1 /* Keyring handling 2 * 3 * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved. 4 * Written by David Howells (dhowells@redhat.com) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/sched.h> 15 #include <linux/slab.h> 16 #include <linux/security.h> 17 #include <linux/seq_file.h> 18 #include <linux/err.h> 19 #include <keys/keyring-type.h> 20 #include <keys/user-type.h> 21 #include <linux/assoc_array_priv.h> 22 #include <linux/uaccess.h> 23 #include "internal.h" 24 25 /* 26 * When plumbing the depths of the key tree, this sets a hard limit 27 * set on how deep we're willing to go. 28 */ 29 #define KEYRING_SEARCH_MAX_DEPTH 6 30 31 /* 32 * We keep all named keyrings in a hash to speed looking them up. 33 */ 34 #define KEYRING_NAME_HASH_SIZE (1 << 5) 35 36 /* 37 * We mark pointers we pass to the associative array with bit 1 set if 38 * they're keyrings and clear otherwise. 39 */ 40 #define KEYRING_PTR_SUBTYPE 0x2UL 41 42 static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x) 43 { 44 return (unsigned long)x & KEYRING_PTR_SUBTYPE; 45 } 46 static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x) 47 { 48 void *object = assoc_array_ptr_to_leaf(x); 49 return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE); 50 } 51 static inline void *keyring_key_to_ptr(struct key *key) 52 { 53 if (key->type == &key_type_keyring) 54 return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE); 55 return key; 56 } 57 58 static struct list_head keyring_name_hash[KEYRING_NAME_HASH_SIZE]; 59 static DEFINE_RWLOCK(keyring_name_lock); 60 61 static inline unsigned keyring_hash(const char *desc) 62 { 63 unsigned bucket = 0; 64 65 for (; *desc; desc++) 66 bucket += (unsigned char)*desc; 67 68 return bucket & (KEYRING_NAME_HASH_SIZE - 1); 69 } 70 71 /* 72 * The keyring key type definition. Keyrings are simply keys of this type and 73 * can be treated as ordinary keys in addition to having their own special 74 * operations. 75 */ 76 static int keyring_preparse(struct key_preparsed_payload *prep); 77 static void keyring_free_preparse(struct key_preparsed_payload *prep); 78 static int keyring_instantiate(struct key *keyring, 79 struct key_preparsed_payload *prep); 80 static void keyring_revoke(struct key *keyring); 81 static void keyring_destroy(struct key *keyring); 82 static void keyring_describe(const struct key *keyring, struct seq_file *m); 83 static long keyring_read(const struct key *keyring, 84 char __user *buffer, size_t buflen); 85 86 struct key_type key_type_keyring = { 87 .name = "keyring", 88 .def_datalen = 0, 89 .preparse = keyring_preparse, 90 .free_preparse = keyring_free_preparse, 91 .instantiate = keyring_instantiate, 92 .revoke = keyring_revoke, 93 .destroy = keyring_destroy, 94 .describe = keyring_describe, 95 .read = keyring_read, 96 }; 97 EXPORT_SYMBOL(key_type_keyring); 98 99 /* 100 * Semaphore to serialise link/link calls to prevent two link calls in parallel 101 * introducing a cycle. 102 */ 103 static DECLARE_RWSEM(keyring_serialise_link_sem); 104 105 /* 106 * Publish the name of a keyring so that it can be found by name (if it has 107 * one). 108 */ 109 static void keyring_publish_name(struct key *keyring) 110 { 111 int bucket; 112 113 if (keyring->description) { 114 bucket = keyring_hash(keyring->description); 115 116 write_lock(&keyring_name_lock); 117 118 if (!keyring_name_hash[bucket].next) 119 INIT_LIST_HEAD(&keyring_name_hash[bucket]); 120 121 list_add_tail(&keyring->name_link, 122 &keyring_name_hash[bucket]); 123 124 write_unlock(&keyring_name_lock); 125 } 126 } 127 128 /* 129 * Preparse a keyring payload 130 */ 131 static int keyring_preparse(struct key_preparsed_payload *prep) 132 { 133 return prep->datalen != 0 ? -EINVAL : 0; 134 } 135 136 /* 137 * Free a preparse of a user defined key payload 138 */ 139 static void keyring_free_preparse(struct key_preparsed_payload *prep) 140 { 141 } 142 143 /* 144 * Initialise a keyring. 145 * 146 * Returns 0 on success, -EINVAL if given any data. 147 */ 148 static int keyring_instantiate(struct key *keyring, 149 struct key_preparsed_payload *prep) 150 { 151 assoc_array_init(&keyring->keys); 152 /* make the keyring available by name if it has one */ 153 keyring_publish_name(keyring); 154 return 0; 155 } 156 157 /* 158 * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit. Ideally we'd 159 * fold the carry back too, but that requires inline asm. 160 */ 161 static u64 mult_64x32_and_fold(u64 x, u32 y) 162 { 163 u64 hi = (u64)(u32)(x >> 32) * y; 164 u64 lo = (u64)(u32)(x) * y; 165 return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32); 166 } 167 168 /* 169 * Hash a key type and description. 170 */ 171 static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key) 172 { 173 const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP; 174 const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK; 175 const char *description = index_key->description; 176 unsigned long hash, type; 177 u32 piece; 178 u64 acc; 179 int n, desc_len = index_key->desc_len; 180 181 type = (unsigned long)index_key->type; 182 183 acc = mult_64x32_and_fold(type, desc_len + 13); 184 acc = mult_64x32_and_fold(acc, 9207); 185 for (;;) { 186 n = desc_len; 187 if (n <= 0) 188 break; 189 if (n > 4) 190 n = 4; 191 piece = 0; 192 memcpy(&piece, description, n); 193 description += n; 194 desc_len -= n; 195 acc = mult_64x32_and_fold(acc, piece); 196 acc = mult_64x32_and_fold(acc, 9207); 197 } 198 199 /* Fold the hash down to 32 bits if need be. */ 200 hash = acc; 201 if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32) 202 hash ^= acc >> 32; 203 204 /* Squidge all the keyrings into a separate part of the tree to 205 * ordinary keys by making sure the lowest level segment in the hash is 206 * zero for keyrings and non-zero otherwise. 