xref: /openbmc/linux/security/keys/keyring.c (revision 6aa7de05)
1 /* Keyring handling
2  *
3  * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/seq_file.h>
18 #include <linux/err.h>
19 #include <keys/keyring-type.h>
20 #include <keys/user-type.h>
21 #include <linux/assoc_array_priv.h>
22 #include <linux/uaccess.h>
23 #include "internal.h"
24 
25 /*
26  * When plumbing the depths of the key tree, this sets a hard limit
27  * set on how deep we're willing to go.
28  */
29 #define KEYRING_SEARCH_MAX_DEPTH 6
30 
31 /*
32  * We keep all named keyrings in a hash to speed looking them up.
33  */
34 #define KEYRING_NAME_HASH_SIZE	(1 << 5)
35 
36 /*
37  * We mark pointers we pass to the associative array with bit 1 set if
38  * they're keyrings and clear otherwise.
39  */
40 #define KEYRING_PTR_SUBTYPE	0x2UL
41 
42 static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
43 {
44 	return (unsigned long)x & KEYRING_PTR_SUBTYPE;
45 }
46 static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
47 {
48 	void *object = assoc_array_ptr_to_leaf(x);
49 	return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
50 }
51 static inline void *keyring_key_to_ptr(struct key *key)
52 {
53 	if (key->type == &key_type_keyring)
54 		return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
55 	return key;
56 }
57 
58 static struct list_head	keyring_name_hash[KEYRING_NAME_HASH_SIZE];
59 static DEFINE_RWLOCK(keyring_name_lock);
60 
61 static inline unsigned keyring_hash(const char *desc)
62 {
63 	unsigned bucket = 0;
64 
65 	for (; *desc; desc++)
66 		bucket += (unsigned char)*desc;
67 
68 	return bucket & (KEYRING_NAME_HASH_SIZE - 1);
69 }
70 
71 /*
72  * The keyring key type definition.  Keyrings are simply keys of this type and
73  * can be treated as ordinary keys in addition to having their own special
74  * operations.
75  */
76 static int keyring_preparse(struct key_preparsed_payload *prep);
77 static void keyring_free_preparse(struct key_preparsed_payload *prep);
78 static int keyring_instantiate(struct key *keyring,
79 			       struct key_preparsed_payload *prep);
80 static void keyring_revoke(struct key *keyring);
81 static void keyring_destroy(struct key *keyring);
82 static void keyring_describe(const struct key *keyring, struct seq_file *m);
83 static long keyring_read(const struct key *keyring,
84 			 char __user *buffer, size_t buflen);
85 
86 struct key_type key_type_keyring = {
87 	.name		= "keyring",
88 	.def_datalen	= 0,
89 	.preparse	= keyring_preparse,
90 	.free_preparse	= keyring_free_preparse,
91 	.instantiate	= keyring_instantiate,
92 	.revoke		= keyring_revoke,
93 	.destroy	= keyring_destroy,
94 	.describe	= keyring_describe,
95 	.read		= keyring_read,
96 };
97 EXPORT_SYMBOL(key_type_keyring);
98 
99 /*
100  * Semaphore to serialise link/link calls to prevent two link calls in parallel
101  * introducing a cycle.
102  */
103 static DECLARE_RWSEM(keyring_serialise_link_sem);
104 
105 /*
106  * Publish the name of a keyring so that it can be found by name (if it has
107  * one).
108  */
109 static void keyring_publish_name(struct key *keyring)
110 {
111 	int bucket;
112 
113 	if (keyring->description) {
114 		bucket = keyring_hash(keyring->description);
115 
116 		write_lock(&keyring_name_lock);
117 
118 		if (!keyring_name_hash[bucket].next)
119 			INIT_LIST_HEAD(&keyring_name_hash[bucket]);
120 
121 		list_add_tail(&keyring->name_link,
122 			      &keyring_name_hash[bucket]);
123 
124 		write_unlock(&keyring_name_lock);
125 	}
126 }
127 
128 /*
129  * Preparse a keyring payload
130  */
131 static int keyring_preparse(struct key_preparsed_payload *prep)
132 {
133 	return prep->datalen != 0 ? -EINVAL : 0;
134 }
135 
136 /*
137  * Free a preparse of a user defined key payload
138  */
139 static void keyring_free_preparse(struct key_preparsed_payload *prep)
140 {
141 }
142 
143 /*
144  * Initialise a keyring.
145  *
146  * Returns 0 on success, -EINVAL if given any data.
147  */
148 static int keyring_instantiate(struct key *keyring,
149 			       struct key_preparsed_payload *prep)
150 {
151 	assoc_array_init(&keyring->keys);
152 	/* make the keyring available by name if it has one */
153 	keyring_publish_name(keyring);
154 	return 0;
155 }
156 
157 /*
158  * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit.  Ideally we'd
159  * fold the carry back too, but that requires inline asm.
160  */
161 static u64 mult_64x32_and_fold(u64 x, u32 y)
162 {
163 	u64 hi = (u64)(u32)(x >> 32) * y;
164 	u64 lo = (u64)(u32)(x) * y;
165 	return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
166 }
167 
168 /*
169  * Hash a key type and description.
170  */
171 static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key)
172 {
173 	const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
174 	const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
175 	const char *description = index_key->description;
176 	unsigned long hash, type;
177 	u32 piece;
178 	u64 acc;
179 	int n, desc_len = index_key->desc_len;
180 
181 	type = (unsigned long)index_key->type;
182 
183 	acc = mult_64x32_and_fold(type, desc_len + 13);
184 	acc = mult_64x32_and_fold(acc, 9207);
185 	for (;;) {
186 		n = desc_len;
187 		if (n <= 0)
188 			break;
189 		if (n > 4)
190 			n = 4;
191 		piece = 0;
192 		memcpy(&piece, description, n);
193 		description += n;
194 		desc_len -= n;
195 		acc = mult_64x32_and_fold(acc, piece);
196 		acc = mult_64x32_and_fold(acc, 9207);
197 	}
198 
199 	/* Fold the hash down to 32 bits if need be. */
200 	hash = acc;
201 	if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
202 		hash ^= acc >> 32;
203 
204 	/* Squidge all the keyrings into a separate part of the tree to
205 	 * ordinary keys by making sure the lowest level segment in the hash is
206 	 * zero for keyrings and non-zero otherwise.
207 	 */
208 	if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
209 		return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
210 	if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
211 		return (hash + (hash << level_shift)) & ~fan_mask;
212 	return hash;
213 }
214 
215 /*
216  * Build the next index key chunk.
217  *
218  * On 32-bit systems the index key is laid out as:
219  *
220  *	0	4	5	9...
221  *	hash	desclen	typeptr	desc[]
222  *
223  * On 64-bit systems:
224  *
225  *	0	8	9	17...
