE_MUTEX(keyring_serialise_link_lock); 102 103 /* 104 * Publish the name of a keyring so that it can be found by name (if it has 105 * one and it doesn't begin with a dot). 106 */ 107 static void keyring_publish_name(struct key *keyring) 108 { 109 struct user_namespace *ns = current_user_ns(); 110 111 if (keyring->description && 112 keyring->description[0] && 113 keyring->description[0] != '.') { 114 write_lock(&keyring_name_lock); 115 list_add_tail(&keyring->name_link, &ns->keyring_name_list); 116 write_unlock(&keyring_name_lock); 117 } 118 } 119 120 /* 121 * Preparse a keyring payload 122 */ 123 static int keyring_preparse(struct key_preparsed_payload *prep) 124 { 125 return prep->datalen != 0 ? -EINVAL : 0; 126 } 127 128 /* 129 * Free a preparse of a user defined key payload 130 */ 131 static void keyring_free_preparse(struct key_preparsed_payload *prep) 132 { 133 } 134 135 /* 136 * Initialise a keyring. 137 * 138 * Returns 0 on success, -EINVAL if given any data. 139 */ 140 static int keyring_instantiate(struct key *keyring, 141 struct key_preparsed_payload *prep) 142 { 143 assoc_array_init(&keyring->keys); 144 /* make the keyring available by name if it has one */ 145 keyring_publish_name(keyring); 146 return 0; 147 } 148 149 /* 150 * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit. Ideally we'd 151 * fold the carry back too, but that requires inline asm. 152 */ 153 static u64 mult_64x32_and_fold(u64 x, u32 y) 154 { 155 u64 hi = (u64)(u32)(x >> 32) * y; 156 u64 lo = (u64)(u32)(x) * y; 157 return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32); 158 } 159 160 /* 161 * Hash a key type and description. 162 */ 163 static void hash_key_type_and_desc(struct keyring_index_key *index_key) 164 { 165 const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP; 166 const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK; 167 const char *description = index_key->description; 168 unsigned long hash, type; 169 u32 piece; 170 u64 acc; 171 int n, desc_len = index_key->desc_len; 172 173 type = (unsigned long)index_key->type; 174 acc = mult_64x32_and_fold(type, desc_len + 13); 175 acc = mult_64x32_and_fold(acc, 9207); 176 piece = (unsigned long)index_key->domain_tag; 177 acc = mult_64x32_and_fold(acc, piece); 178 acc = mult_64x32_and_fold(acc, 9207); 179 180 for (;;) { 181 n = desc_len; 182 if (n <= 0) 183 break; 184 if (n > 4) 185 n = 4; 186 piece = 0; 187 memcpy(&piece, description, n); 188 description += n; 189 desc_len -= n; 190 acc = mult_64x32_and_fold(acc, piece); 191 acc = mult_64x32_and_fold(acc, 9207); 192 } 193 194 /* Fold the hash down to 32 bits if need be. */ 195 hash = acc; 196 if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32) 197 hash ^= acc >> 32; 198 199 /* Squidge all the keyrings into a separate part of the tree to 200 * ordinary keys by making sure the lowest level segment in the hash is 201 * zero for keyrings and non-zero otherwise. 202 */ 203 if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0) 204 hash |= (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1; 205 else if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0) 206 hash = (hash + (hash << level_shift)) & ~fan_mask; 207 index_key->hash = hash; 208 } 209 210 /* 211 * Finalise an index key to include a part of the description actually in the 212 * index key, to set the domain tag and to calculate the hash. 213 */ 214 void key_set_index_key(struct keyring_index_key *index_key) 215 { 216 static struct key_tag default_domain_tag = { .usage = REFCOUNT_INIT(1), }; 217 size_t n = min_t(size_t, index_key->desc_len, sizeof(index_key->desc)); 218 219 memcpy(index_key->desc, index_key->description, n); 220 221 if (!index_key->domain_tag) { 222 if (index_key->type->flags & KEY_TYPE_NET_DOMAIN) 223 index_key->domain_tag = current->nsproxy->net_ns->key_domain; 224 else 225 index_key->domain_tag = &default_domain_tag; 226 } 227 228 hash_key_type_and_desc(index_key); 229 } 230 231 /** 232 * key_put_tag - Release a ref on a tag. 233 * @tag: The tag to release. 234 * 235 * This releases a reference the given tag and returns true if that ref was the 236 * last one. 237 */ 238 bool key_put_tag(struct key_tag *tag) 239 { 240 if (refcount_dec_and_test(&tag->usage)) { 241 kfree_rcu(tag, rcu); 242 return true; 243 } 244 245 return false; 246 } 247 248 /** 249 * key_remove_domain - Kill off a key domain and gc its keys 250 * @domain_tag: The domain tag to release. 251 * 252 * This marks a domain tag as being dead and releases a ref on it. If that 253 * wasn't the last reference, the garbage collector is poked to try and delete 254 * all keys that were in the domain. 255 */ 256 void key_remove_domain(struct key_tag *domain_tag) 257 { 258 domain_tag->removed = true; 259 if (!key_put_tag(domain_tag)) 260 key_schedule_gc_links(); 261 } 262 263 /* 264 * Build the next index key chunk. 265 * 266 * We return it one word-sized chunk at a time. 267 */ 268 static unsigned long keyring_get_key_chunk(const void *data, int level) 269 { 270 const struct keyring_index_key *index_key = data; 271 unsigned long chunk = 0; 272 const u8 *d; 273 int desc_len = index_key->desc_len, n = sizeof(chunk); 274 275 level /= ASSOC_ARRAY_KEY_CHUNK_SIZE; 276 switch (level) { 277 case 0: 278 return index_key->hash; 279 case 1: 280 return index_key->x; 281 case 2: 282 return (unsigned long)index_key->type; 283 case 3: 284 return (unsigned long)index_key->domain_tag; 285 default: 286 level -= 4; 287 if (desc_len <= sizeof(index_key->desc)) 288 return 0; 289 290 d = index_key->description + sizeof(index_key->desc); 291 d += level * sizeof(long); 292 desc_len -= sizeof(index_key->desc); 293 if (desc_len > n) 294 desc_len = n; 295 do { 296 chunk <<= 8; 297 chunk |= *d++; 298 } while (--desc_len > 0); 299 return chunk; 300 } 301 } 302 303 static unsigned long keyring_get_object_key_chunk(const void *object, int level) 304 { 305 const struct key *key = keyring_ptr_to_key(object); 306 return keyring_get_key_chunk(&key->index_key, level); 307 } 308 309 static bool keyring_compare_object(const void *object, const void *data) 310 { 311 const struct keyring_index_key *index_key = data; 312 const struct key *key = keyring_ptr_to_key(object); 313 314 return key->index_key.type == index_key->type && 315 key->index_key.domain_tag == index_key->domain_tag && 316 key->index_key.desc_len == index_key->desc_len && 317 memcmp(key->index_key.description, index_key->description, 318 index_key->desc_len) == 0; 319 } 320 321 /* 322 * Compare the index keys of a pair of objects and determine the bit position 323 * at which they differ - if they differ. 