207 */ 208 if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0) 209 return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1; 210 if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0) 211 return (hash + (hash << level_shift)) & ~fan_mask; 212 return hash; 213 } 214 215 /* 216 * Build the next index key chunk. 217 * 218 * On 32-bit systems the index key is laid out as: 219 * 220 * 0 4 5 9... 221 * hash desclen typeptr desc[] 222 * 223 * On 64-bit systems: 224 * 225 * 0 8 9 17... 226 * hash desclen typeptr desc[] 227 * 228 * We return it one word-sized chunk at a time. 229 */ 230 static unsigned long keyring_get_key_chunk(const void *data, int level) 231 { 232 const struct keyring_index_key *index_key = data; 233 unsigned long chunk = 0; 234 long offset = 0; 235 int desc_len = index_key->desc_len, n = sizeof(chunk); 236 237 level /= ASSOC_ARRAY_KEY_CHUNK_SIZE; 238 switch (level) { 239 case 0: 240 return hash_key_type_and_desc(index_key); 241 case 1: 242 return ((unsigned long)index_key->type << 8) | desc_len; 243 case 2: 244 if (desc_len == 0) 245 return (u8)((unsigned long)index_key->type >> 246 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8)); 247 n--; 248 offset = 1; 249 default: 250 offset += sizeof(chunk) - 1; 251 offset += (level - 3) * sizeof(chunk); 252 if (offset >= desc_len) 253 return 0; 254 desc_len -= offset; 255 if (desc_len > n) 256 desc_len = n; 257 offset += desc_len; 258 do { 259 chunk <<= 8; 260 chunk |= ((u8*)index_key->description)[--offset]; 261 } while (--desc_len > 0); 262 263 if (level == 2) { 264 chunk <<= 8; 265 chunk |= (u8)((unsigned long)index_key->type >> 266 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8)); 267 } 268 return chunk; 269 } 270 } 271 272 static unsigned long keyring_get_object_key_chunk(const void *object, int level) 273 { 274 const struct key *key = keyring_ptr_to_key(object); 275 return keyring_get_key_chunk(&key->index_key, level); 276 } 277 278 static bool keyring_compare_object(const void *object, const void *data) 279 { 280 const struct keyring_index_key *index_key = data; 281 const struct key *key = keyring_ptr_to_key(object); 282 283 return key->index_key.type == index_key->type && 284 key->index_key.desc_len == index_key->desc_len && 285 memcmp(key->index_key.description, index_key->description, 286 index_key->desc_len) == 0; 287 } 288 289 /* 290 * Compare the index keys of a pair of objects and determine the bit position 291 * at which they differ - if they differ. 292 */ 293 static int keyring_diff_objects(const void *object, const void *data) 294 { 295 const struct key *key_a = keyring_ptr_to_key(object); 296 const struct keyring_index_key *a = &key_a->index_key; 297 const struct keyring_index_key *b = data; 298 unsigned long seg_a, seg_b; 299 int level, i; 300 301 level = 0; 302 seg_a = hash_key_type_and_desc(a); 303 seg_b = hash_key_type_and_desc(b); 304 if ((seg_a ^ seg_b) != 0) 305 goto differ; 306 307 /* The number of bits contributed by the hash is controlled by a 308 * constant in the assoc_array headers. Everything else thereafter we 309 * can deal with as being machine word-size dependent. 310 */ 311 level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8; 312 seg_a = a->desc_len; 313 seg_b = b->desc_len; 314 if ((seg_a ^ seg_b) != 0) 315 goto differ; 316 317 /* The next bit may not work on big endian */ 318 level++; 319 seg_a = (unsigned long)a->type; 320 seg_b = (unsigned long)b->type; 321 if ((seg_a ^ seg_b) != 0) 322 goto differ; 323 324 level += sizeof(unsigned long); 325 if (a->desc_len == 0) 326 goto same; 327 328 i = 0; 329 if (((unsigned long)a->description | (unsigned long)b->description) & 330 (sizeof(unsigned long) - 1)) { 331 do { 332 seg_a = *(unsigned long *)(a->description + i); 333 seg_b = *(unsigned long *)(b->description + i); 334 if ((seg_a ^ seg_b) != 0) 335 goto differ_plus_i; 336 i += sizeof(unsigned long); 337 } while (i < (a->desc_len & (sizeof(unsigned long) - 1))); 338 } 339 340 for (; i < a->desc_len; i++) { 341 seg_a = *(unsigned char *)(a->description + i); 342 seg_b = *(unsigned char *)(b->description + i); 343 if ((seg_a ^ seg_b) != 0) 344 goto differ_plus_i; 345 } 346 347 same: 348 return -1; 349 350 differ_plus_i: 351 level += i; 352 differ: 353 i = level * 8 + __ffs(seg_a ^ seg_b); 354 return i; 355 } 356 357 /* 358 * Free an object after stripping the keyring flag off of the pointer. 359 */ 360 static void keyring_free_object(void *object) 361 { 362 key_put(keyring_ptr_to_key(object)); 363 } 364 365 /* 366 * Operations for keyring management by the index-tree routines. 367 */ 368 static const struct assoc_array_ops keyring_assoc_array_ops = { 369 .get_key_chunk = keyring_get_key_chunk, 370 .get_object_key_chunk = keyring_get_object_key_chunk, 371 .compare_object = keyring_compare_object, 372 .diff_objects = keyring_diff_objects, 373 .free_object = keyring_free_object, 374 }; 375 376 /* 377 * Clean up a keyring when it is destroyed. Unpublish its name if it had one 378 * and dispose of its data. 379 * 380 * The garbage collector detects the final key_put(), removes the keyring from 381 * the serial number tree and then does RCU synchronisation before coming here, 382 * so we shouldn't need to worry about code poking around here with the RCU 383 * readlock held by this time. 384 */ 385 static void keyring_destroy(struct key *keyring) 386 { 387 if (keyring->description) { 388 write_lock(&keyring_name_lock); 389 390 if (keyring->name_link.next != NULL && 391 !list_empty(&keyring->name_link)) 392 list_del(&keyring->name_link); 393 394 write_unlock(&keyring_name_lock); 395 } 396 397 if (keyring->restrict_link) { 398 struct key_restriction *keyres = keyring->restrict_link; 399 400 key_put(keyres->key); 401 kfree(keyres); 402 } 403 404 assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops); 405 } 406 407 /* 408 * Describe a keyring for /proc. 409 */ 410 static void keyring_describe(const struct key *keyring, struct seq_file *m) 411 { 412 if (keyring->description) 413 seq_puts(m, keyring->description); 414 else 415 