1 /* Keyring handling 2 * 3 * Copyright (C) 2004-2005, 2008 Red Hat, Inc. All Rights Reserved. 4 * Written by David Howells (dhowells@redhat.com) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/sched.h> 15 #include <linux/slab.h> 16 #include <linux/security.h> 17 #include <linux/seq_file.h> 18 #include <linux/err.h> 19 #include <keys/keyring-type.h> 20 #include <linux/uaccess.h> 21 #include "internal.h" 22 23 #define rcu_dereference_locked_keyring(keyring) \ 24 (rcu_dereference_protected( \ 25 (keyring)->payload.subscriptions, \ 26 rwsem_is_locked((struct rw_semaphore *)&(keyring)->sem))) 27 28 #define KEY_LINK_FIXQUOTA 1UL 29 30 /* 31 * When plumbing the depths of the key tree, this sets a hard limit 32 * set on how deep we're willing to go. 33 */ 34 #define KEYRING_SEARCH_MAX_DEPTH 6 35 36 /* 37 * We keep all named keyrings in a hash to speed looking them up. 38 */ 39 #define KEYRING_NAME_HASH_SIZE (1 << 5) 40 41 static struct list_head keyring_name_hash[KEYRING_NAME_HASH_SIZE]; 42 static DEFINE_RWLOCK(keyring_name_lock); 43 44 static inline unsigned keyring_hash(const char *desc) 45 { 46 unsigned bucket = 0; 47 48 for (; *desc; desc++) 49 bucket += (unsigned char)*desc; 50 51 return bucket & (KEYRING_NAME_HASH_SIZE - 1); 52 } 53 54 /* 55 * The keyring key type definition. Keyrings are simply keys of this type and 56 * can be treated as ordinary keys in addition to having their own special 57 * operations. 58 */ 59 static int keyring_instantiate(struct key *keyring, 60 const void *data, size_t datalen); 61 static int keyring_match(const struct key *keyring, const void *criterion); 62 static void keyring_revoke(struct key *keyring); 63 static void keyring_destroy(struct key *keyring); 64 static void keyring_describe(const struct key *keyring, struct seq_file *m); 65 static long keyring_read(const struct key *keyring, 66 char __user *buffer, size_t buflen); 67 68 struct key_type key_type_keyring = { 69 .name = "keyring", 70 .def_datalen = sizeof(struct keyring_list), 71 .instantiate = keyring_instantiate, 72 .match = keyring_match, 73 .revoke = keyring_revoke, 74 .destroy = keyring_destroy, 75 .describe = keyring_describe, 76 .read = keyring_read, 77 }; 78 EXPORT_SYMBOL(key_type_keyring); 79 80 /* 81 * Semaphore to serialise link/link calls to prevent two link calls in parallel 82 * introducing a cycle. 83 */ 84 static DECLARE_RWSEM(keyring_serialise_link_sem); 85 86 /* 87 * Publish the name of a keyring so that it can be found by name (if it has 88 * one). 89 */ 90 static void keyring_publish_name(struct key *keyring) 91 { 92 int bucket; 93 94 if (keyring->description) { 95 bucket = keyring_hash(keyring->description); 96 97 write_lock(&keyring_name_lock); 98 99 if (!keyring_name_hash[bucket].next) 100 INIT_LIST_HEAD(&keyring_name_hash[bucket]); 101 102 list_add_tail(&keyring->type_data.link, 103 &keyring_name_hash[bucket]); 104 105 write_unlock(&keyring_name_lock); 106 } 107 } 108 109 /* 110 * Initialise a keyring. 111 * 112 * Returns 0 on success, -EINVAL if given any data. 113 */ 114 static int keyring_instantiate(struct key *keyring, 115 const void *data, size_t datalen) 116 { 117 int ret; 118 119 ret = -EINVAL; 120 if (datalen == 0) { 121 /* make the keyring available by name if it has one */ 122 keyring_publish_name(keyring); 123 ret = 0; 124 } 125 126 return ret; 127 } 128 129 /* 130 * Match keyrings on their name 131 */ 132 static int keyring_match(const struct key *keyring, const void *description) 133 { 134 return keyring->description && 135 strcmp(keyring->description, description) == 0; 136 } 137 138 /* 139 * Clean up a keyring when it is destroyed. Unpublish its name if it had one 140 * and dispose of its data. 141 */ 142 static void keyring_destroy(struct key *keyring) 143 { 144 struct keyring_list *klist; 145 int loop; 146 147 if (keyring->description) { 148 write_lock(&keyring_name_lock); 149 150 if (keyring->type_data.link.next != NULL && 151 !list_empty(&keyring->type_data.link)) 152 list_del(&keyring->type_data.link); 153 154 write_unlock(&keyring_name_lock); 155 } 156 157 klist = rcu_dereference_check(keyring->payload.subscriptions, 158 atomic_read(&keyring->usage) == 0); 159 if (klist) { 160 for (loop = klist->nkeys - 1; loop >= 0; loop--) 161 key_put(klist->keys[loop]); 162 kfree(klist); 163 } 164 } 165 166 /* 167 * Describe a keyring for /proc. 168 */ 169 static void keyring_describe(const struct key *keyring, struct seq_file *m) 170 { 171 struct keyring_list *klist; 172 173 if (keyring->description) 174 seq_puts(m, keyring->description); 175 else 176 seq_puts(m, "[anon]"); 177 178 if (key_is_instantiated(keyring)) { 179 rcu_read_lock(); 180 klist = rcu_dereference(keyring->payload.subscriptions); 181 if (klist) 182 seq_printf(m, ": %u/%u", klist->nkeys, klist->maxkeys); 183 else 184 seq_puts(m, ": empty"); 185 rcu_read_unlock(); 186 } 187 } 188 189 /* 190 * Read a list of key IDs from the keyring's contents in binary form 191 * 192 * The keyring's semaphore is read-locked by the caller. 193 */ 194 static long keyring_read(const struct key *keyring, 195 char __user *buffer, size_t buflen) 196 { 197 struct keyring_list *klist; 198 struct key *key; 199 size_t qty, tmp; 200 int loop, ret; 201 202 ret = 0; 203 klist = rcu_dereference_locked_keyring(keyring); 204 if (klist) { 205 /* calculate how much data we could return */ 206 qty = klist->nkeys * sizeof(key_serial_t); 207 208 if (buffer && buflen > 0) { 209 if (buflen > qty) 210 buflen = qty; 211 212 /* copy the IDs of the subscribed keys into the 213 * buffer */ 214 ret = -EFAULT; 215 216 for (loop = 0; loop < klist->nkeys; loop++) { 217 key = klist->keys[loop]; 218 219 tmp = sizeof(key_serial_t); 220 if (tmp > buflen) 221 tmp = buflen; 222 223 if (copy_to_user(buffer, 224 &key->serial, 225 tmp) != 0) 226 goto error; 227 228 buflen -= tmp; 229 if (buflen == 0) 230 break; 231 buffer += tmp; 232 } 233 } 234 235 ret = qty; 236 } 237 238 error: 239 return ret; 240 } 241 242 /* 243 * Allocate a keyring and link into the destination keyring. 244 */ 245 struct key *keyring_alloc(const char *description, uid_t uid, gid_t gid, 246 const struct cred *cred, unsigned long flags, 247 struct key *dest) 248 { 249 struct key *keyring; 250 int ret; 251 252 keyring = key_alloc(&key_type_keyring, description, 253 uid, gid, cred, 254 (KEY_POS_ALL & ~KEY_POS_SETATTR) | KEY_USR_ALL, 255 flags); 256 257 if (!IS_ERR(keyring)) { 258 ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL); 259 if (ret < 0) { 260 key_put(keyring); 261 keyring = ERR_PTR(ret); 262 } 263 } 264 265 return keyring; 266 } 267 268 /** 269 * keyring_search_aux - Search a keyring tree for a key matching some criteria 270 * @keyring_ref: A pointer to the keyring with possession indicator. 271 * @cred: The credentials to use for permissions checks. 272 * @type: The type of key to search for. 273 * @description: Parameter for @match. 274 * @match: Function to rule on whether or not a key is the one required. 275 * @no_state_check: Don't check if a matching key is bad 276 * 277 * Search the supplied keyring tree for a key that matches the criteria given. 278 * The root keyring and any linked keyrings must grant Search permission to the 279 * caller to be searchable and keys can only be found if they too grant Search 280 * to the caller. The possession flag on the root keyring pointer controls use 281 * of the possessor bits in permissions checking of the entire tree. In 282 * addition, the LSM gets to forbid keyring searches and key matches. 283 * 284 * The search is performed as a breadth-then-depth search up to the prescribed 285 * limit (KEYRING_SEARCH_MAX_DEPTH). 286 * 287 * Keys are matched to the type provided and are then filtered by the match 288 * function, which is given the description to use in any way it sees fit. The 289 * match function may use any attributes of a key that it wishes to to 290 * determine the match. Normally the match function from the key type would be 291 * used. 292 * 293 * RCU is used to prevent the keyring key lists from disappearing without the 294 * need to take lots of locks. 295 * 296 * Returns a pointer to the found key and increments the key usage count if 297 * successful; -EAGAIN if no matching keys were found, or if expired or revoked 298 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the 299 * specified keyring wasn't a keyring. 