324 */ 325 static int keyring_diff_objects(const void *object, const void *data) 326 { 327 const struct key *key_a = keyring_ptr_to_key(object); 328 const struct keyring_index_key *a = &key_a->index_key; 329 const struct keyring_index_key *b = data; 330 unsigned long seg_a, seg_b; 331 int level, i; 332 333 level = 0; 334 seg_a = a->hash; 335 seg_b = b->hash; 336 if ((seg_a ^ seg_b) != 0) 337 goto differ; 338 level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8; 339 340 /* The number of bits contributed by the hash is controlled by a 341 * constant in the assoc_array headers. Everything else thereafter we 342 * can deal with as being machine word-size dependent. 343 */ 344 seg_a = a->x; 345 seg_b = b->x; 346 if ((seg_a ^ seg_b) != 0) 347 goto differ; 348 level += sizeof(unsigned long); 349 350 /* The next bit may not work on big endian */ 351 seg_a = (unsigned long)a->type; 352 seg_b = (unsigned long)b->type; 353 if ((seg_a ^ seg_b) != 0) 354 goto differ; 355 level += sizeof(unsigned long); 356 357 seg_a = (unsigned long)a->domain_tag; 358 seg_b = (unsigned long)b->domain_tag; 359 if ((seg_a ^ seg_b) != 0) 360 goto differ; 361 level += sizeof(unsigned long); 362 363 i = sizeof(a->desc); 364 if (a->desc_len <= i) 365 goto same; 366 367 for (; i < a->desc_len; i++) { 368 seg_a = *(unsigned char *)(a->description + i); 369 seg_b = *(unsigned char *)(b->description + i); 370 if ((seg_a ^ seg_b) != 0) 371 goto differ_plus_i; 372 } 373 374 same: 375 return -1; 376 377 differ_plus_i: 378 level += i; 379 differ: 380 i = level * 8 + __ffs(seg_a ^ seg_b); 381 return i; 382 } 383 384 /* 385 * Free an object after stripping the keyring flag off of the pointer. 386 */ 387 static void keyring_free_object(void *object) 388 { 389 key_put(keyring_ptr_to_key(object)); 390 } 391 392 /* 393 * Operations for keyring management by the index-tree routines. 394 */ 395 static const struct assoc_array_ops keyring_assoc_array_ops = { 396 .get_key_chunk = keyring_get_key_chunk, 397 .get_object_key_chunk = keyring_get_object_key_chunk, 398 .compare_object = keyring_compare_object, 399 .diff_objects = keyring_diff_objects, 400 .free_object = keyring_free_object, 401 }; 402 403 /* 404 * Clean up a keyring when it is destroyed. Unpublish its name if it had one 405 * and dispose of its data. 406 * 407 * The garbage collector detects the final key_put(), removes the keyring from 408 * the serial number tree and then does RCU synchronisation before coming here, 409 * so we shouldn't need to worry about code poking around here with the RCU 410 * readlock held by this time. 411 */ 412 static void keyring_destroy(struct key *keyring) 413 { 414 if (keyring->description) { 415 write_lock(&keyring_name_lock); 416 417 if (keyring->name_link.next != NULL && 418 !list_empty(&keyring->name_link)) 419 list_del(&keyring->name_link); 420 421 write_unlock(&keyring_name_lock); 422 } 423 424 if (keyring->restrict_link) { 425 struct key_restriction *keyres = keyring->restrict_link; 426 427 key_put(keyres->key); 428 kfree(keyres); 429 } 430 431 assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops); 432 } 433 434 /* 435 * Describe a keyring for /proc. 436 */ 437 static void keyring_describe(const struct key *keyring, struct seq_file *m) 438 { 439 if (keyring->description) 440 seq_puts(m, keyring->description); 441 else 442 seq_puts(m, "[anon]"); 443 444 if (key_is_positive(keyring)) { 445 if (keyring->keys.nr_leaves_on_tree != 0) 446 seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree); 447 else 448 seq_puts(m, ": empty"); 449 } 450 } 451 452 struct keyring_read_iterator_context { 453 size_t buflen; 454 size_t count; 455 key_serial_t __user *buffer; 456 }; 457 458 static int keyring_read_iterator(const void *object, void *data) 459 { 460 struct keyring_read_iterator_context *ctx = data; 461 const struct key *key = keyring_ptr_to_key(object); 462 463 kenter("{%s,%d},,{%zu/%zu}", 464 key->type->name, key->serial, ctx->count, ctx->buflen); 465 466 if (ctx->count >= ctx->buflen) 467 return 1; 468 469 *ctx->buffer++ = key->serial; 470 ctx->count += sizeof(key->serial); 471 return 0; 472 } 473 474 /* 475 * Read a list of key IDs from the keyring's contents in binary form 476 * 477 * The keyring's semaphore is read-locked by the caller. This prevents someone 478 * from modifying it under us - which could cause us to read key IDs multiple 479 * times. 480 */ 481 static long keyring_read(const struct key *keyring, 482 char __user *buffer, size_t buflen) 483 { 484 struct keyring_read_iterator_context ctx; 485 long ret; 486 487 kenter("{%d},,%zu", key_serial(keyring), buflen); 488 489 if (buflen & (sizeof(key_serial_t) - 1)) 490 return -EINVAL; 491 492 /* Copy as many key IDs as fit into the buffer */ 493 if (buffer && buflen) { 494 ctx.buffer = (key_serial_t __user *)buffer; 495 ctx.buflen = buflen; 496 ctx.count = 0; 497 ret = assoc_array_iterate(&keyring->keys, 498 keyring_read_iterator, &ctx); 499 if (ret < 0) { 500 kleave(" = %ld [iterate]", ret); 501 return ret; 502 } 503 } 504 505 /* Return the size of the buffer needed */ 506 ret = keyring->keys.nr_leaves_on_tree * sizeof(key_serial_t); 507 if (ret <= buflen) 508 kleave("= %ld [ok]", ret); 509 else 510 kleave("= %ld [buffer too small]", ret); 511 return ret; 512 } 513 514 /* 515 * Allocate a keyring and link into the destination keyring. 516 */ 517 struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid, 518 const struct cred *cred, key_perm_t perm, 519 unsigned long flags, 520 struct key_restriction *restrict_link, 521 struct key *dest) 522 { 523 struct key *keyring; 524 int ret; 525 526 keyring = key_alloc(&key_type_keyring, description, 527 uid, gid, cred, perm, flags, restrict_link); 528 if (!IS_ERR(keyring)) { 529 ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL); 530 if (ret < 0) { 531 key_put(keyring); 532 keyring = ERR_PTR(ret); 533 } 534 } 535 536 return keyring; 537 } 538 EXPORT_SYMBOL(keyring_alloc); 539 540 /** 541 * restrict_link_reject - Give -EPERM to restrict link 542 * @keyring: The keyring being added to. 543 * @type: The type of key being added. 