seq_puts(m, "[anon]"); 416 417 if (key_is_positive(keyring)) { 418 if (keyring->keys.nr_leaves_on_tree != 0) 419 seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree); 420 else 421 seq_puts(m, ": empty"); 422 } 423 } 424 425 struct keyring_read_iterator_context { 426 size_t buflen; 427 size_t count; 428 key_serial_t __user *buffer; 429 }; 430 431 static int keyring_read_iterator(const void *object, void *data) 432 { 433 struct keyring_read_iterator_context *ctx = data; 434 const struct key *key = keyring_ptr_to_key(object); 435 int ret; 436 437 kenter("{%s,%d},,{%zu/%zu}", 438 key->type->name, key->serial, ctx->count, ctx->buflen); 439 440 if (ctx->count >= ctx->buflen) 441 return 1; 442 443 ret = put_user(key->serial, ctx->buffer); 444 if (ret < 0) 445 return ret; 446 ctx->buffer++; 447 ctx->count += sizeof(key->serial); 448 return 0; 449 } 450 451 /* 452 * Read a list of key IDs from the keyring's contents in binary form 453 * 454 * The keyring's semaphore is read-locked by the caller. This prevents someone 455 * from modifying it under us - which could cause us to read key IDs multiple 456 * times. 457 */ 458 static long keyring_read(const struct key *keyring, 459 char __user *buffer, size_t buflen) 460 { 461 struct keyring_read_iterator_context ctx; 462 unsigned long nr_keys; 463 int ret; 464 465 kenter("{%d},,%zu", key_serial(keyring), buflen); 466 467 if (buflen & (sizeof(key_serial_t) - 1)) 468 return -EINVAL; 469 470 nr_keys = keyring->keys.nr_leaves_on_tree; 471 if (nr_keys == 0) 472 return 0; 473 474 /* Calculate how much data we could return */ 475 if (!buffer || !buflen) 476 return nr_keys * sizeof(key_serial_t); 477 478 /* Copy the IDs of the subscribed keys into the buffer */ 479 ctx.buffer = (key_serial_t __user *)buffer; 480 ctx.buflen = buflen; 481 ctx.count = 0; 482 ret = assoc_array_iterate(&keyring->keys, keyring_read_iterator, &ctx); 483 if (ret < 0) { 484 kleave(" = %d [iterate]", ret); 485 return ret; 486 } 487 488 kleave(" = %zu [ok]", ctx.count); 489 return ctx.count; 490 } 491 492 /* 493 * Allocate a keyring and link into the destination keyring. 494 */ 495 struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid, 496 const struct cred *cred, key_perm_t perm, 497 unsigned long flags, 498 struct key_restriction *restrict_link, 499 struct key *dest) 500 { 501 struct key *keyring; 502 int ret; 503 504 keyring = key_alloc(&key_type_keyring, description, 505 uid, gid, cred, perm, flags, restrict_link); 506 if (!IS_ERR(keyring)) { 507 ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL); 508 if (ret < 0) { 509 key_put(keyring); 510 keyring = ERR_PTR(ret); 511 } 512 } 513 514 return keyring; 515 } 516 EXPORT_SYMBOL(keyring_alloc); 517 518 /** 519 * restrict_link_reject - Give -EPERM to restrict link 520 * @keyring: The keyring being added to. 521 * @type: The type of key being added. 522 * @payload: The payload of the key intended to be added. 523 * @data: Additional data for evaluating restriction. 524 * 525 * Reject the addition of any links to a keyring. It can be overridden by 526 * passing KEY_ALLOC_BYPASS_RESTRICTION to key_instantiate_and_link() when 527 * adding a key to a keyring. 528 * 529 * This is meant to be stored in a key_restriction structure which is passed 530 * in the restrict_link parameter to keyring_alloc(). 531 */ 532 int restrict_link_reject(struct key *keyring, 533 const struct key_type *type, 534 const union key_payload *payload, 535 struct key *restriction_key) 536 { 537 return -EPERM; 538 } 539 540 /* 541 * By default, we keys found by getting an exact match on their descriptions. 542 */ 543 bool key_default_cmp(const struct key *key, 544 const struct key_match_data *match_data) 545 { 546 return strcmp(key->description, match_data->raw_data) == 0; 547 } 548 549 /* 550 * Iteration function to consider each key found. 551 */ 552 static int keyring_search_iterator(const void *object, void *iterator_data) 553 { 554 struct keyring_search_context *ctx = iterator_data; 555 const struct key *key = keyring_ptr_to_key(object); 556 unsigned long kflags = READ_ONCE(key->flags); 557 short state = READ_ONCE(key->state); 558 559 kenter("{%d}", key->serial); 560 561 /* ignore keys not of this type */ 562 if (key->type != ctx->index_key.type) { 563 kleave(" = 0 [!type]"); 564 return 0; 565 } 566 567 /* skip invalidated, revoked and expired keys */ 568 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) { 569 time_t expiry = READ_ONCE(key->expiry); 570 571 if (kflags & ((1 << KEY_FLAG_INVALIDATED) | 572 (1 << KEY_FLAG_REVOKED))) { 573 ctx->result = ERR_PTR(-EKEYREVOKED); 574 kleave(" = %d [invrev]", ctx->skipped_ret); 575 goto skipped; 576 } 577 578 if (expiry && ctx->now.tv_sec >= expiry) { 579 if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED)) 580 ctx->result = ERR_PTR(-EKEYEXPIRED); 581 kleave(" = %d [expire]", ctx->skipped_ret); 582 goto skipped; 583 } 584 } 585 586 /* keys that don't match */ 587 if (!ctx->match_data.cmp(key, &ctx->match_data)) { 588 kleave(" = 0 [!match]"); 589 return 0; 590 } 591 592 /* key must have search permissions */ 593 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) && 594 key_task_permission(make_key_ref(key, ctx->possessed), 595 ctx->cred, KEY_NEED_SEARCH) < 0) { 596 ctx->result = ERR_PTR(-EACCES); 597 kleave(" = %d [!perm]", ctx->skipped_ret); 598 goto skipped; 599 } 600 601 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) { 602 /* we set a different error code if we pass a negative key */ 603 if (state < 0) { 604 ctx->result = ERR_PTR(state); 605 kleave(" = %d [neg]", ctx->skipped_ret); 606 goto skipped; 607 } 608 } 609 610 /* Found */ 611 ctx->result = make_key_ref(key, ctx->possessed); 612 kleave(" = 1 [found]"); 613 return 1; 614 615 skipped: 616 return ctx->skipped_ret; 617 } 618 619 /* 620 * Search inside a keyring for a key. We can search by walking to it 621 * directly based on its index-key or we can iterate over the entire 622 * tree looking for it, based on the match function. 