300 * 301 * In the case of a successful return, the possession attribute from 302 * @keyring_ref is propagated to the returned key reference. 303 */ 304 key_ref_t keyring_search_aux(key_ref_t keyring_ref, 305 const struct cred *cred, 306 struct key_type *type, 307 const void *description, 308 key_match_func_t match, 309 bool no_state_check) 310 { 311 struct { 312 struct keyring_list *keylist; 313 int kix; 314 } stack[KEYRING_SEARCH_MAX_DEPTH]; 315 316 struct keyring_list *keylist; 317 struct timespec now; 318 unsigned long possessed, kflags; 319 struct key *keyring, *key; 320 key_ref_t key_ref; 321 long err; 322 int sp, nkeys, kix; 323 324 keyring = key_ref_to_ptr(keyring_ref); 325 possessed = is_key_possessed(keyring_ref); 326 key_check(keyring); 327 328 /* top keyring must have search permission to begin the search */ 329 err = key_task_permission(keyring_ref, cred, KEY_SEARCH); 330 if (err < 0) { 331 key_ref = ERR_PTR(err); 332 goto error; 333 } 334 335 key_ref = ERR_PTR(-ENOTDIR); 336 if (keyring->type != &key_type_keyring) 337 goto error; 338 339 rcu_read_lock(); 340 341 now = current_kernel_time(); 342 err = -EAGAIN; 343 sp = 0; 344 345 /* firstly we should check to see if this top-level keyring is what we 346 * are looking for */ 347 key_ref = ERR_PTR(-EAGAIN); 348 kflags = keyring->flags; 349 if (keyring->type == type && match(keyring, description)) { 350 key = keyring; 351 if (no_state_check) 352 goto found; 353 354 /* check it isn't negative and hasn't expired or been 355 * revoked */ 356 if (kflags & (1 << KEY_FLAG_REVOKED)) 357 goto error_2; 358 if (key->expiry && now.tv_sec >= key->expiry) 359 goto error_2; 360 key_ref = ERR_PTR(key->type_data.reject_error); 361 if (kflags & (1 << KEY_FLAG_NEGATIVE)) 362 goto error_2; 363 goto found; 364 } 365 366 /* otherwise, the top keyring must not be revoked, expired, or 367 * negatively instantiated if we are to search it */ 368 key_ref = ERR_PTR(-EAGAIN); 369 if (kflags & ((1 << KEY_FLAG_REVOKED) | (1 << KEY_FLAG_NEGATIVE)) || 370 (keyring->expiry && now.tv_sec >= keyring->expiry)) 371 goto error_2; 372 373 /* start processing a new keyring */ 374 descend: 375 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags)) 376 goto not_this_keyring; 377 378 keylist = rcu_dereference(keyring->payload.subscriptions); 379 if (!keylist) 380 goto not_this_keyring; 381 382 /* iterate through the keys in this keyring first */ 383 nkeys = keylist->nkeys; 384 smp_rmb(); 385 for (kix = 0; kix < nkeys; kix++) { 386 key = keylist->keys[kix]; 387 kflags = key->flags; 388 389 /* ignore keys not of this type */ 390 if (key->type != type) 391 continue; 392 393 /* skip revoked keys and expired keys */ 394 if (!no_state_check) { 395 if (kflags & (1 << KEY_FLAG_REVOKED)) 396 continue; 397 398 if (key->expiry && now.tv_sec >= key->expiry) 399 continue; 400 } 401 402 /* keys that don't match */ 403 if (!match(key, description)) 404 continue; 405 406 /* key must have search permissions */ 407 if (key_task_permission(make_key_ref(key, possessed), 408 cred, KEY_SEARCH) < 0) 409 continue; 410 411 if (no_state_check) 412 goto found; 413 414 /* we set a different error code if we pass a negative key */ 415 if (kflags & (1 << KEY_FLAG_NEGATIVE)) { 416 err = key->type_data.reject_error; 417 continue; 418 } 419 420 goto found; 421 } 422 423 /* search through the keyrings nested in this one */ 424 kix = 0; 425 ascend: 426 nkeys = keylist->nkeys; 427 smp_rmb(); 428 for (; kix < nkeys; kix++) { 429 key = keylist->keys[kix]; 430 if (key->type != &key_type_keyring) 431 continue; 432 433 /* recursively search nested keyrings 434 * - only search keyrings for which we have search permission 435 */ 436 if (sp >= KEYRING_SEARCH_MAX_DEPTH) 437 continue; 438 439 if (key_task_permission(make_key_ref(key, possessed), 440 cred, KEY_SEARCH) < 0) 441 continue; 442 443 /* stack the current position */ 444 stack[sp].keylist = keylist; 445 stack[sp].kix = kix; 446 sp++; 447 448 /* begin again with the new keyring */ 449 keyring = key; 450 goto descend; 451 } 452 453 /* the keyring we're looking at was disqualified or didn't contain a 454 * matching key */ 455 not_this_keyring: 456 if (sp > 0) { 457 /* resume the processing of a keyring higher up in the tree */ 458 sp--; 459 keylist = stack[sp].keylist; 460 kix = stack[sp].kix + 1; 461 goto ascend; 462 } 463 464 key_ref = ERR_PTR(err); 465 goto error_2; 466 467 /* we found a viable match */ 468 found: 469 atomic_inc(&key->usage); 470 key_check(key); 471 key_ref = make_key_ref(key, possessed); 472 error_2: 473 rcu_read_unlock(); 474 error: 475 return key_ref; 476 } 477 478 /** 479 * keyring_search - Search the supplied keyring tree for a matching key 480 * @keyring: The root of the keyring tree to be searched. 