226  *	hash	desclen	typeptr	desc[]
227  *
228  * We return it one word-sized chunk at a time.
229  */
230 static unsigned long keyring_get_key_chunk(const void *data, int level)
231 {
232 	const struct keyring_index_key *index_key = data;
233 	unsigned long chunk = 0;
234 	long offset = 0;
235 	int desc_len = index_key->desc_len, n = sizeof(chunk);
236 
237 	level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
238 	switch (level) {
239 	case 0:
240 		return hash_key_type_and_desc(index_key);
241 	case 1:
242 		return ((unsigned long)index_key->type << 8) | desc_len;
243 	case 2:
244 		if (desc_len == 0)
245 			return (u8)((unsigned long)index_key->type >>
246 				    (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
247 		n--;
248 		offset = 1;
249 	default:
250 		offset += sizeof(chunk) - 1;
251 		offset += (level - 3) * sizeof(chunk);
252 		if (offset >= desc_len)
253 			return 0;
254 		desc_len -= offset;
255 		if (desc_len > n)
256 			desc_len = n;
257 		offset += desc_len;
258 		do {
259 			chunk <<= 8;
260 			chunk |= ((u8*)index_key->description)[--offset];
261 		} while (--desc_len > 0);
262 
263 		if (level == 2) {
264 			chunk <<= 8;
265 			chunk |= (u8)((unsigned long)index_key->type >>
266 				      (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
267 		}
268 		return chunk;
269 	}
270 }
271 
272 static unsigned long keyring_get_object_key_chunk(const void *object, int level)
273 {
274 	const struct key *key = keyring_ptr_to_key(object);
275 	return keyring_get_key_chunk(&key->index_key, level);
276 }
277 
278 static bool keyring_compare_object(const void *object, const void *data)
279 {
280 	const struct keyring_index_key *index_key = data;
281 	const struct key *key = keyring_ptr_to_key(object);
282 
283 	return key->index_key.type == index_key->type &&
284 		key->index_key.desc_len == index_key->desc_len &&
285 		memcmp(key->index_key.description, index_key->description,
286 		       index_key->desc_len) == 0;
287 }
288 
289 /*
290  * Compare the index keys of a pair of objects and determine the bit position
291  * at which they differ - if they differ.
292  */
293 static int keyring_diff_objects(const void *object, const void *data)
294 {
295 	const struct key *key_a = keyring_ptr_to_key(object);
296 	const struct keyring_index_key *a = &key_a->index_key;
297 	const struct keyring_index_key *b = data;
298 	unsigned long seg_a, seg_b;
299 	int level, i;
300 
301 	level = 0;
302 	seg_a = hash_key_type_and_desc(a);
303 	seg_b = hash_key_type_and_desc(b);
304 	if ((seg_a ^ seg_b) != 0)
305 		goto differ;
306 
307 	/* The number of bits contributed by the hash is controlled by a
308 	 * constant in the assoc_array headers.  Everything else thereafter we
309 	 * can deal with as being machine word-size dependent.
310 	 */
311 	level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
312 	seg_a = a->desc_len;
313 	seg_b = b->desc_len;
314 	if ((seg_a ^ seg_b) != 0)
315 		goto differ;
316 
317 	/* The next bit may not work on big endian */
318 	level++;
319 	seg_a = (unsigned long)a->type;
320 	seg_b = (unsigned long)b->type;
321 	if ((seg_a ^ seg_b) != 0)
322 		goto differ;
323 
324 	level += sizeof(unsigned long);
325 	if (a->desc_len == 0)
326 		goto same;
327 
328 	i = 0;
329 	if (((unsigned long)a->description | (unsigned long)b->description) &
330 	    (sizeof(unsigned long) - 1)) {
331 		do {
332 			seg_a = *(unsigned long *)(a->description + i);
333 			seg_b = *(unsigned long *)(b->description + i);
334 			if ((seg_a ^ seg_b) != 0)
335 				goto differ_plus_i;
336 			i += sizeof(unsigned long);
337 		} while (i < (a->desc_len & (sizeof(unsigned long) - 1)));
338 	}
339 
340 	for (; i < a->desc_len; i++) {
341 		seg_a = *(unsigned char *)(a->description + i);
342 		seg_b = *(unsigned char *)(b->description + i);
343 		if ((seg_a ^ seg_b) != 0)
344 			goto differ_plus_i;
345 	}
346 
347 same:
348 	return -1;
349 
350 differ_plus_i:
351 	level += i;
352 differ:
353 	i = level * 8 + __ffs(seg_a ^ seg_b);
354 	return i;
355 }
356 
357 /*
358  * Free an object after stripping the keyring flag off of the pointer.
359  */
360 static void keyring_free_object(void *object)
361 {
362 	key_put(keyring_ptr_to_key(object));
363 }
364 
365 /*
366  * Operations for keyring management by the index-tree routines.
367  */
368 static const struct assoc_array_ops keyring_assoc_array_ops = {
369 	.get_key_chunk		= keyring_get_key_chunk,
370 	.get_object_key_chunk	= keyring_get_object_key_chunk,
371 	.compare_object		= keyring_compare_object,
372 	.diff_objects		= keyring_diff_objects,
373 	.free_object		= keyring_free_object,
374 };
375 
376 /*
377  * Clean up a keyring when it is destroyed.  Unpublish its name if it had one
378  * and dispose of its data.
379  *
380  * The garbage collector detects the final key_put(), removes the keyring from
381  * the serial number tree and then does RCU synchronisation before coming here,
382  * so we shouldn't need to worry about code poking around here with the RCU
383  * readlock held by this time.
384  */
385 static void keyring_destroy(struct key *keyring)
386 {
387 	if (keyring->description) {
388 		write_lock(&keyring_name_lock);
389 
390 		if (keyring->name_link.next != NULL &&
391 		    !list_empty(&keyring->name_link))
392 			list_del(&keyring->name_link);
393 
394 		write_unlock(&keyring_name_lock);
395 	}
396 
397 	if (keyring->restrict_link) {
398 		struct key_restriction *keyres = keyring->restrict_link;
399 
400 		key_put(keyres->key);
401 		kfree(keyres);
402 	}
403 
404 	assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
405 }
406 
407 /*
408  * Describe a keyring for /proc.