544 * @payload: The payload of the key intended to be added. 545 * @restriction_key: Keys providing additional data for evaluating restriction. 546 * 547 * Reject the addition of any links to a keyring. It can be overridden by 548 * passing KEY_ALLOC_BYPASS_RESTRICTION to key_instantiate_and_link() when 549 * adding a key to a keyring. 550 * 551 * This is meant to be stored in a key_restriction structure which is passed 552 * in the restrict_link parameter to keyring_alloc(). 553 */ 554 int restrict_link_reject(struct key *keyring, 555 const struct key_type *type, 556 const union key_payload *payload, 557 struct key *restriction_key) 558 { 559 return -EPERM; 560 } 561 562 /* 563 * By default, we keys found by getting an exact match on their descriptions. 564 */ 565 bool key_default_cmp(const struct key *key, 566 const struct key_match_data *match_data) 567 { 568 return strcmp(key->description, match_data->raw_data) == 0; 569 } 570 571 /* 572 * Iteration function to consider each key found. 573 */ 574 static int keyring_search_iterator(const void *object, void *iterator_data) 575 { 576 struct keyring_search_context *ctx = iterator_data; 577 const struct key *key = keyring_ptr_to_key(object); 578 unsigned long kflags = READ_ONCE(key->flags); 579 short state = READ_ONCE(key->state); 580 581 kenter("{%d}", key->serial); 582 583 /* ignore keys not of this type */ 584 if (key->type != ctx->index_key.type) { 585 kleave(" = 0 [!type]"); 586 return 0; 587 } 588 589 /* skip invalidated, revoked and expired keys */ 590 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) { 591 time64_t expiry = READ_ONCE(key->expiry); 592 593 if (kflags & ((1 << KEY_FLAG_INVALIDATED) | 594 (1 << KEY_FLAG_REVOKED))) { 595 ctx->result = ERR_PTR(-EKEYREVOKED); 596 kleave(" = %d [invrev]", ctx->skipped_ret); 597 goto skipped; 598 } 599 600 if (expiry && ctx->now >= expiry) { 601 if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED)) 602 ctx->result = ERR_PTR(-EKEYEXPIRED); 603 kleave(" = %d [expire]", ctx->skipped_ret); 604 goto skipped; 605 } 606 } 607 608 /* keys that don't match */ 609 if (!ctx->match_data.cmp(key, &ctx->match_data)) { 610 kleave(" = 0 [!match]"); 611 return 0; 612 } 613 614 /* key must have search permissions */ 615 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) && 616 key_task_permission(make_key_ref(key, ctx->possessed), 617 ctx->cred, KEY_NEED_SEARCH) < 0) { 618 ctx->result = ERR_PTR(-EACCES); 619 kleave(" = %d [!perm]", ctx->skipped_ret); 620 goto skipped; 621 } 622 623 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) { 624 /* we set a different error code if we pass a negative key */ 625 if (state < 0) { 626 ctx->result = ERR_PTR(state); 627 kleave(" = %d [neg]", ctx->skipped_ret); 628 goto skipped; 629 } 630 } 631 632 /* Found */ 633 ctx->result = make_key_ref(key, ctx->possessed); 634 kleave(" = 1 [found]"); 635 return 1; 636 637 skipped: 638 return ctx->skipped_ret; 639 } 640 641 /* 642 * Search inside a keyring for a key. We can search by walking to it 643 * directly based on its index-key or we can iterate over the entire 644 * tree looking for it, based on the match function. 645 */ 646 static int search_keyring(struct key *keyring, struct keyring_search_context *ctx) 647 { 648 if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) { 649 const void *object; 650 651 object = assoc_array_find(&keyring->keys, 652 &keyring_assoc_array_ops, 653 &ctx->index_key); 654 return object ? ctx->iterator(object, ctx) : 0; 655 } 656 return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx); 657 } 658 659 /* 660 * Search a tree of keyrings that point to other keyrings up to the maximum 661 * depth. 662 */ 663 static bool search_nested_keyrings(struct key *keyring, 664 struct keyring_search_context *ctx) 665 { 666 struct { 667 struct key *keyring; 668 struct assoc_array_node *node; 669 int slot; 670 } stack[KEYRING_SEARCH_MAX_DEPTH]; 671 672 struct assoc_array_shortcut *shortcut; 673 struct assoc_array_node *node; 674 struct assoc_array_ptr *ptr; 675 struct key *key; 676 int sp = 0, slot; 677 678 kenter("{%d},{%s,%s}", 679 keyring->serial, 680 ctx->index_key.type->name, 681 ctx->index_key.description); 682 683 #define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK) 684 BUG_ON((ctx->flags & STATE_CHECKS) == 0 || 685 (ctx->flags & STATE_CHECKS) == STATE_CHECKS); 686 687 if (ctx->index_key.description) 688 key_set_index_key(&ctx->index_key); 689 690 /* Check to see if this top-level keyring is what we are looking for 691 * and whether it is valid or not. 692 */ 693 if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE || 694 keyring_compare_object(keyring, &ctx->index_key)) { 695 ctx->skipped_ret = 2; 696 switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) { 697 case 1: 698 goto found; 699 case 2: 700 return false; 701 default: 702 break; 703 } 704 } 705 706 ctx->skipped_ret = 0; 707 708 /* Start processing a new keyring */ 709 descend_to_keyring: 710 kdebug("descend to %d", keyring->serial); 711 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) | 712 (1 << KEY_FLAG_REVOKED))) 713 goto not_this_keyring; 714 715 /* Search through the keys in this keyring before its searching its 716 * subtrees. 717 */ 718 if (search_keyring(keyring, ctx)) 719 goto found; 720 721 /* Then manually iterate through the keyrings nested in this one. 722 * 723 * Start from the root node of the index tree. Because of the way the 724 * hash function has been set up, keyrings cluster on the leftmost 725 * branch of the root node (root slot 0) or in the root node itself. 726 * Non-keyrings avoid the leftmost branch of the root entirely (root 727 * slots 1-15). 728 */ 729 if (!(ctx->flags & KEYRING_SEARCH_RECURSE)) 730 goto not_this_keyring; 731 732 ptr = READ_ONCE(keyring->keys.root); 733 if (!ptr) 734 goto not_this_keyring; 735 736 if (assoc_array_ptr_is_shortcut(ptr)) { 737 /* If the root is a shortcut, either the keyring only contains 738 * keyring pointers (everything clusters behind root slot 0) or 739 * doesn't contain any keyring pointers. 