481 * @type: The type of keyring we want to find. 482 * @description: The name of the keyring we want to find. 483 * 484 * As keyring_search_aux() above, but using the current task's credentials and 485 * type's default matching function. 486 */ 487 key_ref_t keyring_search(key_ref_t keyring, 488 struct key_type *type, 489 const char *description) 490 { 491 if (!type->match) 492 return ERR_PTR(-ENOKEY); 493 494 return keyring_search_aux(keyring, current->cred, 495 type, description, type->match, false); 496 } 497 EXPORT_SYMBOL(keyring_search); 498 499 /* 500 * Search the given keyring only (no recursion). 501 * 502 * The caller must guarantee that the keyring is a keyring and that the 503 * permission is granted to search the keyring as no check is made here. 504 * 505 * RCU is used to make it unnecessary to lock the keyring key list here. 506 * 507 * Returns a pointer to the found key with usage count incremented if 508 * successful and returns -ENOKEY if not found. Revoked keys and keys not 509 * providing the requested permission are skipped over. 510 * 511 * If successful, the possession indicator is propagated from the keyring ref 512 * to the returned key reference. 513 */ 514 key_ref_t __keyring_search_one(key_ref_t keyring_ref, 515 const struct key_type *ktype, 516 const char *description, 517 key_perm_t perm) 518 { 519 struct keyring_list *klist; 520 unsigned long possessed; 521 struct key *keyring, *key; 522 int nkeys, loop; 523 524 keyring = key_ref_to_ptr(keyring_ref); 525 possessed = is_key_possessed(keyring_ref); 526 527 rcu_read_lock(); 528 529 klist = rcu_dereference(keyring->payload.subscriptions); 530 if (klist) { 531 nkeys = klist->nkeys; 532 smp_rmb(); 533 for (loop = 0; loop < nkeys ; loop++) { 534 key = klist->keys[loop]; 535 536 if (key->type == ktype && 537 (!key->type->match || 538 key->type->match(key, description)) && 539 key_permission(make_key_ref(key, possessed), 540 perm) == 0 && 541 !test_bit(KEY_FLAG_REVOKED, &key->flags) 542 ) 543 goto found; 544 } 545 } 546 547 rcu_read_unlock(); 548 return ERR_PTR(-ENOKEY); 549 550 found: 551 atomic_inc(&key->usage); 552 rcu_read_unlock(); 553 return make_key_ref(key, possessed); 554 } 555 556 /* 557 * Find a keyring with the specified name. 558 * 559 * All named keyrings in the current user namespace are searched, provided they 560 * grant Search permission directly to the caller (unless this check is 561 * skipped). Keyrings whose usage points have reached zero or who have been 562 * revoked are skipped. 563 * 564 * Returns a pointer to the keyring with the keyring's refcount having being 565 * incremented on success. -ENOKEY is returned if a key could not be found. 566 */ 567 struct key *find_keyring_by_name(const char *name, bool skip_perm_check) 568 { 569 struct key *keyring; 570 int bucket; 571 572 if (!name) 573 return ERR_PTR(-EINVAL); 574 575 bucket = keyring_hash(name); 576 577 read_lock(&keyring_name_lock); 578 579 if (keyring_name_hash[bucket].next) { 580 /* search this hash bucket for a keyring with a matching name 581 * that's readable and that hasn't been revoked */ 582 list_for_each_entry(keyring, 583 &keyring_name_hash[bucket], 584 type_data.link 585 ) { 586 if (keyring->user->user_ns != current_user_ns()) 587 continue; 588 589 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags)) 590 continue; 591 592 if (strcmp(keyring->description, name) != 0) 593 continue; 594 595 if (!skip_perm_check && 596 key_permission(make_key_ref(keyring, 0), 597 KEY_SEARCH) < 0) 598 continue; 599 600 /* we've got a match but we might end up racing with 601 * key_cleanup() if the keyring is currently 'dead' 602 * (ie. it has a zero usage count) */ 603 if (!atomic_inc_not_zero(&keyring->usage)) 604 continue; 605 goto out; 606 } 607 } 608 609 keyring = ERR_PTR(-ENOKEY); 610 out: 611 read_unlock(&keyring_name_lock); 612 return keyring; 613 } 614 615 /* 616 * See if a cycle will will be created by inserting acyclic tree B in acyclic 617 * tree A at the topmost level (ie: as a direct child of A). 