409  */
410 static void keyring_describe(const struct key *keyring, struct seq_file *m)
411 {
412 	if (keyring->description)
413 		seq_puts(m, keyring->description);
414 	else
415 		seq_puts(m, "[anon]");
416 
417 	if (key_is_positive(keyring)) {
418 		if (keyring->keys.nr_leaves_on_tree != 0)
419 			seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
420 		else
421 			seq_puts(m, ": empty");
422 	}
423 }
424 
425 struct keyring_read_iterator_context {
426 	size_t			buflen;
427 	size_t			count;
428 	key_serial_t __user	*buffer;
429 };
430 
431 static int keyring_read_iterator(const void *object, void *data)
432 {
433 	struct keyring_read_iterator_context *ctx = data;
434 	const struct key *key = keyring_ptr_to_key(object);
435 	int ret;
436 
437 	kenter("{%s,%d},,{%zu/%zu}",
438 	       key->type->name, key->serial, ctx->count, ctx->buflen);
439 
440 	if (ctx->count >= ctx->buflen)
441 		return 1;
442 
443 	ret = put_user(key->serial, ctx->buffer);
444 	if (ret < 0)
445 		return ret;
446 	ctx->buffer++;
447 	ctx->count += sizeof(key->serial);
448 	return 0;
449 }
450 
451 /*
452  * Read a list of key IDs from the keyring's contents in binary form
453  *
454  * The keyring's semaphore is read-locked by the caller.  This prevents someone
455  * from modifying it under us - which could cause us to read key IDs multiple
456  * times.
457  */
458 static long keyring_read(const struct key *keyring,
459 			 char __user *buffer, size_t buflen)
460 {
461 	struct keyring_read_iterator_context ctx;
462 	unsigned long nr_keys;
463 	int ret;
464 
465 	kenter("{%d},,%zu", key_serial(keyring), buflen);
466 
467 	if (buflen & (sizeof(key_serial_t) - 1))
468 		return -EINVAL;
469 
470 	nr_keys = keyring->keys.nr_leaves_on_tree;
471 	if (nr_keys == 0)
472 		return 0;
473 
474 	/* Calculate how much data we could return */
475 	if (!buffer || !buflen)
476 		return nr_keys * sizeof(key_serial_t);
477 
478 	/* Copy the IDs of the subscribed keys into the buffer */
479 	ctx.buffer = (key_serial_t __user *)buffer;
480 	ctx.buflen = buflen;
481 	ctx.count = 0;
482 	ret = assoc_array_iterate(&keyring->keys, keyring_read_iterator, &ctx);
483 	if (ret < 0) {
484 		kleave(" = %d [iterate]", ret);
485 		return ret;
486 	}
487 
488 	kleave(" = %zu [ok]", ctx.count);
489 	return ctx.count;
490 }
491 
492 /*
493  * Allocate a keyring and link into the destination keyring.
494  */
495 struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
496 			  const struct cred *cred, key_perm_t perm,
497 			  unsigned long flags,
498 			  struct key_restriction *restrict_link,
499 			  struct key *dest)
500 {
501 	struct key *keyring;
502 	int ret;
503 
504 	keyring = key_alloc(&key_type_keyring, description,
505 			    uid, gid, cred, perm, flags, restrict_link);
506 	if (!IS_ERR(keyring)) {
507 		ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
508 		if (ret < 0) {
509 			key_put(keyring);
510 			keyring = ERR_PTR(ret);
511 		}
512 	}
513 
514 	return keyring;
515 }
516 EXPORT_SYMBOL(keyring_alloc);
517 
518 /**
519  * restrict_link_reject - Give -EPERM to restrict link
520  * @keyring: The keyring being added to.
521  * @type: The type of key being added.
522  * @payload: The payload of the key intended to be added.
523  * @data: Additional data for evaluating restriction.
524  *
525  * Reject the addition of any links to a keyring.  It can be overridden by
526  * passing KEY_ALLOC_BYPASS_RESTRICTION to key_instantiate_and_link() when
527  * adding a key to a keyring.
528  *
529  * This is meant to be stored in a key_restriction structure which is passed
530  * in the restrict_link parameter to keyring_alloc().
531  */
532 int restrict_link_reject(struct key *keyring,
533 			 const struct key_type *type,
534 			 const union key_payload *payload,
535 			 struct key *restriction_key)
536 {
537 	return -EPERM;
538 }
539 
540 /*
541  * By default, we keys found by getting an exact match on their descriptions.
542  */
543 bool key_default_cmp(const struct key *key,
544 		     const struct key_match_data *match_data)
545 {
546 	return strcmp(key->description, match_data->raw_data) == 0;
547 }
548 
549 /*
550  * Iteration function to consider each key found.
551  */
552 static int keyring_search_iterator(const void *object, void *iterator_data)
553 {
554 	struct keyring_search_context *ctx = iterator_data;
555 	const struct key *key = keyring_ptr_to_key(object);
556 	unsigned long kflags = READ_ONCE(key->flags);
557 	short state = READ_ONCE(key->state);
558 
559 	kenter("{%d}", key->serial);
560 
561 	/* ignore keys not of this type */
562 	if (key->type != ctx->index_key.type) {
563 		kleave(" = 0 [!type]");
564 		return 0;
565 	}
566 
567 	/* skip invalidated, revoked and expired keys */
568 	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
569 		time_t expiry = READ_ONCE(key->expiry);
570 
571 		if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
572 			      (1 << KEY_FLAG_REVOKED))) {
573 			ctx->result = ERR_PTR(-EKEYREVOKED);
574 			kleave(" = %d [invrev]", ctx->skipped_ret);
575 			goto skipped;
576 		}
577 
578 		if (expiry && ctx->now.tv_sec >= expiry) {
579 			if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED))
580 				ctx->result = ERR_PTR(-EKEYEXPIRED);
581 			kleave(" = %d [expire]", ctx->skipped_ret);
582 			goto skipped;
583 		}
584 	}
585 
586 	/* keys that don't match */
587 	if (!ctx->match_data.cmp(key, &ctx->match_data)) {
588 		kleave(" = 0 [!match]");
589 		return 0;
590 	}
591 
592 	/* key must have search permissions */
593 	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
594 	    key_task_permission(make_key_ref(key, ctx->possessed),
595 				ctx->cred, KEY_NEED_SEARCH) < 0) {
596 		ctx->result = ERR_PTR(-EACCES);
597 		kleave(" = %d [!perm]", ctx->skipped_ret);
598 		goto skipped;
599 	}
600 
601 	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
602 		/* we set a different error code if we pass a negative key */
603 		if (state < 0) {
604 			ctx->result = ERR_PTR(state);
605 			kleave(" = %d [neg]", ctx->skipped_ret);
606 			goto skipped;
607 		}
608 	}
609 
610 	/* Found */
611 	ctx->result = make_key_ref(key, ctx->possessed);
612 	kleave(" = 1 [found]");
613 	return 1;
614 
615 skipped:
616 	return ctx->skipped_ret;
617 }
618 
619 /*
620  * Search inside a keyring for a key.  We can search by walking to it
621  * directly based on its index-key or we can iterate over the entire
622  * tree looking for it, based on the match function.
