xref: /openbmc/linux/security/keys/keyring.c (revision 62e7ca52)
1 /* Keyring handling
2  *
3  * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/seq_file.h>
18 #include <linux/err.h>
19 #include <keys/keyring-type.h>
20 #include <keys/user-type.h>
21 #include <linux/assoc_array_priv.h>
22 #include <linux/uaccess.h>
23 #include "internal.h"
24 
25 /*
26  * When plumbing the depths of the key tree, this sets a hard limit
27  * set on how deep we're willing to go.
28  */
29 #define KEYRING_SEARCH_MAX_DEPTH 6
30 
31 /*
32  * We keep all named keyrings in a hash to speed looking them up.
33  */
34 #define KEYRING_NAME_HASH_SIZE	(1 << 5)
35 
36 /*
37  * We mark pointers we pass to the associative array with bit 1 set if
38  * they're keyrings and clear otherwise.
39  */
40 #define KEYRING_PTR_SUBTYPE	0x2UL
41 
42 static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
43 {
44 	return (unsigned long)x & KEYRING_PTR_SUBTYPE;
45 }
46 static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
47 {
48 	void *object = assoc_array_ptr_to_leaf(x);
49 	return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
50 }
51 static inline void *keyring_key_to_ptr(struct key *key)
52 {
53 	if (key->type == &key_type_keyring)
54 		return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
55 	return key;
56 }
57 
58 static struct list_head	keyring_name_hash[KEYRING_NAME_HASH_SIZE];
59 static DEFINE_RWLOCK(keyring_name_lock);
60 
61 static inline unsigned keyring_hash(const char *desc)
62 {
63 	unsigned bucket = 0;
64 
65 	for (; *desc; desc++)
66 		bucket += (unsigned char)*desc;
67 
68 	return bucket & (KEYRING_NAME_HASH_SIZE - 1);
69 }
70 
71 /*
72  * The keyring key type definition.  Keyrings are simply keys of this type and
73  * can be treated as ordinary keys in addition to having their own special
74  * operations.
75  */
76 static int keyring_preparse(struct key_preparsed_payload *prep);
77 static void keyring_free_preparse(struct key_preparsed_payload *prep);
78 static int keyring_instantiate(struct key *keyring,
79 			       struct key_preparsed_payload *prep);
80 static void keyring_revoke(struct key *keyring);
81 static void keyring_destroy(struct key *keyring);
82 static void keyring_describe(const struct key *keyring, struct seq_file *m);
83 static long keyring_read(const struct key *keyring,
84 			 char __user *buffer, size_t buflen);
85 
86 struct key_type key_type_keyring = {
87 	.name		= "keyring",
88 	.def_datalen	= 0,
89 	.preparse	= keyring_preparse,
90 	.free_preparse	= keyring_free_preparse,
91 	.instantiate	= keyring_instantiate,
92 	.match		= user_match,
93 	.revoke		= keyring_revoke,
94 	.destroy	= keyring_destroy,
95 	.describe	= keyring_describe,
96 	.read		= keyring_read,
97 };
98 EXPORT_SYMBOL(key_type_keyring);
99 
100 /*
101  * Semaphore to serialise link/link calls to prevent two link calls in parallel
102  * introducing a cycle.
103  */
104 static DECLARE_RWSEM(keyring_serialise_link_sem);
105 
106 /*
107  * Publish the name of a keyring so that it can be found by name (if it has
108  * one).
109  */
110 static void keyring_publish_name(struct key *keyring)
111 {
112 	int bucket;
113 
114 	if (keyring->description) {
115 		bucket = keyring_hash(keyring->description);
116 
117 		write_lock(&keyring_name_lock);
118 
119 		if (!keyring_name_hash[bucket].next)
120 			INIT_LIST_HEAD(&keyring_name_hash[bucket]);
121 
122 		list_add_tail(&keyring->type_data.link,
123 			      &keyring_name_hash[bucket]);
124 
125 		write_unlock(&keyring_name_lock);
126 	}
127 }
128 
129 /*
130  * Preparse a keyring payload
131  */
132 static int keyring_preparse(struct key_preparsed_payload *prep)
133 {
134 	return prep->datalen != 0 ? -EINVAL : 0;
135 }
136 
137 /*
138  * Free a preparse of a user defined key payload
139  */
140 static void keyring_free_preparse(struct key_preparsed_payload *prep)
141 {
142 }
143 
144 /*
145  * Initialise a keyring.
146  *
147  * Returns 0 on success, -EINVAL if given any data.