618 * 619 * Since we are adding B to A at the top level, checking for cycles should just 620 * be a matter of seeing if node A is somewhere in tree B. 621 */ 622 static int keyring_detect_cycle(struct key *A, struct key *B) 623 { 624 struct { 625 struct keyring_list *keylist; 626 int kix; 627 } stack[KEYRING_SEARCH_MAX_DEPTH]; 628 629 struct keyring_list *keylist; 630 struct key *subtree, *key; 631 int sp, nkeys, kix, ret; 632 633 rcu_read_lock(); 634 635 ret = -EDEADLK; 636 if (A == B) 637 goto cycle_detected; 638 639 subtree = B; 640 sp = 0; 641 642 /* start processing a new keyring */ 643 descend: 644 if (test_bit(KEY_FLAG_REVOKED, &subtree->flags)) 645 goto not_this_keyring; 646 647 keylist = rcu_dereference(subtree->payload.subscriptions); 648 if (!keylist) 649 goto not_this_keyring; 650 kix = 0; 651 652 ascend: 653 /* iterate through the remaining keys in this keyring */ 654 nkeys = keylist->nkeys; 655 smp_rmb(); 656 for (; kix < nkeys; kix++) { 657 key = keylist->keys[kix]; 658 659 if (key == A) 660 goto cycle_detected; 661 662 /* recursively check nested keyrings */ 663 if (key->type == &key_type_keyring) { 664 if (sp >= KEYRING_SEARCH_MAX_DEPTH) 665 goto too_deep; 666 667 /* stack the current position */ 668 stack[sp].keylist = keylist; 669 stack[sp].kix = kix; 670 sp++; 671 672 /* begin again with the new keyring */ 673 subtree = key; 674 goto descend; 675 } 676 } 677 678 /* the keyring we're looking at was disqualified or didn't contain a 679 * matching key */ 680 not_this_keyring: 681 if (sp > 0) { 682 /* resume the checking of a keyring higher up in the tree */ 683 sp--; 684 keylist = stack[sp].keylist; 685 kix = stack[sp].kix + 1; 686 goto ascend; 687 } 688 689 ret = 0; /* no cycles detected */ 690 691 error: 692 rcu_read_unlock(); 693 return ret; 694 695 too_deep: 696 ret = -ELOOP; 697 goto error; 698 699 cycle_detected: 700 ret = -EDEADLK; 701 goto error; 702 } 703 704 /* 705 * Dispose of a keyring list after the RCU grace period, freeing the unlinked 706 * key 707 */ 708 static void keyring_unlink_rcu_disposal(struct rcu_head *rcu) 709 { 710 struct keyring_list *klist = 711 container_of(rcu, struct keyring_list, rcu); 712 713 if (klist->delkey != USHRT_MAX) 714 key_put(klist->keys[klist->delkey]); 715 kfree(klist); 716 } 717 718 /* 719 * Preallocate memory so that a key can be linked into to a keyring. 720 */ 721 int __key_link_begin(struct key *keyring, const struct key_type *type, 722 const char *description, unsigned long *_prealloc) 723 __acquires(&keyring->sem) 724 { 725 struct keyring_list *klist, *nklist; 726 unsigned long prealloc; 727 unsigned max; 728 size_t size; 729 int loop, ret; 730 731 kenter("%d,%s,%s,", key_serial(keyring), type->name, description); 732 733 if (keyring->type != &key_type_keyring) 734 return -ENOTDIR; 735 736 down_write(&keyring->sem); 737 738 ret = -EKEYREVOKED; 739 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags)) 740 goto error_krsem; 741 742 /* serialise link/link calls to prevent parallel calls causing a cycle 743 * when linking two keyring in opposite orders */ 744 if (type == &key_type_keyring) 745 down_write(&keyring_serialise_link_sem); 746 747 klist = rcu_dereference_locked_keyring(keyring); 748 749 /* see if there's a matching key we can displace */ 750 if (klist && klist->nkeys > 0) { 751 for (loop = klist->nkeys - 1; loop >= 0; loop--) { 752 if (klist->keys[loop]->type == type && 753 strcmp(klist->keys[loop]->description, 754 description) == 0 755 ) { 756 /* found a match - we'll replace this one with 757 * the new key */ 758 size = sizeof(struct key *) * klist->maxkeys; 759 size += sizeof(*klist); 760 BUG_ON(size > PAGE_SIZE); 761 762 ret = -ENOMEM; 763 nklist = kmemdup(klist, size, GFP_KERNEL); 764 if (!nklist) 765 goto error_sem; 766 767 /* note replacement slot */ 768 klist->delkey = nklist->delkey = loop; 769 prealloc = (unsigned long)nklist; 770 goto