623  */
624 static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
625 {
626 	if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) {
627 		const void *object;
628 
629 		object = assoc_array_find(&keyring->keys,
630 					  &keyring_assoc_array_ops,
631 					  &ctx->index_key);
632 		return object ? ctx->iterator(object, ctx) : 0;
633 	}
634 	return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
635 }
636 
637 /*
638  * Search a tree of keyrings that point to other keyrings up to the maximum
639  * depth.
640  */
641 static bool search_nested_keyrings(struct key *keyring,
642 				   struct keyring_search_context *ctx)
643 {
644 	struct {
645 		struct key *keyring;
646 		struct assoc_array_node *node;
647 		int slot;
648 	} stack[KEYRING_SEARCH_MAX_DEPTH];
649 
650 	struct assoc_array_shortcut *shortcut;
651 	struct assoc_array_node *node;
652 	struct assoc_array_ptr *ptr;
653 	struct key *key;
654 	int sp = 0, slot;
655 
656 	kenter("{%d},{%s,%s}",
657 	       keyring->serial,
658 	       ctx->index_key.type->name,
659 	       ctx->index_key.description);
660 
661 #define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK)
662 	BUG_ON((ctx->flags & STATE_CHECKS) == 0 ||
663 	       (ctx->flags & STATE_CHECKS) == STATE_CHECKS);
664 
665 	if (ctx->index_key.description)
666 		ctx->index_key.desc_len = strlen(ctx->index_key.description);
667 
668 	/* Check to see if this top-level keyring is what we are looking for
669 	 * and whether it is valid or not.
670 	 */
671 	if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE ||
672 	    keyring_compare_object(keyring, &ctx->index_key)) {
673 		ctx->skipped_ret = 2;
674 		switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
675 		case 1:
676 			goto found;
677 		case 2:
678 			return false;
679 		default:
680 			break;
681 		}
682 	}
683 
684 	ctx->skipped_ret = 0;
685 
686 	/* Start processing a new keyring */
687 descend_to_keyring:
688 	kdebug("descend to %d", keyring->serial);
689 	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
690 			      (1 << KEY_FLAG_REVOKED)))
691 		goto not_this_keyring;
692 
693 	/* Search through the keys in this keyring before its searching its
694 	 * subtrees.
695 	 */
696 	if (search_keyring(keyring, ctx))
697 		goto found;
698 
699 	/* Then manually iterate through the keyrings nested in this one.
700 	 *
701 	 * Start from the root node of the index tree.  Because of the way the
702 	 * hash function has been set up, keyrings cluster on the leftmost
703 	 * branch of the root node (root slot 0) or in the root node itself.
704 	 * Non-keyrings avoid the leftmost branch of the root entirely (root
705 	 * slots 1-15).
706 	 */
707 	ptr = READ_ONCE(keyring->keys.root);
708 	if (!ptr)
709 		goto not_this_keyring;
710 
711 	if (assoc_array_ptr_is_shortcut(ptr)) {
712 		/* If the root is a shortcut, either the keyring only contains
713 		 * keyring pointers (everything clusters behind root slot 0) or
714 		 * doesn't contain any keyring pointers.
715 		 */
716 		shortcut = assoc_array_ptr_to_shortcut(ptr);
717 		smp_read_barrier_depends();
718 		if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
719 			goto not_this_keyring;
720 
721 		ptr = READ_ONCE(shortcut->next_node);
722 		node = assoc_array_ptr_to_node(ptr);
723 		goto begin_node;
724 	}
725 
726 	node = assoc_array_ptr_to_node(ptr);
727 	smp_read_barrier_depends();
728 
729 	ptr = node->slots[0];
730 	if (!assoc_array_ptr_is_meta(ptr))
731 		goto begin_node;
732 
733 descend_to_node:
734 	/* Descend to a more distal node in this keyring's content tree and go
735 	 * through that.
736 	 */
737 	kdebug("descend");
738 	if (assoc_array_ptr_is_shortcut(ptr)) {
739 		shortcut = assoc_array_ptr_to_shortcut(ptr);
740 		smp_read_barrier_depends();
741 		ptr = READ_ONCE(shortcut->next_node);
742 		BUG_ON(!assoc_array_ptr_is_node(ptr));
743 	}
744 	node = assoc_array_ptr_to_node(ptr);
745 
746 begin_node:
747 	kdebug("begin_node");
748 	smp_read_barrier_depends();
749 	slot = 0;
750 ascend_to_node:
751 	/* Go through the slots in a node */
752 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
753 		ptr = READ_ONCE(node->slots[slot]);
754 
755 		if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
756 			goto descend_to_node;
757 
758 		if (!keyring_ptr_is_keyring(ptr))
759 			continue;
760 
761 		key = keyring_ptr_to_key(ptr);
762 
763 		if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
764 			if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
765 				ctx->result = ERR_PTR(-ELOOP);
766 				return false;
767 			}
768 			goto not_this_keyring;
769 		}
770 
771 		/* Search a nested keyring */
772 		if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
773 		    key_task_permission(make_key_ref(key, ctx->possessed),
774 					ctx->cred, KEY_NEED_SEARCH) < 0)
775 			continue;
776 
777 		/* stack the current position */
778 		stack[sp].keyring = keyring;
779 		stack[sp].node = node;
780 		stack[sp].slot = slot;
781 		sp++;
782 
783 		/* begin again with the new keyring */
784 		keyring = key;
785 		goto descend_to_keyring;
786 	}
787 
788 	/* We've dealt with all the slots in the current node, so now we need
789 	 * to ascend to the parent and continue processing there.
790 	 */
791 	ptr = READ_ONCE(node->back_pointer);
792 	slot = node->parent_slot;
793 
794 	if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
795 		shortcut = assoc_array_ptr_to_shortcut(ptr);
796 		smp_read_barrier_depends();
797 		ptr = READ_ONCE(shortcut->back_pointer);
798 		slot = shortcut->parent_slot;
799 	}
800 	if (!ptr)
801 		goto not_this_keyring;
802 	node = assoc_array_ptr_to_node(ptr);
803 	smp_read_barrier_depends();
804 	slot++;
805 
806 	/* If we've ascended to the root (zero backpointer), we must have just
807 	 * finished processing the leftmost branch rather than the root slots -
808 	 * so there can't be any more keyrings for us to find.
809 	 */
810 	if (node->back_pointer) {
811 		kdebug("ascend %d", slot);
812 		goto ascend_to_node;
813 	}
814 
815 	/* The keyring we're looking at was disqualified or didn't contain a
816 	 * matching key.