148  */
149 static int keyring_instantiate(struct key *keyring,
150 			       struct key_preparsed_payload *prep)
151 {
152 	assoc_array_init(&keyring->keys);
153 	/* make the keyring available by name if it has one */
154 	keyring_publish_name(keyring);
155 	return 0;
156 }
157 
158 /*
159  * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit.  Ideally we'd
160  * fold the carry back too, but that requires inline asm.
161  */
162 static u64 mult_64x32_and_fold(u64 x, u32 y)
163 {
164 	u64 hi = (u64)(u32)(x >> 32) * y;
165 	u64 lo = (u64)(u32)(x) * y;
166 	return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
167 }
168 
169 /*
170  * Hash a key type and description.
171  */
172 static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key)
173 {
174 	const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
175 	const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
176 	const char *description = index_key->description;
177 	unsigned long hash, type;
178 	u32 piece;
179 	u64 acc;
180 	int n, desc_len = index_key->desc_len;
181 
182 	type = (unsigned long)index_key->type;
183 
184 	acc = mult_64x32_and_fold(type, desc_len + 13);
185 	acc = mult_64x32_and_fold(acc, 9207);
186 	for (;;) {
187 		n = desc_len;
188 		if (n <= 0)
189 			break;
190 		if (n > 4)
191 			n = 4;
192 		piece = 0;
193 		memcpy(&piece, description, n);
194 		description += n;
195 		desc_len -= n;
196 		acc = mult_64x32_and_fold(acc, piece);
197 		acc = mult_64x32_and_fold(acc, 9207);
198 	}
199 
200 	/* Fold the hash down to 32 bits if need be. */
201 	hash = acc;
202 	if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
203 		hash ^= acc >> 32;
204 
205 	/* Squidge all the keyrings into a separate part of the tree to
206 	 * ordinary keys by making sure the lowest level segment in the hash is
207 	 * zero for keyrings and non-zero otherwise.
208 	 */
209 	if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
210 		return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
211 	if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
212 		return (hash + (hash << level_shift)) & ~fan_mask;
213 	return hash;
214 }
215 
216 /*
217  * Build the next index key chunk.
218  *
219  * On 32-bit systems the index key is laid out as:
220  *
221  *	0	4	5	9...
222  *	hash	desclen	typeptr	desc[]
223  *
224  * On 64-bit systems:
225  *
226  *	0	8	9	17...
227  *	hash	desclen	typeptr	desc[]
228  *
229  * We return it one word-sized chunk at a time.
230  */
231 static unsigned long keyring_get_key_chunk(const void *data, int level)
232 {
233 	const struct keyring_index_key *index_key = data;
234 	unsigned long chunk = 0;
235 	long offset = 0;
236 	int desc_len = index_key->desc_len, n = sizeof(chunk);
237 
238 	level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
239 	switch (level) {
240 	case 0:
241 		return hash_key_type_and_desc(index_key);
242 	case 1:
243 		return ((unsigned long)index_key->type << 8) | desc_len;
244 	case 2:
245 		if (desc_len == 0)
246 			return (u8)((unsigned long)index_key->type >>
247 				    (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
248 		n--;
249 		offset = 1;
250 	default:
251 		offset += sizeof(chunk) - 1;
252 		offset += (level - 3) * sizeof(chunk);
253 		if (offset >= desc_len)
254 			return 0;
255 		desc_len -= offset;
256 		if (desc_len > n)
257 			desc_len = n;
258 		offset += desc_len;
259 		do {
260 			chunk <<= 8;
261 			chunk |= ((u8*)index_key->description)[--offset];
262 		} while (--desc_len > 0);
263 
264 		if (level == 2) {
265 			chunk <<= 8;
266 			chunk |= (u8)((unsigned long)index_key->type >>
267 				      (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
268 		}
269 		return chunk;
270 	}
271 }
272 
273 static unsigned long keyring_get_object_key_chunk(const void *object, int level)
274 {
275 	const struct key *key = keyring_ptr_to_key(object);
276 	return keyring_get_key_chunk(&key->index_key, level);
277 }
278 
279 static bool keyring_compare_object(const void *object, const void *data)
280 {
281 	const struct keyring_index_key *index_key = data;
282 	const struct key *key = keyring_ptr_to_key(object);
283 
284 	return key->index_key.type == index_key->type &&
285 		key->index_key.desc_len == index_key->desc_len &&
286 		memcmp(key->index_key.description, index_key->description,
287 		       index_key->desc_len) == 0;
288 }
289 
290 /*
291  * Compare the index keys of a pair of objects and determine the bit position
292  * at which they differ - if they differ.