623 */ 624 static int search_keyring(struct key *keyring, struct keyring_search_context *ctx) 625 { 626 if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) { 627 const void *object; 628 629 object = assoc_array_find(&keyring->keys, 630 &keyring_assoc_array_ops, 631 &ctx->index_key); 632 return object ? ctx->iterator(object, ctx) : 0; 633 } 634 return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx); 635 } 636 637 /* 638 * Search a tree of keyrings that point to other keyrings up to the maximum 639 * depth. 640 */ 641 static bool search_nested_keyrings(struct key *keyring, 642 struct keyring_search_context *ctx) 643 { 644 struct { 645 struct key *keyring; 646 struct assoc_array_node *node; 647 int slot; 648 } stack[KEYRING_SEARCH_MAX_DEPTH]; 649 650 struct assoc_array_shortcut *shortcut; 651 struct assoc_array_node *node; 652 struct assoc_array_ptr *ptr; 653 struct key *key; 654 int sp = 0, slot; 655 656 kenter("{%d},{%s,%s}", 657 keyring->serial, 658 ctx->index_key.type->name, 659 ctx->index_key.description); 660 661 #define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK) 662 BUG_ON((ctx->flags & STATE_CHECKS) == 0 || 663 (ctx->flags & STATE_CHECKS) == STATE_CHECKS); 664 665 if (ctx->index_key.description) 666 ctx->index_key.desc_len = strlen(ctx->index_key.description); 667 668 /* Check to see if this top-level keyring is what we are looking for 669 * and whether it is valid or not. 670 */ 671 if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE || 672 keyring_compare_object(keyring, &ctx->index_key)) { 673 ctx->skipped_ret = 2; 674 switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) { 675 case 1: 676 goto found; 677 case 2: 678 return false; 679 default: 680 break; 681 } 682 } 683 684 ctx->skipped_ret = 0; 685 686 /* Start processing a new keyring */ 687 descend_to_keyring: 688 kdebug("descend to %d", keyring->serial); 689 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) | 690 (1 << KEY_FLAG_REVOKED))) 691 goto not_this_keyring; 692 693 /* Search through the keys in this keyring before its searching its 694 * subtrees. 695 */ 696 if (search_keyring(keyring, ctx)) 697 goto found; 698 699 /* Then manually iterate through the keyrings nested in this one. 700 * 701 * Start from the root node of the index tree. Because of the way the 702 * hash function has been set up, keyrings cluster on the leftmost 703 * branch of the root node (root slot 0) or in the root node itself. 704 * Non-keyrings avoid the leftmost branch of the root entirely (root 705 * slots 1-15). 706 */ 707 ptr = READ_ONCE(keyring->keys.root); 708 if (!ptr) 709 goto not_this_keyring; 710 711 if (assoc_array_ptr_is_shortcut(ptr)) { 712 /* If the root is a shortcut, either the keyring only contains 713 * keyring pointers (everything clusters behind root slot 0) or 714 * doesn't contain any keyring pointers. 715 */ 716 shortcut = assoc_array_ptr_to_shortcut(ptr); 717 smp_read_barrier_depends(); 718 if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0) 719 goto not_this_keyring; 720 721 ptr = READ_ONCE(shortcut->next_node); 722 node = assoc_array_ptr_to_node(ptr); 723 goto begin_node; 724 } 725 726 node = assoc_array_ptr_to_node(ptr); 727 smp_read_barrier_depends(); 728 729 ptr = node->slots[0]; 730 if (!assoc_array_ptr_is_meta(ptr)) 731 goto begin_node; 732 733 descend_to_node: 734 /* Descend to a more distal node in this keyring's content tree and go 735 * through that. 736 */ 737 kdebug("descend"); 738 if (assoc_array_ptr_is_shortcut(ptr)) { 739 shortcut = assoc_array_ptr_to_shortcut(ptr); 740 smp_read_barrier_depends(); 741 ptr = READ_ONCE(shortcut->next_node); 742 BUG_ON(!assoc_array_ptr_is_node(ptr)); 743 } 744 node = assoc_array_ptr_to_node(ptr); 745 746 begin_node: 747 kdebug("begin_node"); 748 smp_read_barrier_depends(); 749 slot = 0; 750 ascend_to_node: 751 /* Go through the slots in a node */ 752 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) { 753 ptr = READ_ONCE(node->slots[slot]); 754 755 if (assoc_array_ptr_is_meta(ptr) && node->back_pointer) 756 goto descend_to_node; 757 758 if (!keyring_ptr_is_keyring(ptr)) 759 continue; 760 761 key = keyring_ptr_to_key(ptr); 762 763 if (sp >= KEYRING_SEARCH_MAX_DEPTH) { 764 if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) { 765 ctx->result = ERR_PTR(-ELOOP); 766 return false; 767 } 768 goto not_this_keyring; 769 } 770 771 /* Search a nested keyring */ 772 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) && 773 key_task_permission(make_key_ref(key, ctx->possessed), 774 ctx->cred, KEY_NEED_SEARCH) < 0) 775 continue; 776 777 /* stack the current position */ 778 stack[sp].keyring = keyring; 779 stack[sp].node = node; 780 stack[sp].slot = slot; 781 sp++; 782 783 /* begin again with the new keyring */ 784 keyring = key; 785 goto descend_to_keyring; 786 } 787 788 /* We've dealt with all the slots in the current node, so now we need 789 * to ascend to the parent and continue processing there. 