817 	 */
818 not_this_keyring:
819 	kdebug("not_this_keyring %d", sp);
820 	if (sp <= 0) {
821 		kleave(" = false");
822 		return false;
823 	}
824 
825 	/* Resume the processing of a keyring higher up in the tree */
826 	sp--;
827 	keyring = stack[sp].keyring;
828 	node = stack[sp].node;
829 	slot = stack[sp].slot + 1;
830 	kdebug("ascend to %d [%d]", keyring->serial, slot);
831 	goto ascend_to_node;
832 
833 	/* We found a viable match */
834 found:
835 	key = key_ref_to_ptr(ctx->result);
836 	key_check(key);
837 	if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
838 		key->last_used_at = ctx->now.tv_sec;
839 		keyring->last_used_at = ctx->now.tv_sec;
840 		while (sp > 0)
841 			stack[--sp].keyring->last_used_at = ctx->now.tv_sec;
842 	}
843 	kleave(" = true");
844 	return true;
845 }
846 
847 /**
848  * keyring_search_aux - Search a keyring tree for a key matching some criteria
849  * @keyring_ref: A pointer to the keyring with possession indicator.
850  * @ctx: The keyring search context.
851  *
852  * Search the supplied keyring tree for a key that matches the criteria given.
853  * The root keyring and any linked keyrings must grant Search permission to the
854  * caller to be searchable and keys can only be found if they too grant Search
855  * to the caller. The possession flag on the root keyring pointer controls use
856  * of the possessor bits in permissions checking of the entire tree.  In
857  * addition, the LSM gets to forbid keyring searches and key matches.
858  *
859  * The search is performed as a breadth-then-depth search up to the prescribed
860  * limit (KEYRING_SEARCH_MAX_DEPTH).
861  *
862  * Keys are matched to the type provided and are then filtered by the match
863  * function, which is given the description to use in any way it sees fit.  The
864  * match function may use any attributes of a key that it wishes to to
865  * determine the match.  Normally the match function from the key type would be
866  * used.
867  *
868  * RCU can be used to prevent the keyring key lists from disappearing without
869  * the need to take lots of locks.
870  *
871  * Returns a pointer to the found key and increments the key usage count if
872  * successful; -EAGAIN if no matching keys were found, or if expired or revoked
873  * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
874  * specified keyring wasn't a keyring.
875  *
876  * In the case of a successful return, the possession attribute from
877  * @keyring_ref is propagated to the returned key reference.
878  */
879 key_ref_t keyring_search_aux(key_ref_t keyring_ref,
880 			     struct keyring_search_context *ctx)
881 {
882 	struct key *keyring;
883 	long err;
884 
885 	ctx->iterator = keyring_search_iterator;
886 	ctx->possessed = is_key_possessed(keyring_ref);
887 	ctx->result = ERR_PTR(-EAGAIN);
888 
889 	keyring = key_ref_to_ptr(keyring_ref);
890 	key_check(keyring);
891 
892 	if (keyring->type != &key_type_keyring)
893 		return ERR_PTR(-ENOTDIR);
894 
895 	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
896 		err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH);
897 		if (err < 0)
898 			return ERR_PTR(err);
899 	}
900 
901 	rcu_read_lock();
902 	ctx->now = current_kernel_time();
903 	if (search_nested_keyrings(keyring, ctx))
904 		__key_get(key_ref_to_ptr(ctx->result));
905 	rcu_read_unlock();
906 	return ctx->result;
907 }
908 
909 /**
910  * keyring_search - Search the supplied keyring tree for a matching key
911  * @keyring: The root of the keyring tree to be searched.
912  * @type: The type of keyring we want to find.
913  * @description: The name of the keyring we want to find.
914  *
915  * As keyring_search_aux() above, but using the current task's credentials and
916  * type's default matching function and preferred search method.
917  */
918 key_ref_t keyring_search(key_ref_t keyring,
919 			 struct key_type *type,
920 			 const char *description)
921 {
922 	struct keyring_search_context ctx = {
923 		.index_key.type		= type,
924 		.index_key.description	= description,
925 		.cred			= current_cred(),
926 		.match_data.cmp		= key_default_cmp,
927 		.match_data.raw_data	= description,
928 		.match_data.lookup_type	= KEYRING_SEARCH_LOOKUP_DIRECT,
929 		.flags			= KEYRING_SEARCH_DO_STATE_CHECK,
930 	};
931 	key_ref_t key;
932 	int ret;
933 
934 	if (type->match_preparse) {
935 		ret = type->match_preparse(&ctx.match_data);
936 		if (ret < 0)
937 			return ERR_PTR(ret);
938 	}
939 
940 	key = keyring_search_aux(keyring, &ctx);
941 
942 	if (type->match_free)
943 		type->match_free(&ctx.match_data);
944 	return key;
945 }
946 EXPORT_SYMBOL(keyring_search);
947 
948 static struct key_restriction *keyring_restriction_alloc(
949 	key_restrict_link_func_t check)
950 {
951 	struct key_restriction *keyres =
952 		kzalloc(sizeof(struct key_restriction), GFP_KERNEL);
953 
954 	if (!keyres)
955 		return ERR_PTR(-ENOMEM);
956 
957 	keyres->check = check;
958 
959 	return keyres;
960 }
961 
962 /*
963  * Semaphore to serialise restriction setup to prevent reference count
964  * cycles through restriction key pointers.
965  */
966 static DECLARE_RWSEM(keyring_serialise_restrict_sem);
967 
968 /*
969  * Check for restriction cycles that would prevent keyring garbage collection.
970  * keyring_serialise_restrict_sem must be held.
971  */
972 static bool keyring_detect_restriction_cycle(const struct key *dest_keyring,
973 					     struct key_restriction *keyres)
974 {
975 	while (keyres && keyres->key &&
976 	       keyres->key->type == &key_type_keyring) {
977 		if (keyres->key == dest_keyring)
978 			return true;
979 
980 		keyres = keyres->key->restrict_link;
981 	}
982 
983 	return false;
984 }
985 
986 /**
987  * keyring_restrict - Look up and apply a restriction to a keyring
988  *
989  * @keyring: The keyring to be restricted
990  * @restriction: The restriction options to apply to the keyring
991  */
992 int keyring_restrict(key_ref_t keyring_ref, const char *type,
993 		     const char *restriction)
994 {
995 	struct key *keyring;
996 	struct key_type *restrict_type = NULL;
997 	struct key_restriction *restrict_link;
998 	int ret = 0;
999 
1000 	keyring = key_ref_to_ptr(keyring_ref);
1001 	key_check(keyring);
1002 
1003 	if (keyring->type != &key_type_keyring)
1004 		return -ENOTDIR;
1005 
1006 	if (!type) {
1007 		restrict_link = keyring_restriction_alloc(restrict_link_reject);
1008 	} else {
1009 		restrict_type = key_type_lookup(type);
1010 
1011 		if (IS_ERR(restrict_type))
1012 			return PTR_ERR(restrict_type);
1013 
1014 		if (!restrict_type->lookup_restriction) {
1015 			ret = -ENOENT;
1016 			goto error;
1017 		}
1018 
1019 		restrict_link = restrict_type->lookup_restriction(restriction);
1020 	}
1021 
1022 	if (IS_ERR(restrict_link)) {
1023 		ret = PTR_ERR(restrict_link);
1024 		goto error;
1025 	}
1026 
1027 	down_write(&keyring->sem);
1028 	down_write(&keyring_serialise_restrict_sem);
1029 
1030 	if (keyring->restrict_link)
1031 		ret = -EEXIST;
1032 	else if (keyring_detect_restriction_cycle(keyring, restrict_link))
1033 		ret = -EDEADLK;
1034 	else
1035 		keyring->restrict_link = restrict_link;
1036 
1037 	up_write(&keyring_serialise_restrict_sem);
1038 	up_write(&keyring->sem);
1039 
1040 	if (ret < 0) {
1041 		key_put(restrict_link->key);
1042 		kfree(restrict_link);
1043 	}
1044 
1045 error:
1046 	if (restrict_type)
1047 		key_type_put(restrict_type);
1048 
1049 	return ret;
1050 }
1051 EXPORT_SYMBOL(keyring_restrict);
1052 
1053 /*
1054  * Search the given keyring for a key that might be updated.