293  */
294 static int keyring_diff_objects(const void *object, const void *data)
295 {
296 	const struct key *key_a = keyring_ptr_to_key(object);
297 	const struct keyring_index_key *a = &key_a->index_key;
298 	const struct keyring_index_key *b = data;
299 	unsigned long seg_a, seg_b;
300 	int level, i;
301 
302 	level = 0;
303 	seg_a = hash_key_type_and_desc(a);
304 	seg_b = hash_key_type_and_desc(b);
305 	if ((seg_a ^ seg_b) != 0)
306 		goto differ;
307 
308 	/* The number of bits contributed by the hash is controlled by a
309 	 * constant in the assoc_array headers.  Everything else thereafter we
310 	 * can deal with as being machine word-size dependent.
311 	 */
312 	level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
313 	seg_a = a->desc_len;
314 	seg_b = b->desc_len;
315 	if ((seg_a ^ seg_b) != 0)
316 		goto differ;
317 
318 	/* The next bit may not work on big endian */
319 	level++;
320 	seg_a = (unsigned long)a->type;
321 	seg_b = (unsigned long)b->type;
322 	if ((seg_a ^ seg_b) != 0)
323 		goto differ;
324 
325 	level += sizeof(unsigned long);
326 	if (a->desc_len == 0)
327 		goto same;
328 
329 	i = 0;
330 	if (((unsigned long)a->description | (unsigned long)b->description) &
331 	    (sizeof(unsigned long) - 1)) {
332 		do {
333 			seg_a = *(unsigned long *)(a->description + i);
334 			seg_b = *(unsigned long *)(b->description + i);
335 			if ((seg_a ^ seg_b) != 0)
336 				goto differ_plus_i;
337 			i += sizeof(unsigned long);
338 		} while (i < (a->desc_len & (sizeof(unsigned long) - 1)));
339 	}
340 
341 	for (; i < a->desc_len; i++) {
342 		seg_a = *(unsigned char *)(a->description + i);
343 		seg_b = *(unsigned char *)(b->description + i);
344 		if ((seg_a ^ seg_b) != 0)
345 			goto differ_plus_i;
346 	}
347 
348 same:
349 	return -1;
350 
351 differ_plus_i:
352 	level += i;
353 differ:
354 	i = level * 8 + __ffs(seg_a ^ seg_b);
355 	return i;
356 }
357 
358 /*
359  * Free an object after stripping the keyring flag off of the pointer.
360  */
361 static void keyring_free_object(void *object)
362 {
363 	key_put(keyring_ptr_to_key(object));
364 }
365 
366 /*
367  * Operations for keyring management by the index-tree routines.
368  */
369 static const struct assoc_array_ops keyring_assoc_array_ops = {
370 	.get_key_chunk		= keyring_get_key_chunk,
371 	.get_object_key_chunk	= keyring_get_object_key_chunk,
372 	.compare_object		= keyring_compare_object,
373 	.diff_objects		= keyring_diff_objects,
374 	.free_object		= keyring_free_object,
375 };
376 
377 /*
378  * Clean up a keyring when it is destroyed.  Unpublish its name if it had one
379  * and dispose of its data.
380  *
381  * The garbage collector detects the final key_put(), removes the keyring from
382  * the serial number tree and then does RCU synchronisation before coming here,
383  * so we shouldn't need to worry about code poking around here with the RCU
384  * readlock held by this time.
385  */
386 static void keyring_destroy(struct key *keyring)
387 {
388 	if (keyring->description) {
389 		write_lock(&keyring_name_lock);
390 
391 		if (keyring->type_data.link.next != NULL &&
392 		    !list_empty(&keyring->type_data.link))
393 			list_del(&keyring->type_data.link);
394 
395 		write_unlock(&keyring_name_lock);
396 	}
397 
398 	assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
399 }
400 
401 /*
402  * Describe a keyring for /proc.