790 */ 791 ptr = READ_ONCE(node->back_pointer); 792 slot = node->parent_slot; 793 794 if (ptr && assoc_array_ptr_is_shortcut(ptr)) { 795 shortcut = assoc_array_ptr_to_shortcut(ptr); 796 smp_read_barrier_depends(); 797 ptr = READ_ONCE(shortcut->back_pointer); 798 slot = shortcut->parent_slot; 799 } 800 if (!ptr) 801 goto not_this_keyring; 802 node = assoc_array_ptr_to_node(ptr); 803 smp_read_barrier_depends(); 804 slot++; 805 806 /* If we've ascended to the root (zero backpointer), we must have just 807 * finished processing the leftmost branch rather than the root slots - 808 * so there can't be any more keyrings for us to find. 809 */ 810 if (node->back_pointer) { 811 kdebug("ascend %d", slot); 812 goto ascend_to_node; 813 } 814 815 /* The keyring we're looking at was disqualified or didn't contain a 816 * matching key. 817 */ 818 not_this_keyring: 819 kdebug("not_this_keyring %d", sp); 820 if (sp <= 0) { 821 kleave(" = false"); 822 return false; 823 } 824 825 /* Resume the processing of a keyring higher up in the tree */ 826 sp--; 827 keyring = stack[sp].keyring; 828 node = stack[sp].node; 829 slot = stack[sp].slot + 1; 830 kdebug("ascend to %d [%d]", keyring->serial, slot); 831 goto ascend_to_node; 832 833 /* We found a viable match */ 834 found: 835 key = key_ref_to_ptr(ctx->result); 836 key_check(key); 837 if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) { 838 key->last_used_at = ctx->now.tv_sec; 839 keyring->last_used_at = ctx->now.tv_sec; 840 while (sp > 0) 841 stack[--sp].keyring->last_used_at = ctx->now.tv_sec; 842 } 843 kleave(" = true"); 844 return true; 845 } 846 847 /** 848 * keyring_search_aux - Search a keyring tree for a key matching some criteria 849 * @keyring_ref: A pointer to the keyring with possession indicator. 850 * @ctx: The keyring search context. 851 * 852 * Search the supplied keyring tree for a key that matches the criteria given. 853 * The root keyring and any linked keyrings must grant Search permission to the 854 * caller to be searchable and keys can only be found if they too grant Search 855 * to the caller. The possession flag on the root keyring pointer controls use 856 * of the possessor bits in permissions checking of the entire tree. In 857 * addition, the LSM gets to forbid keyring searches and key matches. 858 * 859 * The search is performed as a breadth-then-depth search up to the prescribed 860 * limit (KEYRING_SEARCH_MAX_DEPTH). 861 * 862 * Keys are matched to the type provided and are then filtered by the match 863 * function, which is given the description to use in any way it sees fit. The 864 * match function may use any attributes of a key that it wishes to to 865 * determine the match. Normally the match function from the key type would be 866 * used. 867 * 868 * RCU can be used to prevent the keyring key lists from disappearing without 869 * the need to take lots of locks. 870 * 871 * Returns a pointer to the found key and increments the key usage count if 872 * successful; -EAGAIN if no matching keys were found, or if expired or revoked 873 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the 874 * specified keyring wasn't a keyring. 875 * 876 * In the case of a successful return, the possession attribute from 877 * @keyring_ref is propagated to the returned key reference. 878 */ 879 key_ref_t keyring_search_aux(key_ref_t keyring_ref, 880 struct keyring_search_context *ctx) 881 { 882 struct key *keyring; 883 long err; 884 885 ctx->iterator = keyring_search_iterator; 886 ctx->possessed = is_key_possessed(keyring_ref); 887 ctx->result = ERR_PTR(-EAGAIN); 888 889 keyring = key_ref_to_ptr(keyring_ref); 890 key_check(keyring); 891 892 if (keyring->type != &key_type_keyring) 893 return ERR_PTR(-ENOTDIR); 894 895 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) { 896 err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH); 897 if (err < 0) 898 return ERR_PTR(err); 899 } 900 901 rcu_read_lock(); 902 ctx->now = current_kernel_time(); 903 if (search_nested_keyrings(keyring, ctx)) 904 __key_get(key_ref_to_ptr(ctx->result)); 905 rcu_read_unlock(); 906 return ctx->result; 907 } 908 909 /** 910 * keyring_search - Search the supplied keyring tree for a matching key 911 * @keyring: The root of the keyring tree to be searched. 912 * @type: The type of keyring we want to find. 913 * @description: The name of the keyring we want to find. 914 * 915 * As keyring_search_aux() above, but using the current task's credentials and 916 * type's default matching function and preferred search method. 917 */ 918 key_ref_t keyring_search(key_ref_t keyring, 919 struct key_type *type, 920 const char *description) 921 { 922 struct keyring_search_context ctx = { 923 .index_key.type = type, 924 .index_key.description = description, 925 .cred = current_cred(), 926 .match_data.cmp = key_default_cmp, 927 .match_data.raw_data = description, 928 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT, 929 .flags = KEYRING_SEARCH_DO_STATE_CHECK, 930 }; 931 key_ref_t key; 932 int ret; 933 934 if (type->match_preparse) { 935 ret = type->match_preparse(&ctx.match_data); 936 if (ret < 0) 937 return ERR_PTR(ret); 938 } 939 940 key = keyring_search_aux(keyring, &ctx); 941 942 if (type->match_free) 943 type->match_free(&ctx.match_data); 944 return key; 945 } 946 EXPORT_SYMBOL(keyring_search); 947 948 static struct key_restriction *keyring_restriction_alloc( 949 key_restrict_link_func_t check) 950 { 951 struct key_restriction *keyres = 952 kzalloc(sizeof(struct key_restriction), GFP_KERNEL); 953 954 if (!keyres) 955 return ERR_PTR(-ENOMEM); 956 957 keyres->check = check; 958 959 return keyres; 960 } 961 962 /* 963 * Semaphore to serialise restriction setup to prevent reference count 964 * cycles through restriction key pointers. 965 */ 966 static DECLARE_RWSEM(keyring_serialise_restrict_sem); 967 968 /* 969 * Check for restriction cycles that would prevent keyring garbage collection. 