done; 771 } 772 } 773 } 774 775 /* check that we aren't going to overrun the user's quota */ 776 ret = key_payload_reserve(keyring, 777 keyring->datalen + KEYQUOTA_LINK_BYTES); 778 if (ret < 0) 779 goto error_sem; 780 781 if (klist && klist->nkeys < klist->maxkeys) { 782 /* there's sufficient slack space to append directly */ 783 nklist = NULL; 784 prealloc = KEY_LINK_FIXQUOTA; 785 } else { 786 /* grow the key list */ 787 max = 4; 788 if (klist) 789 max += klist->maxkeys; 790 791 ret = -ENFILE; 792 if (max > USHRT_MAX - 1) 793 goto error_quota; 794 size = sizeof(*klist) + sizeof(struct key *) * max; 795 if (size > PAGE_SIZE) 796 goto error_quota; 797 798 ret = -ENOMEM; 799 nklist = kmalloc(size, GFP_KERNEL); 800 if (!nklist) 801 goto error_quota; 802 803 nklist->maxkeys = max; 804 if (klist) { 805 memcpy(nklist->keys, klist->keys, 806 sizeof(struct key *) * klist->nkeys); 807 nklist->delkey = klist->nkeys; 808 nklist->nkeys = klist->nkeys + 1; 809 klist->delkey = USHRT_MAX; 810 } else { 811 nklist->nkeys = 1; 812 nklist->delkey = 0; 813 } 814 815 /* add the key into the new space */ 816 nklist->keys[nklist->delkey] = NULL; 817 } 818 819 prealloc = (unsigned long)nklist | KEY_LINK_FIXQUOTA; 820 done: 821 *_prealloc = prealloc; 822 kleave(" = 0"); 823 return 0; 824 825 error_quota: 826 /* undo the quota changes */ 827 key_payload_reserve(keyring, 828 keyring->datalen - KEYQUOTA_LINK_BYTES); 829 error_sem: 830 if (type == &key_type_keyring) 831 up_write(&keyring_serialise_link_sem); 832 error_krsem: 833 up_write(&keyring->sem); 834 kleave(" = %d", ret); 835 return ret; 836 } 837 838 /* 839 * Check already instantiated keys aren't going to be a problem. 840 * 841 * The caller must have called __key_link_begin(). Don't need to call this for 842 * keys that were created since __key_link_begin() was called. 843 */ 844 int __key_link_check_live_key(struct key *keyring, struct key *key) 845 { 846 if (key->type == &key_type_keyring) 847 /* check that we aren't going to create a cycle by linking one 848 * keyring to another */ 849 return keyring_detect_cycle(keyring, key); 850 return 0; 851 } 852 853 /* 854 * Link a key into to a keyring. 855 * 856 * Must be called with __key_link_begin() having being called. Discards any 857 * already extant link to matching key if there is one, so that each keyring 858 * holds at most one link to any given key of a particular type+description 859 * combination. 860 */ 861 void __key_link(struct key *keyring, struct key *key, 862 unsigned long *_prealloc) 863 { 864 struct keyring_list *klist, *nklist; 865 866 nklist = (struct keyring_list *)(*_prealloc & ~KEY_LINK_FIXQUOTA); 867 *_prealloc = 0; 868 869 kenter("%d,%d,%p", keyring->serial, key->serial, nklist); 870 871 klist = rcu_dereference_locked_keyring(keyring); 872 873 atomic_inc(&key->usage); 874 875 /* there's a matching key we can displace or an empty slot in a newly 876 * allocated list we can fill */ 877 if (nklist) { 878 kdebug("replace %hu/%hu/%hu", 879 nklist->delkey, nklist->nkeys, nklist->maxkeys); 880 881 nklist->keys[nklist->delkey] = key; 882 883 rcu_assign_pointer(keyring->payload.subscriptions, nklist); 884 885 /* dispose of the old keyring list and, if there was one, the 886 * displaced key */ 887 if (klist) { 888 kdebug("dispose %hu/%hu/%hu", 889 klist->delkey, klist->nkeys, klist->maxkeys); 890 call_rcu(&klist->rcu, keyring_unlink_rcu_disposal); 891 } 892 } else { 893 /* there's sufficient slack space to append directly */ 894 klist->keys[klist->nkeys] = key; 895 smp_wmb(); 896 klist->nkeys++; 897 } 898 } 899 900 /* 901 * Finish linking a key into to a keyring. 902 * 903 * Must be called with __key_link_begin() having being called. 904 */ 905 void __key_link_end(struct key *keyring, struct key_type *type, 906 unsigned long prealloc) 907 __releases(&keyring->sem) 908 { 909 BUG_ON(type == NULL); 910 BUG_ON(type->name == NULL); 911 kenter("%d,%s,%lx", keyring->serial, type->name, prealloc); 912 913 if (type == &key_type_keyring) 914 up_write(&keyring_serialise_link_sem); 915 916 if (prealloc) { 917 if (prealloc & KEY_LINK_FIXQUOTA) 918 key_payload_reserve(keyring, 919 keyring->datalen - 920 KEYQUOTA_LINK_BYTES); 921 kfree((struct keyring_list *)(prealloc & ~KEY_LINK_FIXQUOTA)); 922 } 923 up_write(&keyring->sem); 924 } 925 926 /** 927 * key_link - Link a key to a keyring 928 * @keyring: The keyring to make the link in. 929 * @key: The key to link to. 930 * 931 * Make a link in a keyring to a key, such that the keyring holds a reference 932 * on that key and the key can potentially be found by searching that keyring. 