740 */ 741 shortcut = assoc_array_ptr_to_shortcut(ptr); 742 if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0) 743 goto not_this_keyring; 744 745 ptr = READ_ONCE(shortcut->next_node); 746 node = assoc_array_ptr_to_node(ptr); 747 goto begin_node; 748 } 749 750 node = assoc_array_ptr_to_node(ptr); 751 ptr = node->slots[0]; 752 if (!assoc_array_ptr_is_meta(ptr)) 753 goto begin_node; 754 755 descend_to_node: 756 /* Descend to a more distal node in this keyring's content tree and go 757 * through that. 758 */ 759 kdebug("descend"); 760 if (assoc_array_ptr_is_shortcut(ptr)) { 761 shortcut = assoc_array_ptr_to_shortcut(ptr); 762 ptr = READ_ONCE(shortcut->next_node); 763 BUG_ON(!assoc_array_ptr_is_node(ptr)); 764 } 765 node = assoc_array_ptr_to_node(ptr); 766 767 begin_node: 768 kdebug("begin_node"); 769 slot = 0; 770 ascend_to_node: 771 /* Go through the slots in a node */ 772 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) { 773 ptr = READ_ONCE(node->slots[slot]); 774 775 if (assoc_array_ptr_is_meta(ptr) && node->back_pointer) 776 goto descend_to_node; 777 778 if (!keyring_ptr_is_keyring(ptr)) 779 continue; 780 781 key = keyring_ptr_to_key(ptr); 782 783 if (sp >= KEYRING_SEARCH_MAX_DEPTH) { 784 if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) { 785 ctx->result = ERR_PTR(-ELOOP); 786 return false; 787 } 788 goto not_this_keyring; 789 } 790 791 /* Search a nested keyring */ 792 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) && 793 key_task_permission(make_key_ref(key, ctx->possessed), 794 ctx->cred, KEY_NEED_SEARCH) < 0) 795 continue; 796 797 /* stack the current position */ 798 stack[sp].keyring = keyring; 799 stack[sp].node = node; 800 stack[sp].slot = slot; 801 sp++; 802 803 /* begin again with the new keyring */ 804 keyring = key; 805 goto descend_to_keyring; 806 } 807 808 /* We've dealt with all the slots in the current node, so now we need 809 * to ascend to the parent and continue processing there. 810 */ 811 ptr = READ_ONCE(node->back_pointer); 812 slot = node->parent_slot; 813 814 if (ptr && assoc_array_ptr_is_shortcut(ptr)) { 815 shortcut = assoc_array_ptr_to_shortcut(ptr); 816 ptr = READ_ONCE(shortcut->back_pointer); 817 slot = shortcut->parent_slot; 818 } 819 if (!ptr) 820 goto not_this_keyring; 821 node = assoc_array_ptr_to_node(ptr); 822 slot++; 823 824 /* If we've ascended to the root (zero backpointer), we must have just 825 * finished processing the leftmost branch rather than the root slots - 826 * so there can't be any more keyrings for us to find. 827 */ 828 if (node->back_pointer) { 829 kdebug("ascend %d", slot); 830 goto ascend_to_node; 831 } 832 833 /* The keyring we're looking at was disqualified or didn't contain a 834 * matching key. 835 */ 836 not_this_keyring: 837 kdebug("not_this_keyring %d", sp); 838 if (sp <= 0) { 839 kleave(" = false"); 840 return false; 841 } 842 843 /* Resume the processing of a keyring higher up in the tree */ 844 sp--; 845 keyring = stack[sp].keyring; 846 node = stack[sp].node; 847 slot = stack[sp].slot + 1; 848 kdebug("ascend to %d [%d]", keyring->serial, slot); 849 goto ascend_to_node; 850 851 /* We found a viable match */ 852 found: 853 key = key_ref_to_ptr(ctx->result); 854 key_check(key); 855 if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) { 856 key->last_used_at = ctx->now; 857 keyring->last_used_at = ctx->now; 858 while (sp > 0) 859 stack[--sp].keyring->last_used_at = ctx->now; 860 } 861 kleave(" = true"); 862 return true; 863 } 864 865 /** 866 * keyring_search_rcu - Search a keyring tree for a matching key under RCU 867 * @keyring_ref: A pointer to the keyring with possession indicator. 868 * @ctx: The keyring search context. 869 * 870 * Search the supplied keyring tree for a key that matches the criteria given. 871 * The root keyring and any linked keyrings must grant Search permission to the 872 * caller to be searchable and keys can only be found if they too grant Search 873 * to the caller. The possession flag on the root keyring pointer controls use 874 * of the possessor bits in permissions checking of the entire tree. In 875 * addition, the LSM gets to forbid keyring searches and key matches. 876 * 877 * The search is performed as a breadth-then-depth search up to the prescribed 878 * limit (KEYRING_SEARCH_MAX_DEPTH). The caller must hold the RCU read lock to 879 * prevent keyrings from being destroyed or rearranged whilst they are being 880 * searched. 881 * 882 * Keys are matched to the type provided and are then filtered by the match 883 * function, which is given the description to use in any way it sees fit. The 884 * match function may use any attributes of a key that it wishes to to 885 * determine the match. Normally the match function from the key type would be 886 * used. 887 * 888 * RCU can be used to prevent the keyring key lists from disappearing without 889 * the need to take lots of locks. 890 * 891 * Returns a pointer to the found key and increments the key usage count if 892 * successful; -EAGAIN if no matching keys were found, or if expired or revoked 893 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the 894 * specified keyring wasn't a keyring. 895 * 896 * In the case of a successful return, the possession attribute from 897 * @keyring_ref is propagated to the returned key reference. 898 */ 899 key_ref_t keyring_search_rcu(key_ref_t keyring_ref, 900 struct keyring_search_context *ctx) 901 { 902 struct key *keyring; 903 long err; 904 905 ctx->iterator = keyring_search_iterator; 906 ctx->possessed = is_key_possessed(keyring_ref); 907 ctx->result = ERR_PTR(-EAGAIN); 908 909 keyring = key_ref_to_ptr(keyring_ref); 910 key_check(keyring); 911 912 if (keyring->type != &key_type_keyring) 913 return ERR_PTR(-ENOTDIR); 914 915 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) { 916 err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH); 917 if (err < 0) 918 return ERR_PTR(err); 919 } 920 921 ctx->now = ktime_get_real_seconds(); 922 if (search_nested_keyrings(keyring, ctx)) 923 __key_get(key_ref_to_ptr(ctx->result)); 924 return ctx->result; 925 } 926 927 /** 928 * keyring_search - Search the supplied keyring tree for a matching key 929 * @keyring: The root of the keyring tree to be searched. 930 * @type: The type of keyring we want to find. 931 * @description: The name of the keyring we want to find. 932 * @recurse: True to search the children of @keyring also 933 * 934 * As keyring_search_rcu() above, but using the current task's credentials and 935 * type's default matching function and preferred search method. 