970 * keyring_serialise_restrict_sem must be held. 971 */ 972 static bool keyring_detect_restriction_cycle(const struct key *dest_keyring, 973 struct key_restriction *keyres) 974 { 975 while (keyres && keyres->key && 976 keyres->key->type == &key_type_keyring) { 977 if (keyres->key == dest_keyring) 978 return true; 979 980 keyres = keyres->key->restrict_link; 981 } 982 983 return false; 984 } 985 986 /** 987 * keyring_restrict - Look up and apply a restriction to a keyring 988 * 989 * @keyring: The keyring to be restricted 990 * @restriction: The restriction options to apply to the keyring 991 */ 992 int keyring_restrict(key_ref_t keyring_ref, const char *type, 993 const char *restriction) 994 { 995 struct key *keyring; 996 struct key_type *restrict_type = NULL; 997 struct key_restriction *restrict_link; 998 int ret = 0; 999 1000 keyring = key_ref_to_ptr(keyring_ref); 1001 key_check(keyring); 1002 1003 if (keyring->type != &key_type_keyring) 1004 return -ENOTDIR; 1005 1006 if (!type) { 1007 restrict_link = keyring_restriction_alloc(restrict_link_reject); 1008 } else { 1009 restrict_type = key_type_lookup(type); 1010 1011 if (IS_ERR(restrict_type)) 1012 return PTR_ERR(restrict_type); 1013 1014 if (!restrict_type->lookup_restriction) { 1015 ret = -ENOENT; 1016 goto error; 1017 } 1018 1019 restrict_link = restrict_type->lookup_restriction(restriction); 1020 } 1021 1022 if (IS_ERR(restrict_link)) { 1023 ret = PTR_ERR(restrict_link); 1024 goto error; 1025 } 1026 1027 down_write(&keyring->sem); 1028 down_write(&keyring_serialise_restrict_sem); 1029 1030 if (keyring->restrict_link) 1031 ret = -EEXIST; 1032 else if (keyring_detect_restriction_cycle(keyring, restrict_link)) 1033 ret = -EDEADLK; 1034 else 1035 keyring->restrict_link = restrict_link; 1036 1037 up_write(&keyring_serialise_restrict_sem); 1038 up_write(&keyring->sem); 1039 1040 if (ret < 0) { 1041 key_put(restrict_link->key); 1042 kfree(restrict_link); 1043 } 1044 1045 error: 1046 if (restrict_type) 1047 key_type_put(restrict_type); 1048 1049 return ret; 1050 } 1051 EXPORT_SYMBOL(keyring_restrict); 1052 1053 /* 1054 * Search the given keyring for a key that might be updated. 1055 * 1056 * The caller must guarantee that the keyring is a keyring and that the 1057 * permission is granted to modify the keyring as no check is made here. The 1058 * caller must also hold a lock on the keyring semaphore. 1059 * 1060 * Returns a pointer to the found key with usage count incremented if 1061 * successful and returns NULL if not found. Revoked and invalidated keys are 1062 * skipped over. 1063 * 1064 * If successful, the possession indicator is propagated from the keyring ref 1065 * to the returned key reference. 1066 */ 1067 key_ref_t find_key_to_update(key_ref_t keyring_ref, 1068 const struct keyring_index_key *index_key) 1069 { 1070 struct key *keyring, *key; 1071 const void *object; 1072 1073 keyring = key_ref_to_ptr(keyring_ref); 1074 1075 kenter("{%d},{%s,%s}", 1076 keyring->serial, index_key->type->name, index_key->description); 1077 1078 object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops, 1079 index_key); 1080 1081 if (object) 1082 goto found; 1083 1084 kleave(" = NULL"); 1085 return NULL; 1086 1087 found: 1088 key = keyring_ptr_to_key(object); 1089 if (key->flags & ((1 << KEY_FLAG_INVALIDATED) | 1090 (1 << KEY_FLAG_REVOKED))) { 1091 kleave(" = NULL [x]"); 1092 return NULL; 1093 } 1094 __key_get(key); 1095 kleave(" = {%d}", key->serial); 1096 return make_key_ref(key, is_key_possessed(keyring_ref)); 1097 } 1098 1099 /* 1100 * Find a keyring with the specified name. 1101 * 1102 * Only keyrings that have nonzero refcount, are not revoked, and are owned by a 1103 * user in the current user namespace are considered. If @uid_keyring is %true, 1104 * the keyring additionally must have been allocated as a user or user session 1105 * keyring; otherwise, it must grant Search permission directly to the caller. 1106 * 1107 * Returns a pointer to the keyring with the keyring's refcount having being 1108 * incremented on success. -ENOKEY is returned if a key could not be found. 1109 */ 1110 struct key *find_keyring_by_name(const char *name, bool uid_keyring) 1111 { 1112 struct key *keyring; 1113 int bucket; 1114 1115 if (!name) 1116 return ERR_PTR(-EINVAL); 1117 1118 bucket = keyring_hash(name); 1119 1120 read_lock(&keyring_name_lock); 1121 1122 if (keyring_name_hash[bucket].next) { 1123 /* search this hash bucket for a keyring with a matching name 1124 * that's readable and that hasn't been revoked */ 1125 list_for_each_entry(keyring, 1126 &keyring_name_hash[bucket], 1127 name_link 1128 ) { 1129 if (!kuid_has_mapping(current_user_ns(), keyring->user->uid)) 1130 continue; 1131 1132 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags)) 1133 continue; 1134 1135 if (strcmp(keyring->description, name) != 0) 1136 continue; 1137 1138 if (uid_keyring) { 1139 if (!test_bit(KEY_FLAG_UID_KEYRING, 1140 &keyring->flags)) 1141 continue; 1142 } else { 1143 if (key_permission(make_key_ref(keyring, 0), 1144 KEY_NEED_SEARCH) < 0) 1145 continue; 1146 } 1147 1148 /* we've got a match but we might end up racing with 1149 * key_cleanup() if the keyring is currently 'dead' 1150 * (ie. it has a zero usage count) */ 1151 if (!refcount_inc_not_zero(&keyring->usage)) 1152 continue; 1153 keyring->last_used_at = current_kernel_time().tv_sec; 1154 goto out; 1155 } 1156 } 1157 1158 keyring = ERR_PTR(-ENOKEY); 1159 out: 1160 read_unlock(&keyring_name_lock); 1161 return keyring; 1162 } 1163 1164 static int keyring_detect_cycle_iterator(const void *object, 1165 void *iterator_data) 1166 { 1167 struct keyring_search_context *ctx = iterator_data; 1168 const struct key *key = keyring_ptr_to_key(object); 1169 1170 kenter("{%d}", key->serial); 1171 1172 /* We might get a keyring with matching index-key that is nonetheless a 1173 * different keyring. */ 1174 if (key != ctx->match_data.raw_data) 1175 return 0; 1176 1177 ctx->result = ERR_PTR(-EDEADLK); 1178 return 1; 1179 } 1180 1181 /* 1182 * See if a cycle will will be created by inserting acyclic tree B in acyclic 1183 * tree A at the topmost level (ie: as a direct child of A). 1184 * 1185 * Since we are adding B to A at the top level, checking for cycles should just 1186 * be a matter of seeing if node A is somewhere in tree B. 1187 */ 1188 static int keyring_detect_cycle(struct key *A, struct key *B) 1189 { 1190 struct keyring_search_context ctx = { 1191 .index_key = A->index_key, 1192 .match_data.raw_data = A, 1193 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT, 1194 .iterator = keyring_detect_cycle_iterator, 1195 .flags = (KEYRING_SEARCH_NO_STATE_CHECK | 1196 KEYRING_SEARCH_NO_UPDATE_TIME | 1197 KEYRING_SEARCH_NO_CHECK_PERM | 1198 KEYRING_SEARCH_DETECT_TOO_DEEP), 1199 }; 1200 1201 rcu_read_lock(); 1202 search_nested_keyrings(B, &ctx); 1203 rcu_read_unlock(); 1204 return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result); 1205 } 1206 1207 /* 1208 * Preallocate memory so that a key can be linked into to a keyring. 