933 * 934 * This function will write-lock the keyring's semaphore and will consume some 935 * of the user's key data quota to hold the link. 936 * 937 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, 938 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is 939 * full, -EDQUOT if there is insufficient key data quota remaining to add 940 * another link or -ENOMEM if there's insufficient memory. 941 * 942 * It is assumed that the caller has checked that it is permitted for a link to 943 * be made (the keyring should have Write permission and the key Link 944 * permission). 945 */ 946 int key_link(struct key *keyring, struct key *key) 947 { 948 unsigned long prealloc; 949 int ret; 950 951 key_check(keyring); 952 key_check(key); 953 954 ret = __key_link_begin(keyring, key->type, key->description, &prealloc); 955 if (ret == 0) { 956 ret = __key_link_check_live_key(keyring, key); 957 if (ret == 0) 958 __key_link(keyring, key, &prealloc); 959 __key_link_end(keyring, key->type, prealloc); 960 } 961 962 return ret; 963 } 964 EXPORT_SYMBOL(key_link); 965 966 /** 967 * key_unlink - Unlink the first link to a key from a keyring. 968 * @keyring: The keyring to remove the link from. 969 * @key: The key the link is to. 970 * 971 * Remove a link from a keyring to a key. 972 * 973 * This function will write-lock the keyring's semaphore. 974 * 975 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if 976 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient 977 * memory. 978 * 979 * It is assumed that the caller has checked that it is permitted for a link to 980 * be removed (the keyring should have Write permission; no permissions are 981 * required on the key). 982 */ 983 int key_unlink(struct key *keyring, struct key *key) 984 { 985 struct keyring_list *klist, *nklist; 986 int loop, ret; 987 988 key_check(keyring); 989 key_check(key); 990 991 ret = -ENOTDIR; 992 if (keyring->type != &key_type_keyring) 993 goto error; 994 995 down_write(&keyring->sem); 996 997 klist = rcu_dereference_locked_keyring(keyring); 998 if (klist) { 999 /* search the keyring for the key */ 1000 for (loop = 0; loop < klist->nkeys; loop++) 1001 if (klist->keys[loop] == key) 1002 goto key_is_present; 1003 } 1004 1005 up_write(&keyring->sem); 1006 ret = -ENOENT; 1007 goto error; 1008 1009 key_is_present: 1010 /* we need to copy the key list for RCU purposes */ 1011 nklist = kmalloc(sizeof(*klist) + 1012 sizeof(struct key *) * klist->maxkeys, 1013 GFP_KERNEL); 1014 if (!nklist) 1015 goto nomem; 1016 nklist->maxkeys = klist->maxkeys; 1017 nklist->nkeys = klist->nkeys - 1; 1018 1019 if (loop > 0) 1020 memcpy(&nklist->keys[0], 1021 &klist->keys[0], 1022 loop * sizeof(struct key *)); 1023 1024 if (loop < nklist->nkeys) 1025 memcpy(&nklist->keys[loop], 1026 &klist->keys[loop + 1], 1027 (nklist->nkeys - loop) * sizeof(struct key *)); 1028 1029 /* adjust the user's quota */ 1030 key_payload_reserve(keyring, 1031 keyring->datalen - KEYQUOTA_LINK_BYTES); 1032 1033 rcu_assign_pointer(keyring->payload.subscriptions, nklist); 1034 1035 up_write(&keyring->sem); 1036 1037 /* schedule for later cleanup */ 1038 klist->delkey = loop; 1039 call_rcu(&klist->rcu, keyring_unlink_rcu_disposal); 1040 1041 ret = 0; 1042 1043 error: 1044 return ret; 1045 nomem: 1046 ret = -ENOMEM; 1047 up_write(&keyring->sem); 1048 goto error; 1049 } 1050 EXPORT_SYMBOL(key_unlink); 1051 1052 /* 1053 * Dispose of a keyring list after the RCU grace period, releasing the keys it 1054 * links to. 1055 */ 1056 static void keyring_clear_rcu_disposal(struct rcu_head *rcu) 1057 { 1058 struct keyring_list *klist; 1059 int loop; 1060 1061 klist = container_of(rcu, struct keyring_list, rcu); 1062 1063 for (loop = klist->nkeys - 1; loop >= 0; loop--) 1064 key_put(klist->keys[loop]); 1065 1066 kfree(klist); 1067 } 1068 1069 /** 1070 * keyring_clear - Clear a keyring 1071 * @keyring: The keyring to clear. 