936 */ 937 key_ref_t keyring_search(key_ref_t keyring, 938 struct key_type *type, 939 const char *description, 940 bool recurse) 941 { 942 struct keyring_search_context ctx = { 943 .index_key.type = type, 944 .index_key.description = description, 945 .index_key.desc_len = strlen(description), 946 .cred = current_cred(), 947 .match_data.cmp = key_default_cmp, 948 .match_data.raw_data = description, 949 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT, 950 .flags = KEYRING_SEARCH_DO_STATE_CHECK, 951 }; 952 key_ref_t key; 953 int ret; 954 955 if (recurse) 956 ctx.flags |= KEYRING_SEARCH_RECURSE; 957 if (type->match_preparse) { 958 ret = type->match_preparse(&ctx.match_data); 959 if (ret < 0) 960 return ERR_PTR(ret); 961 } 962 963 rcu_read_lock(); 964 key = keyring_search_rcu(keyring, &ctx); 965 rcu_read_unlock(); 966 967 if (type->match_free) 968 type->match_free(&ctx.match_data); 969 return key; 970 } 971 EXPORT_SYMBOL(keyring_search); 972 973 static struct key_restriction *keyring_restriction_alloc( 974 key_restrict_link_func_t check) 975 { 976 struct key_restriction *keyres = 977 kzalloc(sizeof(struct key_restriction), GFP_KERNEL); 978 979 if (!keyres) 980 return ERR_PTR(-ENOMEM); 981 982 keyres->check = check; 983 984 return keyres; 985 } 986 987 /* 988 * Semaphore to serialise restriction setup to prevent reference count 989 * cycles through restriction key pointers. 990 */ 991 static DECLARE_RWSEM(keyring_serialise_restrict_sem); 992 993 /* 994 * Check for restriction cycles that would prevent keyring garbage collection. 995 * keyring_serialise_restrict_sem must be held. 996 */ 997 static bool keyring_detect_restriction_cycle(const struct key *dest_keyring, 998 struct key_restriction *keyres) 999 { 1000 while (keyres && keyres->key && 1001 keyres->key->type == &key_type_keyring) { 1002 if (keyres->key == dest_keyring) 1003 return true; 1004 1005 keyres = keyres->key->restrict_link; 1006 } 1007 1008 return false; 1009 } 1010 1011 /** 1012 * keyring_restrict - Look up and apply a restriction to a keyring 1013 * @keyring_ref: The keyring to be restricted 1014 * @type: The key type that will provide the restriction checker. 1015 * @restriction: The restriction options to apply to the keyring 1016 * 1017 * Look up a keyring and apply a restriction to it. The restriction is managed 1018 * by the specific key type, but can be configured by the options specified in 1019 * the restriction string. 1020 */ 1021 int keyring_restrict(key_ref_t keyring_ref, const char *type, 1022 const char *restriction) 1023 { 1024 struct key *keyring; 1025 struct key_type *restrict_type = NULL; 1026 struct key_restriction *restrict_link; 1027 int ret = 0; 1028 1029 keyring = key_ref_to_ptr(keyring_ref); 1030 key_check(keyring); 1031 1032 if (keyring->type != &key_type_keyring) 1033 return -ENOTDIR; 1034 1035 if (!type) { 1036 restrict_link = keyring_restriction_alloc(restrict_link_reject); 1037 } else { 1038 restrict_type = key_type_lookup(type); 1039 1040 if (IS_ERR(restrict_type)) 1041 return PTR_ERR(restrict_type); 1042 1043 if (!restrict_type->lookup_restriction) { 1044 ret = -ENOENT; 1045 goto error; 1046 } 1047 1048 restrict_link = restrict_type->lookup_restriction(restriction); 1049 } 1050 1051 if (IS_ERR(restrict_link)) { 1052 ret = PTR_ERR(restrict_link); 1053 goto error; 1054 } 1055 1056 down_write(&keyring->sem); 1057 down_write(&keyring_serialise_restrict_sem); 1058 1059 if (keyring->restrict_link) 1060 ret = -EEXIST; 1061 else if (keyring_detect_restriction_cycle(keyring, restrict_link)) 1062 ret = -EDEADLK; 1063 else 1064 keyring->restrict_link = restrict_link; 1065 1066 up_write(&keyring_serialise_restrict_sem); 1067 up_write(&keyring->sem); 1068 1069 if (ret < 0) { 1070 key_put(restrict_link->key); 1071 kfree(restrict_link); 1072 } 1073 1074 error: 1075 if (restrict_type) 1076 key_type_put(restrict_type); 1077 1078 return ret; 1079 } 1080 EXPORT_SYMBOL(keyring_restrict); 1081 1082 /* 1083 * Search the given keyring for a key that might be updated. 1084 * 1085 * The caller must guarantee that the keyring is a keyring and that the 1086 * permission is granted to modify the keyring as no check is made here. The 1087 * caller must also hold a lock on the keyring semaphore. 1088 * 1089 * Returns a pointer to the found key with usage count incremented if 1090 * successful and returns NULL if not found. Revoked and invalidated keys are 1091 * skipped over. 1092 * 1093 * If successful, the possession indicator is propagated from the keyring ref 1094 * to the returned key reference. 1095 */ 1096 key_ref_t find_key_to_update(key_ref_t keyring_ref, 1097 const struct keyring_index_key *index_key) 1098 { 1099 struct key *keyring, *key; 1100 const void *object; 1101 1102 keyring = key_ref_to_ptr(keyring_ref); 1103 1104 kenter("{%d},{%s,%s}", 1105 keyring->serial, index_key->type->name, index_key->description); 1106 1107 object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops, 1108 index_key); 1109 1110 if (object) 1111 goto found; 1112 1113 kleave(" = NULL"); 1114 return NULL; 1115 1116 found: 1117 key = keyring_ptr_to_key(object); 1118 if (key->flags & ((1 << KEY_FLAG_INVALIDATED) | 1119 (1 << KEY_FLAG_REVOKED))) { 1120 kleave(" = NULL [x]"); 1121 return NULL; 1122 } 1123 __key_get(key); 1124 kleave(" = {%d}", key->serial); 1125 return make_key_ref(key, is_key_possessed(keyring_ref)); 1126 } 1127 1128 /* 1129 * Find a keyring with the specified name. 1130 * 1131 * Only keyrings that have nonzero refcount, are not revoked, and are owned by a 1132 * user in the current user namespace are considered. If @uid_keyring is %true, 1133 * the keyring additionally must have been allocated as a user or user session 1134 * keyring; otherwise, it must grant Search permission directly to the caller. 1135 * 1136 * Returns a pointer to the keyring with the keyring's refcount having being 1137 * incremented on success. -ENOKEY is returned if a key could not be found. 