1055  *
1056  * The caller must guarantee that the keyring is a keyring and that the
1057  * permission is granted to modify the keyring as no check is made here.  The
1058  * caller must also hold a lock on the keyring semaphore.
1059  *
1060  * Returns a pointer to the found key with usage count incremented if
1061  * successful and returns NULL if not found.  Revoked and invalidated keys are
1062  * skipped over.
1063  *
1064  * If successful, the possession indicator is propagated from the keyring ref
1065  * to the returned key reference.
1066  */
1067 key_ref_t find_key_to_update(key_ref_t keyring_ref,
1068 			     const struct keyring_index_key *index_key)
1069 {
1070 	struct key *keyring, *key;
1071 	const void *object;
1072 
1073 	keyring = key_ref_to_ptr(keyring_ref);
1074 
1075 	kenter("{%d},{%s,%s}",
1076 	       keyring->serial, index_key->type->name, index_key->description);
1077 
1078 	object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
1079 				  index_key);
1080 
1081 	if (object)
1082 		goto found;
1083 
1084 	kleave(" = NULL");
1085 	return NULL;
1086 
1087 found:
1088 	key = keyring_ptr_to_key(object);
1089 	if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
1090 			  (1 << KEY_FLAG_REVOKED))) {
1091 		kleave(" = NULL [x]");
1092 		return NULL;
1093 	}
1094 	__key_get(key);
1095 	kleave(" = {%d}", key->serial);
1096 	return make_key_ref(key, is_key_possessed(keyring_ref));
1097 }
1098 
1099 /*
1100  * Find a keyring with the specified name.
1101  *
1102  * Only keyrings that have nonzero refcount, are not revoked, and are owned by a
1103  * user in the current user namespace are considered.  If @uid_keyring is %true,
1104  * the keyring additionally must have been allocated as a user or user session
1105  * keyring; otherwise, it must grant Search permission directly to the caller.
1106  *
1107  * Returns a pointer to the keyring with the keyring's refcount having being
1108  * incremented on success.  -ENOKEY is returned if a key could not be found.
1109  */
1110 struct key *find_keyring_by_name(const char *name, bool uid_keyring)
1111 {
1112 	struct key *keyring;
1113 	int bucket;
1114 
1115 	if (!name)
1116 		return ERR_PTR(-EINVAL);
1117 
1118 	bucket = keyring_hash(name);
1119 
1120 	read_lock(&keyring_name_lock);
1121 
1122 	if (keyring_name_hash[bucket].next) {
1123 		/* search this hash bucket for a keyring with a matching name
1124 		 * that's readable and that hasn't been revoked */
1125 		list_for_each_entry(keyring,
1126 				    &keyring_name_hash[bucket],
1127 				    name_link
1128 				    ) {
1129 			if (!kuid_has_mapping(current_user_ns(), keyring->user->uid))
1130 				continue;
1131 
1132 			if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1133 				continue;
1134 
1135 			if (strcmp(keyring->description, name) != 0)
1136 				continue;
1137 
1138 			if (uid_keyring) {
1139 				if (!test_bit(KEY_FLAG_UID_KEYRING,
1140 					      &keyring->flags))
1141 					continue;
1142 			} else {
1143 				if (key_permission(make_key_ref(keyring, 0),
1144 						   KEY_NEED_SEARCH) < 0)
1145 					continue;
1146 			}
1147 
1148 			/* we've got a match but we might end up racing with
1149 			 * key_cleanup() if the keyring is currently 'dead'
1150 			 * (ie. it has a zero usage count) */
1151 			if (!refcount_inc_not_zero(&keyring->usage))
1152 				continue;
1153 			keyring->last_used_at = current_kernel_time().tv_sec;
1154 			goto out;
1155 		}
1156 	}
1157 
1158 	keyring = ERR_PTR(-ENOKEY);
1159 out:
1160 	read_unlock(&keyring_name_lock);
1161 	return keyring;
1162 }
1163 
1164 static int keyring_detect_cycle_iterator(const void *object,
1165 					 void *iterator_data)
1166 {
1167 	struct keyring_search_context *ctx = iterator_data;
1168 	const struct key *key = keyring_ptr_to_key(object);
1169 
1170 	kenter("{%d}", key->serial);
1171 
1172 	/* We might get a keyring with matching index-key that is nonetheless a
1173 	 * different keyring. */
1174 	if (key != ctx->match_data.raw_data)
1175 		return 0;
1176 
1177 	ctx->result = ERR_PTR(-EDEADLK);
1178 	return 1;
1179 }
1180 
1181 /*
1182  * See if a cycle will will be created by inserting acyclic tree B in acyclic
1183  * tree A at the topmost level (ie: as a direct child of A).
1184  *
1185  * Since we are adding B to A at the top level, checking for cycles should just
1186  * be a matter of seeing if node A is somewhere in tree B.
1187  */
1188 static int keyring_detect_cycle(struct key *A, struct key *B)
1189 {
1190 	struct keyring_search_context ctx = {
1191 		.index_key		= A->index_key,
1192 		.match_data.raw_data	= A,
1193 		.match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
1194 		.iterator		= keyring_detect_cycle_iterator,
1195 		.flags			= (KEYRING_SEARCH_NO_STATE_CHECK |
1196 					   KEYRING_SEARCH_NO_UPDATE_TIME |
1197 					   KEYRING_SEARCH_NO_CHECK_PERM |
1198 					   KEYRING_SEARCH_DETECT_TOO_DEEP),
1199 	};
1200 
1201 	rcu_read_lock();
1202 	search_nested_keyrings(B, &ctx);
1203 	rcu_read_unlock();
1204 	return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
1205 }
1206 
1207 /*
1208  * Preallocate memory so that a key can be linked into to a keyring.