1209 */ 1210 int __key_link_begin(struct key *keyring, 1211 const struct keyring_index_key *index_key, 1212 struct assoc_array_edit **_edit) 1213 __acquires(&keyring->sem) 1214 __acquires(&keyring_serialise_link_sem) 1215 { 1216 struct assoc_array_edit *edit; 1217 int ret; 1218 1219 kenter("%d,%s,%s,", 1220 keyring->serial, index_key->type->name, index_key->description); 1221 1222 BUG_ON(index_key->desc_len == 0); 1223 1224 if (keyring->type != &key_type_keyring) 1225 return -ENOTDIR; 1226 1227 down_write(&keyring->sem); 1228 1229 ret = -EKEYREVOKED; 1230 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags)) 1231 goto error_krsem; 1232 1233 /* serialise link/link calls to prevent parallel calls causing a cycle 1234 * when linking two keyring in opposite orders */ 1235 if (index_key->type == &key_type_keyring) 1236 down_write(&keyring_serialise_link_sem); 1237 1238 /* Create an edit script that will insert/replace the key in the 1239 * keyring tree. 1240 */ 1241 edit = assoc_array_insert(&keyring->keys, 1242 &keyring_assoc_array_ops, 1243 index_key, 1244 NULL); 1245 if (IS_ERR(edit)) { 1246 ret = PTR_ERR(edit); 1247 goto error_sem; 1248 } 1249 1250 /* If we're not replacing a link in-place then we're going to need some 1251 * extra quota. 1252 */ 1253 if (!edit->dead_leaf) { 1254 ret = key_payload_reserve(keyring, 1255 keyring->datalen + KEYQUOTA_LINK_BYTES); 1256 if (ret < 0) 1257 goto error_cancel; 1258 } 1259 1260 *_edit = edit; 1261 kleave(" = 0"); 1262 return 0; 1263 1264 error_cancel: 1265 assoc_array_cancel_edit(edit); 1266 error_sem: 1267 if (index_key->type == &key_type_keyring) 1268 up_write(&keyring_serialise_link_sem); 1269 error_krsem: 1270 up_write(&keyring->sem); 1271 kleave(" = %d", ret); 1272 return ret; 1273 } 1274 1275 /* 1276 * Check already instantiated keys aren't going to be a problem. 1277 * 1278 * The caller must have called __key_link_begin(). Don't need to call this for 1279 * keys that were created since __key_link_begin() was called. 1280 */ 1281 int __key_link_check_live_key(struct key *keyring, struct key *key) 1282 { 1283 if (key->type == &key_type_keyring) 1284 /* check that we aren't going to create a cycle by linking one 1285 * keyring to another */ 1286 return keyring_detect_cycle(keyring, key); 1287 return 0; 1288 } 1289 1290 /* 1291 * Link a key into to a keyring. 1292 * 1293 * Must be called with __key_link_begin() having being called. Discards any 1294 * already extant link to matching key if there is one, so that each keyring 1295 * holds at most one link to any given key of a particular type+description 1296 * combination. 1297 */ 1298 void __key_link(struct key *key, struct assoc_array_edit **_edit) 1299 { 1300 __key_get(key); 1301 assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key)); 1302 assoc_array_apply_edit(*_edit); 1303 *_edit = NULL; 1304 } 1305 1306 /* 1307 * Finish linking a key into to a keyring. 1308 * 1309 * Must be called with __key_link_begin() having being called. 1310 */ 1311 void __key_link_end(struct key *keyring, 1312 const struct keyring_index_key *index_key, 1313 struct assoc_array_edit *edit) 1314 __releases(&keyring->sem) 1315 __releases(&keyring_serialise_link_sem) 1316 { 1317 BUG_ON(index_key->type == NULL); 1318 kenter("%d,%s,", keyring->serial, index_key->type->name); 1319 1320 if (index_key->type == &key_type_keyring) 1321 up_write(&keyring_serialise_link_sem); 1322 1323 if (edit) { 1324 if (!edit->dead_leaf) { 1325 key_payload_reserve(keyring, 1326 keyring->datalen - KEYQUOTA_LINK_BYTES); 1327 } 1328 assoc_array_cancel_edit(edit); 1329 } 1330 up_write(&keyring->sem); 1331 } 1332 1333 /* 1334 * Check addition of keys to restricted keyrings. 1335 */ 1336 static int __key_link_check_restriction(struct key *keyring, struct key *key) 1337 { 1338 if (!keyring->restrict_link || !keyring->restrict_link->check) 1339 return 0; 1340 return keyring->restrict_link->check(keyring, key->type, &key->payload, 1341 keyring->restrict_link->key); 1342 } 1343 1344 /** 1345 * key_link - Link a key to a keyring 1346 * @keyring: The keyring to make the link in. 1347 * @key: The key to link to. 1348 * 1349 * Make a link in a keyring to a key, such that the keyring holds a reference 1350 * on that key and the key can potentially be found by searching that keyring. 1351 * 1352 * This function will write-lock the keyring's semaphore and will consume some 1353 * of the user's key data quota to hold the link. 1354 * 1355 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, 1356 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is 1357 * full, -EDQUOT if there is insufficient key data quota remaining to add 1358 * another link or -ENOMEM if there's insufficient memory. 1359 * 1360 * It is assumed that the caller has checked that it is permitted for a link to 1361 * be made (the keyring should have Write permission and the key Link 1362 * permission). 1363 */ 1364 int key_link(struct key *keyring, struct key *key) 1365 { 1366 struct assoc_array_edit *edit; 1367 int ret; 1368 1369 kenter("{%d,%d}", keyring->serial, refcount_read(&keyring->usage)); 1370 1371 key_check(keyring); 1372 key_check(key); 1373 1374 ret = __key_link_begin(keyring, &key->index_key, &edit); 1375 if (ret == 0) { 1376 kdebug("begun {%d,%d}", keyring->serial, refcount_read(&keyring->usage)); 1377 ret = __key_link_check_restriction(keyring, key); 1378 if (ret == 0) 1379 ret = __key_link_check_live_key(keyring, key); 1380 if (ret == 0) 1381 __key_link(key, &edit); 1382 __key_link_end(keyring, &key->index_key, edit); 1383 } 1384 1385 kleave(" = %d {%d,%d}", ret, keyring->serial, refcount_read(&keyring->usage)); 1386 return ret; 1387 } 1388 EXPORT_SYMBOL(key_link); 1389 1390 /** 1391 * key_unlink - Unlink the first link to a key from a keyring. 