1138 */ 1139 struct key *find_keyring_by_name(const char *name, bool uid_keyring) 1140 { 1141 struct user_namespace *ns = current_user_ns(); 1142 struct key *keyring; 1143 1144 if (!name) 1145 return ERR_PTR(-EINVAL); 1146 1147 read_lock(&keyring_name_lock); 1148 1149 /* Search this hash bucket for a keyring with a matching name that 1150 * grants Search permission and that hasn't been revoked 1151 */ 1152 list_for_each_entry(keyring, &ns->keyring_name_list, name_link) { 1153 if (!kuid_has_mapping(ns, keyring->user->uid)) 1154 continue; 1155 1156 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags)) 1157 continue; 1158 1159 if (strcmp(keyring->description, name) != 0) 1160 continue; 1161 1162 if (uid_keyring) { 1163 if (!test_bit(KEY_FLAG_UID_KEYRING, 1164 &keyring->flags)) 1165 continue; 1166 } else { 1167 if (key_permission(make_key_ref(keyring, 0), 1168 KEY_NEED_SEARCH) < 0) 1169 continue; 1170 } 1171 1172 /* we've got a match but we might end up racing with 1173 * key_cleanup() if the keyring is currently 'dead' 1174 * (ie. it has a zero usage count) */ 1175 if (!refcount_inc_not_zero(&keyring->usage)) 1176 continue; 1177 keyring->last_used_at = ktime_get_real_seconds(); 1178 goto out; 1179 } 1180 1181 keyring = ERR_PTR(-ENOKEY); 1182 out: 1183 read_unlock(&keyring_name_lock); 1184 return keyring; 1185 } 1186 1187 static int keyring_detect_cycle_iterator(const void *object, 1188 void *iterator_data) 1189 { 1190 struct keyring_search_context *ctx = iterator_data; 1191 const struct key *key = keyring_ptr_to_key(object); 1192 1193 kenter("{%d}", key->serial); 1194 1195 /* We might get a keyring with matching index-key that is nonetheless a 1196 * different keyring. */ 1197 if (key != ctx->match_data.raw_data) 1198 return 0; 1199 1200 ctx->result = ERR_PTR(-EDEADLK); 1201 return 1; 1202 } 1203 1204 /* 1205 * See if a cycle will will be created by inserting acyclic tree B in acyclic 1206 * tree A at the topmost level (ie: as a direct child of A). 1207 * 1208 * Since we are adding B to A at the top level, checking for cycles should just 1209 * be a matter of seeing if node A is somewhere in tree B. 1210 */ 1211 static int keyring_detect_cycle(struct key *A, struct key *B) 1212 { 1213 struct keyring_search_context ctx = { 1214 .index_key = A->index_key, 1215 .match_data.raw_data = A, 1216 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT, 1217 .iterator = keyring_detect_cycle_iterator, 1218 .flags = (KEYRING_SEARCH_NO_STATE_CHECK | 1219 KEYRING_SEARCH_NO_UPDATE_TIME | 1220 KEYRING_SEARCH_NO_CHECK_PERM | 1221 KEYRING_SEARCH_DETECT_TOO_DEEP | 1222 KEYRING_SEARCH_RECURSE), 1223 }; 1224 1225 rcu_read_lock(); 1226 search_nested_keyrings(B, &ctx); 1227 rcu_read_unlock(); 1228 return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result); 1229 } 1230 1231 /* 1232 * Lock keyring for link. 1233 */ 1234 int __key_link_lock(struct key *keyring, 1235 const struct keyring_index_key *index_key) 1236 __acquires(&keyring->sem) 1237 __acquires(&keyring_serialise_link_lock) 1238 { 1239 if (keyring->type != &key_type_keyring) 1240 return -ENOTDIR; 1241 1242 down_write(&keyring->sem); 1243 1244 /* Serialise link/link calls to prevent parallel calls causing a cycle 1245 * when linking two keyring in opposite orders. 1246 */ 1247 if (index_key->type == &key_type_keyring) 1248 mutex_lock(&keyring_serialise_link_lock); 1249 1250 return 0; 1251 } 1252 1253 /* 1254 * Lock keyrings for move (link/unlink combination). 1255 */ 1256 int __key_move_lock(struct key *l_keyring, struct key *u_keyring, 1257 const struct keyring_index_key *index_key) 1258 __acquires(&l_keyring->sem) 1259 __acquires(&u_keyring->sem) 1260 __acquires(&keyring_serialise_link_lock) 1261 { 1262 if (l_keyring->type != &key_type_keyring || 1263 u_keyring->type != &key_type_keyring) 1264 return -ENOTDIR; 1265 1266 /* We have to be very careful here to take the keyring locks in the 1267 * right order, lest we open ourselves to deadlocking against another 1268 * move operation. 1269 */ 1270 if (l_keyring < u_keyring) { 1271 down_write(&l_keyring->sem); 1272 down_write_nested(&u_keyring->sem, 1); 1273 } else { 1274 down_write(&u_keyring->sem); 1275 down_write_nested(&l_keyring->sem, 1); 1276 } 1277 1278 /* Serialise link/link calls to prevent parallel calls causing a cycle 1279 * when linking two keyring in opposite orders. 1280 */ 1281 if (index_key->type == &key_type_keyring) 1282 mutex_lock(&keyring_serialise_link_lock); 1283 1284 return 0; 1285 } 1286 1287 /* 1288 * Preallocate memory so that a key can be linked into to a keyring. 1289 */ 1290 int __key_link_begin(struct key *keyring, 1291 const struct keyring_index_key *index_key, 1292 struct assoc_array_edit **_edit) 1293 { 1294 struct assoc_array_edit *edit; 1295 int ret; 1296 1297 kenter("%d,%s,%s,", 1298 keyring->serial, index_key->type->name, index_key->description); 1299 1300 BUG_ON(index_key->desc_len == 0); 1301 BUG_ON(*_edit != NULL); 1302 1303 *_edit = NULL; 1304 1305 ret = -EKEYREVOKED; 1306 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags)) 1307 goto error; 1308 1309 /* Create an edit script that will insert/replace the key in the 1310 * keyring tree. 1311 */ 1312 edit = assoc_array_insert(&keyring->keys, 1313 &keyring_assoc_array_ops, 1314 index_key, 1315 NULL); 1316 if (IS_ERR(edit)) { 1317 ret = PTR_ERR(edit); 1318 goto error; 1319 } 1320 1321 /* If we're not replacing a link in-place then we're going to need some 1322 * extra quota. 1323 */ 1324 if (!edit->dead_leaf) { 1325 ret = key_payload_reserve(keyring, 1326 keyring->datalen + KEYQUOTA_LINK_BYTES); 1327 if (ret < 0) 1328 goto error_cancel; 1329 } 1330 1331 *_edit = edit; 1332 kleave(" = 0"); 1333 return 0; 1334 1335 error_cancel: 1336 assoc_array_cancel_edit(edit); 1337 error: 1338 kleave(" = %d", ret); 1339 return ret; 1340 } 1341 1342 /* 1343 * Check already instantiated keys aren't going to be a problem. 1344 * 1345 * The caller must have called __key_link_begin(). Don't need to call this for 1346 * keys that were created since __key_link_begin() was called. 1347 */ 1348 int __key_link_check_live_key(struct key *keyring, struct key *key) 1349 { 1350 if (key->type == &key_type_keyring) 1351 /* check that we aren't going to create a cycle by linking one 1352 * keyring to another */ 1353 return keyring_detect_cycle(keyring, key); 1354 return 0; 1355 } 1356 1357 /* 1358 * Link a key into to a keyring. 1359 * 1360 * Must be called with __key_link_begin() having being called. Discards any 1361 * already extant link to matching key if there is one, so that each keyring 1362 * holds at most one link to any given key of a particular type+description 1363 * combination. 1364 */ 1365 void __key_link(struct key *key, struct assoc_array_edit **_edit) 1366 { 1367 __key_get(key); 1368 assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key)); 1369 assoc_array_apply_edit(*_edit); 1370 *_edit = NULL; 1371 } 1372 1373 /* 1374 * Finish linking a key into to a keyring. 