1209  */
1210 int __key_link_begin(struct key *keyring,
1211 		     const struct keyring_index_key *index_key,
1212 		     struct assoc_array_edit **_edit)
1213 	__acquires(&keyring->sem)
1214 	__acquires(&keyring_serialise_link_sem)
1215 {
1216 	struct assoc_array_edit *edit;
1217 	int ret;
1218 
1219 	kenter("%d,%s,%s,",
1220 	       keyring->serial, index_key->type->name, index_key->description);
1221 
1222 	BUG_ON(index_key->desc_len == 0);
1223 
1224 	if (keyring->type != &key_type_keyring)
1225 		return -ENOTDIR;
1226 
1227 	down_write(&keyring->sem);
1228 
1229 	ret = -EKEYREVOKED;
1230 	if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1231 		goto error_krsem;
1232 
1233 	/* serialise link/link calls to prevent parallel calls causing a cycle
1234 	 * when linking two keyring in opposite orders */
1235 	if (index_key->type == &key_type_keyring)
1236 		down_write(&keyring_serialise_link_sem);
1237 
1238 	/* Create an edit script that will insert/replace the key in the
1239 	 * keyring tree.
1240 	 */
1241 	edit = assoc_array_insert(&keyring->keys,
1242 				  &keyring_assoc_array_ops,
1243 				  index_key,
1244 				  NULL);
1245 	if (IS_ERR(edit)) {
1246 		ret = PTR_ERR(edit);
1247 		goto error_sem;
1248 	}
1249 
1250 	/* If we're not replacing a link in-place then we're going to need some
1251 	 * extra quota.
1252 	 */
1253 	if (!edit->dead_leaf) {
1254 		ret = key_payload_reserve(keyring,
1255 					  keyring->datalen + KEYQUOTA_LINK_BYTES);
1256 		if (ret < 0)
1257 			goto error_cancel;
1258 	}
1259 
1260 	*_edit = edit;
1261 	kleave(" = 0");
1262 	return 0;
1263 
1264 error_cancel:
1265 	assoc_array_cancel_edit(edit);
1266 error_sem:
1267 	if (index_key->type == &key_type_keyring)
1268 		up_write(&keyring_serialise_link_sem);
1269 error_krsem:
1270 	up_write(&keyring->sem);
1271 	kleave(" = %d", ret);
1272 	return ret;
1273 }
1274 
1275 /*
1276  * Check already instantiated keys aren't going to be a problem.
1277  *
1278  * The caller must have called __key_link_begin(). Don't need to call this for
1279  * keys that were created since __key_link_begin() was called.
1280  */
1281 int __key_link_check_live_key(struct key *keyring, struct key *key)
1282 {
1283 	if (key->type == &key_type_keyring)
1284 		/* check that we aren't going to create a cycle by linking one
1285 		 * keyring to another */
1286 		return keyring_detect_cycle(keyring, key);
1287 	return 0;
1288 }
1289 
1290 /*
1291  * Link a key into to a keyring.
1292  *
1293  * Must be called with __key_link_begin() having being called.  Discards any
1294  * already extant link to matching key if there is one, so that each keyring
1295  * holds at most one link to any given key of a particular type+description
1296  * combination.
1297  */
1298 void __key_link(struct key *key, struct assoc_array_edit **_edit)
1299 {
1300 	__key_get(key);
1301 	assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
1302 	assoc_array_apply_edit(*_edit);
1303 	*_edit = NULL;
1304 }
1305 
1306 /*
1307  * Finish linking a key into to a keyring.
1308  *
1309  * Must be called with __key_link_begin() having being called.
1310  */
1311 void __key_link_end(struct key *keyring,
1312 		    const struct keyring_index_key *index_key,
1313 		    struct assoc_array_edit *edit)
1314 	__releases(&keyring->sem)
1315 	__releases(&keyring_serialise_link_sem)
1316 {
1317 	BUG_ON(index_key->type == NULL);
1318 	kenter("%d,%s,", keyring->serial, index_key->type->name);
1319 
1320 	if (index_key->type == &key_type_keyring)
1321 		up_write(&keyring_serialise_link_sem);
1322 
1323 	if (edit) {
1324 		if (!edit->dead_leaf) {
1325 			key_payload_reserve(keyring,
1326 				keyring->datalen - KEYQUOTA_LINK_BYTES);
1327 		}
1328 		assoc_array_cancel_edit(edit);
1329 	}
1330 	up_write(&keyring->sem);
1331 }
1332 
1333 /*
1334  * Check addition of keys to restricted keyrings.
1335  */
1336 static int __key_link_check_restriction(struct key *keyring, struct key *key)
1337 {
1338 	if (!keyring->restrict_link || !keyring->restrict_link->check)
1339 		return 0;
1340 	return keyring->restrict_link->check(keyring, key->type, &key->payload,
1341 					     keyring->restrict_link->key);
1342 }
1343 
1344 /**
1345  * key_link - Link a key to a keyring
1346  * @keyring: The keyring to make the link in.
1347  * @key: The key to link to.
1348  *
1349  * Make a link in a keyring to a key, such that the keyring holds a reference
1350  * on that key and the key can potentially be found by searching that keyring.
1351  *
1352  * This function will write-lock the keyring's semaphore and will consume some
1353  * of the user's key data quota to hold the link.
1354  *
1355  * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
1356  * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
1357  * full, -EDQUOT if there is insufficient key data quota remaining to add
1358  * another link or -ENOMEM if there's insufficient memory.
1359  *
1360  * It is assumed that the caller has checked that it is permitted for a link to
1361  * be made (the keyring should have Write permission and the key Link
1362  * permission).
1363  */
1364 int key_link(struct key *keyring, struct key *key)
1365 {
1366 	struct assoc_array_edit *edit;
1367 	int ret;
1368 
1369 	kenter("{%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1370 
1371 	key_check(keyring);
1372 	key_check(key);
1373 
1374 	ret = __key_link_begin(keyring, &key->index_key, &edit);
1375 	if (ret == 0) {
1376 		kdebug("begun {%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1377 		ret = __key_link_check_restriction(keyring, key);
1378 		if (ret == 0)
1379 			ret = __key_link_check_live_key(keyring, key);
1380 		if (ret == 0)
1381 			__key_link(key, &edit);
1382 		__key_link_end(keyring, &key->index_key, edit);
1383 	}
1384 
1385 	kleave(" = %d {%d,%d}", ret, keyring->serial, refcount_read(&keyring->usage));
1386 	return ret;
1387 }
1388 EXPORT_SYMBOL(key_link);
1389 
1390 /**
1391  * key_unlink - Unlink the first link to a key from a keyring.