1072 * 1073 * Clear the contents of the specified keyring. 1074 * 1075 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring. 1076 */ 1077 int keyring_clear(struct key *keyring) 1078 { 1079 struct keyring_list *klist; 1080 int ret; 1081 1082 ret = -ENOTDIR; 1083 if (keyring->type == &key_type_keyring) { 1084 /* detach the pointer block with the locks held */ 1085 down_write(&keyring->sem); 1086 1087 klist = rcu_dereference_locked_keyring(keyring); 1088 if (klist) { 1089 /* adjust the quota */ 1090 key_payload_reserve(keyring, 1091 sizeof(struct keyring_list)); 1092 1093 rcu_assign_pointer(keyring->payload.subscriptions, 1094 NULL); 1095 } 1096 1097 up_write(&keyring->sem); 1098 1099 /* free the keys after the locks have been dropped */ 1100 if (klist) 1101 call_rcu(&klist->rcu, keyring_clear_rcu_disposal); 1102 1103 ret = 0; 1104 } 1105 1106 return ret; 1107 } 1108 EXPORT_SYMBOL(keyring_clear); 1109 1110 /* 1111 * Dispose of the links from a revoked keyring. 1112 * 1113 * This is called with the key sem write-locked. 1114 */ 1115 static void keyring_revoke(struct key *keyring) 1116 { 1117 struct keyring_list *klist; 1118 1119 klist = rcu_dereference_locked_keyring(keyring); 1120 1121 /* adjust the quota */ 1122 key_payload_reserve(keyring, 0); 1123 1124 if (klist) { 1125 rcu_assign_pointer(keyring->payload.subscriptions, NULL); 1126 call_rcu(&klist->rcu, keyring_clear_rcu_disposal); 1127 } 1128 } 1129 1130 /* 1131 * Determine whether a key is dead. 1132 */ 1133 static bool key_is_dead(struct key *key, time_t limit) 1134 { 1135 return test_bit(KEY_FLAG_DEAD, &key->flags) || 1136 (key->expiry > 0 && key->expiry <= limit); 1137 } 1138 1139 /* 1140 * Collect garbage from the contents of a keyring, replacing the old list with 1141 * a new one with the pointers all shuffled down. 1142 * 1143 * Dead keys are classed as oned that are flagged as being dead or are revoked, 1144 * expired or negative keys that were revoked or expired before the specified 1145 * limit. 1146 */ 1147 void keyring_gc(struct key *keyring, time_t limit) 1148 { 1149 struct keyring_list *klist, *new; 1150 struct key *key; 1151 int loop, keep, max; 1152 1153 kenter("{%x,%s}", key_serial(keyring), keyring->description); 1154 1155 down_write(&keyring->sem); 1156 1157 klist = rcu_dereference_locked_keyring(keyring); 1158 if (!klist) 1159 goto no_klist; 1160 1161 /* work out how many subscriptions we're keeping */ 1162 keep = 0; 1163 for (loop = klist->nkeys - 1; loop >= 0; loop--) 1164 if (!key_is_dead(klist->keys[loop], limit)) 1165 keep++; 1166 1167 if (keep == klist->nkeys) 1168 goto just_return; 1169 1170 /* allocate a new keyring payload */ 1171 max = roundup(keep, 4); 1172 new = kmalloc(sizeof(struct keyring_list) + max * sizeof(struct key *), 1173 GFP_KERNEL); 1174 if (!new) 1175 goto nomem; 1176 new->maxkeys = max; 1177 new->nkeys = 0; 1178 new->delkey = 0; 1179 1180 /* install the live keys 1181 * - must take care as expired keys may be updated back to life 1182 */ 1183 keep = 0; 1184 for (loop = klist->nkeys - 1; loop >= 0; loop--) { 1185 key = klist->keys[loop]; 1186 if (!key_is_dead(key, limit)) { 1187 if (keep >= max) 1188 goto discard_new; 1189 new->keys[keep++] = key_get(key); 1190 } 1191 } 1192 new->nkeys = keep; 1193 1194 /* adjust the quota */ 1195 key_payload_reserve(keyring, 1196 sizeof(struct keyring_list) + 1197 KEYQUOTA_LINK_BYTES * keep); 1198 1199 if (keep == 0) { 1200 rcu_assign_pointer(keyring->payload.subscriptions, NULL); 1201 kfree(new); 1202 } else { 1203 rcu_assign_pointer(keyring->payload.subscriptions, new); 1204 } 1205 1206 up_write(&keyring->sem); 1207 1208 call_rcu(&klist->rcu, keyring_clear_rcu_disposal); 1209 kleave(" [yes]"); 1210 return; 1211 1212 discard_new: 1213 new->nkeys = keep; 1214 keyring_clear_rcu_disposal(&new->rcu); 1215 up_write(&keyring->sem); 1216 kleave(" [discard]"); 1217 return; 1218 1219 just_return: 1220 up_write(&keyring->sem); 1221 kleave(" [no dead]"); 1222 return; 1223 1224 no_klist: 1225 up_write(&keyring->sem); 1226 kleave(" [no_klist]"); 1227 return; 1228 1229 nomem: 1230 up_write(&keyring->sem); 1231 kleave(" [oom]"); 1232 } 1233