1375 * 1376 * Must be called with __key_link_begin() having being called. 1377 */ 1378 void __key_link_end(struct key *keyring, 1379 const struct keyring_index_key *index_key, 1380 struct assoc_array_edit *edit) 1381 __releases(&keyring->sem) 1382 __releases(&keyring_serialise_link_lock) 1383 { 1384 BUG_ON(index_key->type == NULL); 1385 kenter("%d,%s,", keyring->serial, index_key->type->name); 1386 1387 if (edit) { 1388 if (!edit->dead_leaf) { 1389 key_payload_reserve(keyring, 1390 keyring->datalen - KEYQUOTA_LINK_BYTES); 1391 } 1392 assoc_array_cancel_edit(edit); 1393 } 1394 up_write(&keyring->sem); 1395 1396 if (index_key->type == &key_type_keyring) 1397 mutex_unlock(&keyring_serialise_link_lock); 1398 } 1399 1400 /* 1401 * Check addition of keys to restricted keyrings. 1402 */ 1403 static int __key_link_check_restriction(struct key *keyring, struct key *key) 1404 { 1405 if (!keyring->restrict_link || !keyring->restrict_link->check) 1406 return 0; 1407 return keyring->restrict_link->check(keyring, key->type, &key->payload, 1408 keyring->restrict_link->key); 1409 } 1410 1411 /** 1412 * key_link - Link a key to a keyring 1413 * @keyring: The keyring to make the link in. 1414 * @key: The key to link to. 1415 * 1416 * Make a link in a keyring to a key, such that the keyring holds a reference 1417 * on that key and the key can potentially be found by searching that keyring. 1418 * 1419 * This function will write-lock the keyring's semaphore and will consume some 1420 * of the user's key data quota to hold the link. 1421 * 1422 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, 1423 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is 1424 * full, -EDQUOT if there is insufficient key data quota remaining to add 1425 * another link or -ENOMEM if there's insufficient memory. 1426 * 1427 * It is assumed that the caller has checked that it is permitted for a link to 1428 * be made (the keyring should have Write permission and the key Link 1429 * permission). 1430 */ 1431 int key_link(struct key *keyring, struct key *key) 1432 { 1433 struct assoc_array_edit *edit = NULL; 1434 int ret; 1435 1436 kenter("{%d,%d}", keyring->serial, refcount_read(&keyring->usage)); 1437 1438 key_check(keyring); 1439 key_check(key); 1440 1441 ret = __key_link_lock(keyring, &key->index_key); 1442 if (ret < 0) 1443 goto error; 1444 1445 ret = __key_link_begin(keyring, &key->index_key, &edit); 1446 if (ret < 0) 1447 goto error_end; 1448 1449 kdebug("begun {%d,%d}", keyring->serial, refcount_read(&keyring->usage)); 1450 ret = __key_link_check_restriction(keyring, key); 1451 if (ret == 0) 1452 ret = __key_link_check_live_key(keyring, key); 1453 if (ret == 0) 1454 __key_link(key, &edit); 1455 1456 error_end: 1457 __key_link_end(keyring, &key->index_key, edit); 1458 error: 1459 kleave(" = %d {%d,%d}", ret, keyring->serial, refcount_read(&keyring->usage)); 1460 return ret; 1461 } 1462 EXPORT_SYMBOL(key_link); 1463 1464 /* 1465 * Lock a keyring for unlink. 1466 */ 1467 static int __key_unlink_lock(struct key *keyring) 1468 __acquires(&keyring->sem) 1469 { 1470 if (keyring->type != &key_type_keyring) 1471 return -ENOTDIR; 1472 1473 down_write(&keyring->sem); 1474 return 0; 1475 } 1476 1477 /* 1478 * Begin the process of unlinking a key from a keyring. 1479 */ 1480 static int __key_unlink_begin(struct key *keyring, struct key *key, 1481 struct assoc_array_edit **_edit) 1482 { 1483 struct assoc_array_edit *edit; 1484 1485 BUG_ON(*_edit != NULL); 1486 1487 edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops, 1488 &key->index_key); 1489 if (IS_ERR(edit)) 1490 return PTR_ERR(edit); 1491 1492 if (!edit) 1493 return -ENOENT; 1494 1495 *_edit = edit; 1496 return 0; 1497 } 1498 1499 /* 1500 * Apply an unlink change. 1501 */ 1502 static void __key_unlink(struct key *keyring, struct key *key, 1503 struct assoc_array_edit **_edit) 1504 { 1505 assoc_array_apply_edit(*_edit); 1506 *_edit = NULL; 1507 key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES); 1508 } 1509 1510 /* 1511 * Finish unlinking a key from to a keyring. 1512 */ 1513 static void __key_unlink_end(struct key *keyring, 1514 struct key *key, 1515 struct assoc_array_edit *edit) 1516 __releases(&keyring->sem) 1517 { 1518 if (edit) 1519 assoc_array_cancel_edit(edit); 1520 up_write(&keyring->sem); 1521 } 1522 1523 /** 1524 * key_unlink - Unlink the first link to a key from a keyring. 1525 * @keyring: The keyring to remove the link from. 1526 * @key: The key the link is to. 1527 * 1528 * Remove a link from a keyring to a key. 1529 * 1530 * This function will write-lock the keyring's semaphore. 1531 * 1532 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if 1533 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient 1534 * memory. 1535 * 1536 * It is assumed that the caller has checked that it is permitted for a link to 1537 * be removed (the keyring should have Write permission; no permissions are 1538 * required on the key). 1539 */ 1540 int key_unlink(struct key *keyring, struct key *key) 1541 { 1542 struct assoc_array_edit *edit = NULL; 1543 int ret; 1544 1545 key_check(keyring); 1546 key_check(key); 1547 1548 ret = __key_unlink_lock(keyring); 1549 if (ret < 0) 1550 return ret; 1551 1552 ret = __key_unlink_begin(keyring, key, &edit); 1553 if (ret == 0) 1554 __key_unlink(keyring, key, &edit); 1555 __key_unlink_end(keyring, key, edit); 1556 return ret; 1557 } 1558 EXPORT_SYMBOL(key_unlink); 1559 1560 /** 1561 * key_move - Move a key from one keyring to another 1562 * @key: The key to move 1563 * @from_keyring: The keyring to remove the link from. 1564 * @to_keyring: The keyring to make the link in. 1565 * @flags: Qualifying flags, such as KEYCTL_MOVE_EXCL. 1566 * 1567 * Make a link in @to_keyring to a key, such that the keyring holds a reference 1568 * on that key and the key can potentially be found by searching that keyring 1569 * whilst simultaneously removing a link to the key from @from_keyring. 1570 * 1571 * This function will write-lock both keyring's semaphores and will consume 1572 * some of the user's key data quota to hold the link on @to_keyring. 