1392  * @keyring: The keyring to remove the link from.
1393  * @key: The key the link is to.
1394  *
1395  * Remove a link from a keyring to a key.
1396  *
1397  * This function will write-lock the keyring's semaphore.
1398  *
1399  * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1400  * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1401  * memory.
1402  *
1403  * It is assumed that the caller has checked that it is permitted for a link to
1404  * be removed (the keyring should have Write permission; no permissions are
1405  * required on the key).
1406  */
1407 int key_unlink(struct key *keyring, struct key *key)
1408 {
1409 	struct assoc_array_edit *edit;
1410 	int ret;
1411 
1412 	key_check(keyring);
1413 	key_check(key);
1414 
1415 	if (keyring->type != &key_type_keyring)
1416 		return -ENOTDIR;
1417 
1418 	down_write(&keyring->sem);
1419 
1420 	edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
1421 				  &key->index_key);
1422 	if (IS_ERR(edit)) {
1423 		ret = PTR_ERR(edit);
1424 		goto error;
1425 	}
1426 	ret = -ENOENT;
1427 	if (edit == NULL)
1428 		goto error;
1429 
1430 	assoc_array_apply_edit(edit);
1431 	key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
1432 	ret = 0;
1433 
1434 error:
1435 	up_write(&keyring->sem);
1436 	return ret;
1437 }
1438 EXPORT_SYMBOL(key_unlink);
1439 
1440 /**
1441  * keyring_clear - Clear a keyring
1442  * @keyring: The keyring to clear.
1443  *
1444  * Clear the contents of the specified keyring.
1445  *
1446  * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1447  */
1448 int keyring_clear(struct key *keyring)
1449 {
1450 	struct assoc_array_edit *edit;
1451 	int ret;
1452 
1453 	if (keyring->type != &key_type_keyring)
1454 		return -ENOTDIR;
1455 
1456 	down_write(&keyring->sem);
1457 
1458 	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1459 	if (IS_ERR(edit)) {
1460 		ret = PTR_ERR(edit);
1461 	} else {
1462 		if (edit)
1463 			assoc_array_apply_edit(edit);
1464 		key_payload_reserve(keyring, 0);
1465 		ret = 0;
1466 	}
1467 
1468 	up_write(&keyring->sem);
1469 	return ret;
1470 }
1471 EXPORT_SYMBOL(keyring_clear);
1472 
1473 /*
1474  * Dispose of the links from a revoked keyring.
1475  *
1476  * This is called with the key sem write-locked.
1477  */
1478 static void keyring_revoke(struct key *keyring)
1479 {
1480 	struct assoc_array_edit *edit;
1481 
1482 	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1483 	if (!IS_ERR(edit)) {
1484 		if (edit)
1485 			assoc_array_apply_edit(edit);
1486 		key_payload_reserve(keyring, 0);
1487 	}
1488 }
1489 
1490 static bool keyring_gc_select_iterator(void *object, void *iterator_data)
1491 {
1492 	struct key *key = keyring_ptr_to_key(object);
1493 	time_t *limit = iterator_data;
1494 
1495 	if (key_is_dead(key, *limit))
1496 		return false;
1497 	key_get(key);
1498 	return true;
1499 }
1500 
1501 static int keyring_gc_check_iterator(const void *object, void *iterator_data)
1502 {
1503 	const struct key *key = keyring_ptr_to_key(object);
1504 	time_t *limit = iterator_data;
1505 
1506 	key_check(key);
1507 	return key_is_dead(key, *limit);
1508 }
1509 
1510 /*
1511  * Garbage collect pointers from a keyring.
1512  *
1513  * Not called with any locks held.  The keyring's key struct will not be
1514  * deallocated under us as only our caller may deallocate it.
1515  */
1516 void keyring_gc(struct key *keyring, time_t limit)
1517 {
1518 	int result;
1519 
1520 	kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1521 
1522 	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
1523 			      (1 << KEY_FLAG_REVOKED)))
1524 		goto dont_gc;
1525 
1526 	/* scan the keyring looking for dead keys */
1527 	rcu_read_lock();
1528 	result = assoc_array_iterate(&keyring->keys,
1529 				     keyring_gc_check_iterator, &limit);
1530 	rcu_read_unlock();
1531 	if (result == true)
1532 		goto do_gc;
1533 
1534 dont_gc:
1535 	kleave(" [no gc]");
1536 	return;
1537 
1538 do_gc:
1539 	down_write(&keyring->sem);
1540 	assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
1541 		       keyring_gc_select_iterator, &limit);
1542 	up_write(&keyring->sem);
1543 	kleave(" [gc]");
1544 }
1545 
1546 /*
1547  * Garbage collect restriction pointers from a keyring.
1548  *
1549  * Keyring restrictions are associated with a key type, and must be cleaned
1550  * up if the key type is unregistered. The restriction is altered to always
1551  * reject additional keys so a keyring cannot be opened up by unregistering
1552  * a key type.
1553  *
1554  * Not called with any keyring locks held. The keyring's key struct will not
1555  * be deallocated under us as only our caller may deallocate it.
1556  *
1557  * The caller is required to hold key_types_sem and dead_type->sem. This is
1558  * fulfilled by key_gc_keytype() holding the locks on behalf of
1559  * key_garbage_collector(), which it invokes on a workqueue.
1560  */
1561 void keyring_restriction_gc(struct key *keyring, struct key_type *dead_type)
1562 {
1563 	struct key_restriction *keyres;
1564 
1565 	kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1566 
1567 	/*
1568 	 * keyring->restrict_link is only assigned at key allocation time
1569 	 * or with the key type locked, so the only values that could be
1570 	 * concurrently assigned to keyring->restrict_link are for key
1571 	 * types other than dead_type. Given this, it's ok to check
1572 	 * the key type before acquiring keyring->sem.
1573 	 */
1574 	if (!dead_type || !keyring->restrict_link ||
1575 	    keyring->restrict_link->keytype != dead_type) {
1576 		kleave(" [no restriction gc]");
1577 		return;
1578 	}
1579 
1580 	/* Lock the keyring to ensure that a link is not in progress */
1581 	down_write(&keyring->sem);
1582 
1583 	keyres = keyring->restrict_link;
1584 
1585 	keyres->check = restrict_link_reject;
1586 
1587 	key_put(keyres->key);
1588 	keyres->key = NULL;
1589 	keyres->keytype = NULL;
1590 
1591 	up_write(&keyring->sem);
1592 
1593 	kleave(" [restriction gc]");
1594 }
1595