1392 * @keyring: The keyring to remove the link from. 1393 * @key: The key the link is to. 1394 * 1395 * Remove a link from a keyring to a key. 1396 * 1397 * This function will write-lock the keyring's semaphore. 1398 * 1399 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if 1400 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient 1401 * memory. 1402 * 1403 * It is assumed that the caller has checked that it is permitted for a link to 1404 * be removed (the keyring should have Write permission; no permissions are 1405 * required on the key). 1406 */ 1407 int key_unlink(struct key *keyring, struct key *key) 1408 { 1409 struct assoc_array_edit *edit; 1410 int ret; 1411 1412 key_check(keyring); 1413 key_check(key); 1414 1415 if (keyring->type != &key_type_keyring) 1416 return -ENOTDIR; 1417 1418 down_write(&keyring->sem); 1419 1420 edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops, 1421 &key->index_key); 1422 if (IS_ERR(edit)) { 1423 ret = PTR_ERR(edit); 1424 goto error; 1425 } 1426 ret = -ENOENT; 1427 if (edit == NULL) 1428 goto error; 1429 1430 assoc_array_apply_edit(edit); 1431 key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES); 1432 ret = 0; 1433 1434 error: 1435 up_write(&keyring->sem); 1436 return ret; 1437 } 1438 EXPORT_SYMBOL(key_unlink); 1439 1440 /** 1441 * keyring_clear - Clear a keyring 1442 * @keyring: The keyring to clear. 1443 * 1444 * Clear the contents of the specified keyring. 1445 * 1446 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring. 1447 */ 1448 int keyring_clear(struct key *keyring) 1449 { 1450 struct assoc_array_edit *edit; 1451 int ret; 1452 1453 if (keyring->type != &key_type_keyring) 1454 return -ENOTDIR; 1455 1456 down_write(&keyring->sem); 1457 1458 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops); 1459 if (IS_ERR(edit)) { 1460 ret = PTR_ERR(edit); 1461 } else { 1462 if (edit) 1463 assoc_array_apply_edit(edit); 1464 key_payload_reserve(keyring, 0); 1465 ret = 0; 1466 } 1467 1468 up_write(&keyring->sem); 1469 return ret; 1470 } 1471 EXPORT_SYMBOL(keyring_clear); 1472 1473 /* 1474 * Dispose of the links from a revoked keyring. 1475 * 1476 * This is called with the key sem write-locked. 1477 */ 1478 static void keyring_revoke(struct key *keyring) 1479 { 1480 struct assoc_array_edit *edit; 1481 1482 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops); 1483 if (!IS_ERR(edit)) { 1484 if (edit) 1485 assoc_array_apply_edit(edit); 1486 key_payload_reserve(keyring, 0); 1487 } 1488 } 1489 1490 static bool keyring_gc_select_iterator(void *object, void *iterator_data) 1491 { 1492 struct key *key = keyring_ptr_to_key(object); 1493 time_t *limit = iterator_data; 1494 1495 if (key_is_dead(key, *limit)) 1496 return false; 1497 key_get(key); 1498 return true; 1499 } 1500 1501 static int keyring_gc_check_iterator(const void *object, void *iterator_data) 1502 { 1503 const struct key *key = keyring_ptr_to_key(object); 1504 time_t *limit = iterator_data; 1505 1506 key_check(key); 1507 return key_is_dead(key, *limit); 1508 } 1509 1510 /* 1511 * Garbage collect pointers from a keyring. 1512 * 1513 * Not called with any locks held. The keyring's key struct will not be 1514 * deallocated under us as only our caller may deallocate it. 1515 */ 1516 void keyring_gc(struct key *keyring, time_t limit) 1517 { 1518 int result; 1519 1520 kenter("%x{%s}", keyring->serial, keyring->description ?: ""); 1521 1522 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) | 1523 (1 << KEY_FLAG_REVOKED))) 1524 goto dont_gc; 1525 1526 /* scan the keyring looking for dead keys */ 1527 rcu_read_lock(); 1528 result = assoc_array_iterate(&keyring->keys, 1529 keyring_gc_check_iterator, &limit); 1530 rcu_read_unlock(); 1531 if (result == true) 1532 goto do_gc; 1533 1534 dont_gc: 1535 kleave(" [no gc]"); 1536 return; 1537 1538 do_gc: 1539 down_write(&keyring->sem); 1540 assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops, 1541 keyring_gc_select_iterator, &limit); 1542 up_write(&keyring->sem); 1543 kleave(" [gc]"); 1544 } 1545 1546 /* 1547 * Garbage collect restriction pointers from a keyring. 1548 * 1549 * Keyring restrictions are associated with a key type, and must be cleaned 1550 * up if the key type is unregistered. The restriction is altered to always 1551 * reject additional keys so a keyring cannot be opened up by unregistering 1552 * a key type. 1553 * 1554 * Not called with any keyring locks held. The keyring's key struct will not 1555 * be deallocated under us as only our caller may deallocate it. 1556 * 1557 * The caller is required to hold key_types_sem and dead_type->sem. This is 1558 * fulfilled by key_gc_keytype() holding the locks on behalf of 1559 * key_garbage_collector(), which it invokes on a workqueue. 1560 */ 1561 void keyring_restriction_gc(struct key *keyring, struct key_type *dead_type) 1562 { 1563 struct key_restriction *keyres; 1564 1565 kenter("%x{%s}", keyring->serial, keyring->description ?: ""); 1566 1567 /* 1568 * keyring->restrict_link is only assigned at key allocation time 1569 * or with the key type locked, so the only values that could be 1570 * concurrently assigned to keyring->restrict_link are for key 1571 * types other than dead_type. Given this, it's ok to check 1572 * the key type before acquiring keyring->sem. 1573 */ 1574 if (!dead_type || !keyring->restrict_link || 1575 keyring->restrict_link->keytype != dead_type) { 1576 kleave(" [no restriction gc]"); 1577 return; 1578 } 1579 1580 /* Lock the keyring to ensure that a link is not in progress */ 1581 down_write(&keyring->sem); 1582 1583 keyres = keyring->restrict_link; 1584 1585 keyres->check = restrict_link_reject; 1586 1587 key_put(keyres->key); 1588 keyres->key = NULL; 1589 keyres->keytype = NULL; 1590 1591 up_write(&keyring->sem); 1592 1593 kleave(" [restriction gc]"); 1594 } 1595