1573 * 1574 * Returns 0 if successful, -ENOTDIR if either keyring isn't a keyring, 1575 * -EKEYREVOKED if either keyring has been revoked, -ENFILE if the second 1576 * keyring is full, -EDQUOT if there is insufficient key data quota remaining 1577 * to add another link or -ENOMEM if there's insufficient memory. If 1578 * KEYCTL_MOVE_EXCL is set, then -EEXIST will be returned if there's already a 1579 * matching key in @to_keyring. 1580 * 1581 * It is assumed that the caller has checked that it is permitted for a link to 1582 * be made (the keyring should have Write permission and the key Link 1583 * permission). 1584 */ 1585 int key_move(struct key *key, 1586 struct key *from_keyring, 1587 struct key *to_keyring, 1588 unsigned int flags) 1589 { 1590 struct assoc_array_edit *from_edit = NULL, *to_edit = NULL; 1591 int ret; 1592 1593 kenter("%d,%d,%d", key->serial, from_keyring->serial, to_keyring->serial); 1594 1595 if (from_keyring == to_keyring) 1596 return 0; 1597 1598 key_check(key); 1599 key_check(from_keyring); 1600 key_check(to_keyring); 1601 1602 ret = __key_move_lock(from_keyring, to_keyring, &key->index_key); 1603 if (ret < 0) 1604 goto out; 1605 ret = __key_unlink_begin(from_keyring, key, &from_edit); 1606 if (ret < 0) 1607 goto error; 1608 ret = __key_link_begin(to_keyring, &key->index_key, &to_edit); 1609 if (ret < 0) 1610 goto error; 1611 1612 ret = -EEXIST; 1613 if (to_edit->dead_leaf && (flags & KEYCTL_MOVE_EXCL)) 1614 goto error; 1615 1616 ret = __key_link_check_restriction(to_keyring, key); 1617 if (ret < 0) 1618 goto error; 1619 ret = __key_link_check_live_key(to_keyring, key); 1620 if (ret < 0) 1621 goto error; 1622 1623 __key_unlink(from_keyring, key, &from_edit); 1624 __key_link(key, &to_edit); 1625 error: 1626 __key_link_end(to_keyring, &key->index_key, to_edit); 1627 __key_unlink_end(from_keyring, key, from_edit); 1628 out: 1629 kleave(" = %d", ret); 1630 return ret; 1631 } 1632 EXPORT_SYMBOL(key_move); 1633 1634 /** 1635 * keyring_clear - Clear a keyring 1636 * @keyring: The keyring to clear. 1637 * 1638 * Clear the contents of the specified keyring. 1639 * 1640 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring. 1641 */ 1642 int keyring_clear(struct key *keyring) 1643 { 1644 struct assoc_array_edit *edit; 1645 int ret; 1646 1647 if (keyring->type != &key_type_keyring) 1648 return -ENOTDIR; 1649 1650 down_write(&keyring->sem); 1651 1652 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops); 1653 if (IS_ERR(edit)) { 1654 ret = PTR_ERR(edit); 1655 } else { 1656 if (edit) 1657 assoc_array_apply_edit(edit); 1658 key_payload_reserve(keyring, 0); 1659 ret = 0; 1660 } 1661 1662 up_write(&keyring->sem); 1663 return ret; 1664 } 1665 EXPORT_SYMBOL(keyring_clear); 1666 1667 /* 1668 * Dispose of the links from a revoked keyring. 1669 * 1670 * This is called with the key sem write-locked. 1671 */ 1672 static void keyring_revoke(struct key *keyring) 1673 { 1674 struct assoc_array_edit *edit; 1675 1676 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops); 1677 if (!IS_ERR(edit)) { 1678 if (edit) 1679 assoc_array_apply_edit(edit); 1680 key_payload_reserve(keyring, 0); 1681 } 1682 } 1683 1684 static bool keyring_gc_select_iterator(void *object, void *iterator_data) 1685 { 1686 struct key *key = keyring_ptr_to_key(object); 1687 time64_t *limit = iterator_data; 1688 1689 if (key_is_dead(key, *limit)) 1690 return false; 1691 key_get(key); 1692 return true; 1693 } 1694 1695 static int keyring_gc_check_iterator(const void *object, void *iterator_data) 1696 { 1697 const struct key *key = keyring_ptr_to_key(object); 1698 time64_t *limit = iterator_data; 1699 1700 key_check(key); 1701 return key_is_dead(key, *limit); 1702 } 1703 1704 /* 1705 * Garbage collect pointers from a keyring. 1706 * 1707 * Not called with any locks held. The keyring's key struct will not be 1708 * deallocated under us as only our caller may deallocate it. 1709 */ 1710 void keyring_gc(struct key *keyring, time64_t limit) 1711 { 1712 int result; 1713 1714 kenter("%x{%s}", keyring->serial, keyring->description ?: ""); 1715 1716 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) | 1717 (1 << KEY_FLAG_REVOKED))) 1718 goto dont_gc; 1719 1720 /* scan the keyring looking for dead keys */ 1721 rcu_read_lock(); 1722 result = assoc_array_iterate(&keyring->keys, 1723 keyring_gc_check_iterator, &limit); 1724 rcu_read_unlock(); 1725 if (result == true) 1726 goto do_gc; 1727 1728 dont_gc: 1729 kleave(" [no gc]"); 1730 return; 1731 1732 do_gc: 1733 down_write(&keyring->sem); 1734 assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops, 1735 keyring_gc_select_iterator, &limit); 1736 up_write(&keyring->sem); 1737 kleave(" [gc]"); 1738 } 1739 1740 /* 1741 * Garbage collect restriction pointers from a keyring. 1742 * 1743 * Keyring restrictions are associated with a key type, and must be cleaned 1744 * up if the key type is unregistered. The restriction is altered to always 1745 * reject additional keys so a keyring cannot be opened up by unregistering 1746 * a key type. 1747 * 1748 * Not called with any keyring locks held. The keyring's key struct will not 1749 * be deallocated under us as only our caller may deallocate it. 1750 * 1751 * The caller is required to hold key_types_sem and dead_type->sem. This is 1752 * fulfilled by key_gc_keytype() holding the locks on behalf of 1753 * key_garbage_collector(), which it invokes on a workqueue. 1754 */ 1755 void keyring_restriction_gc(struct key *keyring, struct key_type *dead_type) 1756 { 1757 struct key_restriction *keyres; 1758 1759 kenter("%x{%s}", keyring->serial, keyring->description ?: ""); 1760 1761 /* 1762 * keyring->restrict_link is only assigned at key allocation time 1763 * or with the key type locked, so the only values that could be 1764 * concurrently assigned to keyring->restrict_link are for key 1765 * types other than dead_type. Given this, it's ok to check 1766 * the key type before acquiring keyring->sem. 1767 */ 1768 if (!dead_type || !keyring->restrict_link || 1769 keyring->restrict_link->keytype != dead_type) { 1770 kleave(" [no restriction gc]"); 1771 return; 1772 } 1773 1774 /* Lock the keyring to ensure that a link is not in progress */ 1775 down_write(&keyring->sem); 1776 1777 keyres = keyring->restrict_link; 1778 1779 keyres->check = restrict_link_reject; 1780 1781 key_put(keyres->key); 1782 keyres->key = NULL; 1783 keyres->keytype = NULL; 1784 1785 up_write(&keyring->sem); 1786 1787 kleave(" [restriction gc]"); 1788 } 1789