403  */
404 static void keyring_describe(const struct key *keyring, struct seq_file *m)
405 {
406 	if (keyring->description)
407 		seq_puts(m, keyring->description);
408 	else
409 		seq_puts(m, "[anon]");
410 
411 	if (key_is_instantiated(keyring)) {
412 		if (keyring->keys.nr_leaves_on_tree != 0)
413 			seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
414 		else
415 			seq_puts(m, ": empty");
416 	}
417 }
418 
419 struct keyring_read_iterator_context {
420 	size_t			qty;
421 	size_t			count;
422 	key_serial_t __user	*buffer;
423 };
424 
425 static int keyring_read_iterator(const void *object, void *data)
426 {
427 	struct keyring_read_iterator_context *ctx = data;
428 	const struct key *key = keyring_ptr_to_key(object);
429 	int ret;
430 
431 	kenter("{%s,%d},,{%zu/%zu}",
432 	       key->type->name, key->serial, ctx->count, ctx->qty);
433 
434 	if (ctx->count >= ctx->qty)
435 		return 1;
436 
437 	ret = put_user(key->serial, ctx->buffer);
438 	if (ret < 0)
439 		return ret;
440 	ctx->buffer++;
441 	ctx->count += sizeof(key->serial);
442 	return 0;
443 }
444 
445 /*
446  * Read a list of key IDs from the keyring's contents in binary form
447  *
448  * The keyring's semaphore is read-locked by the caller.  This prevents someone
449  * from modifying it under us - which could cause us to read key IDs multiple
450  * times.
451  */
452 static long keyring_read(const struct key *keyring,
453 			 char __user *buffer, size_t buflen)
454 {
455 	struct keyring_read_iterator_context ctx;
456 	unsigned long nr_keys;
457 	int ret;
458 
459 	kenter("{%d},,%zu", key_serial(keyring), buflen);
460 
461 	if (buflen & (sizeof(key_serial_t) - 1))
462 		return -EINVAL;
463 
464 	nr_keys = keyring->keys.nr_leaves_on_tree;
465 	if (nr_keys == 0)
466 		return 0;
467 
468 	/* Calculate how much data we could return */
469 	ctx.qty = nr_keys * sizeof(key_serial_t);
470 
471 	if (!buffer || !buflen)
472 		return ctx.qty;
473 
474 	if (buflen > ctx.qty)
475 		ctx.qty = buflen;
476 
477 	/* Copy the IDs of the subscribed keys into the buffer */
478 	ctx.buffer = (key_serial_t __user *)buffer;
479 	ctx.count = 0;
480 	ret = assoc_array_iterate(&keyring->keys, keyring_read_iterator, &ctx);
481 	if (ret < 0) {
482 		kleave(" = %d [iterate]", ret);
483 		return ret;
484 	}
485 
486 	kleave(" = %zu [ok]", ctx.count);
487 	return ctx.count;
488 }
489 
490 /*
491  * Allocate a keyring and link into the destination keyring.
492  */
493 struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
494 			  const struct cred *cred, key_perm_t perm,
495 			  unsigned long flags, struct key *dest)
496 {
497 	struct key *keyring;
498 	int ret;
499 
500 	keyring = key_alloc(&key_type_keyring, description,
501 			    uid, gid, cred, perm, flags);
502 	if (!IS_ERR(keyring)) {
503 		ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
504 		if (ret < 0) {
505 			key_put(keyring);
506 			keyring = ERR_PTR(ret);
507 		}
508 	}
509 
510 	return keyring;
511 }
512 EXPORT_SYMBOL(keyring_alloc);
513 
514 /*
515  * Iteration function to consider each key found.
516  */
517 static int keyring_search_iterator(const void *object, void *iterator_data)
518 {
519 	struct keyring_search_context *ctx = iterator_data;
520 	const struct key *key = keyring_ptr_to_key(object);
521 	unsigned long kflags = key->flags;
522 
523 	kenter("{%d}", key->serial);
524 
525 	/* ignore keys not of this type */
526 	if (key->type != ctx->index_key.type) {
527 		kleave(" = 0 [!type]");
528 		return 0;
529 	}
530 
531 	/* skip invalidated, revoked and expired keys */
532 	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
533 		if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
534 			      (1 << KEY_FLAG_REVOKED))) {
535 			ctx->result = ERR_PTR(-EKEYREVOKED);
536 			kleave(" = %d [invrev]", ctx->skipped_ret);
537 			goto skipped;
538 		}
539 
540 		if (key->expiry && ctx->now.tv_sec >= key->expiry) {
541 			ctx->result = ERR_PTR(-EKEYEXPIRED);
542 			kleave(" = %d [expire]", ctx->skipped_ret);
543 			goto skipped;
544 		}
545 	}
546 
547 	/* keys that don't match */
548 	if (!ctx->match(key, ctx->match_data)) {
549 		kleave(" = 0 [!match]");
550 		return 0;
551 	}
552 
553 	/* key must have search permissions */
554 	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
555 	    key_task_permission(make_key_ref(key, ctx->possessed),
556 				ctx->cred, KEY_NEED_SEARCH) < 0) {
557 		ctx->result = ERR_PTR(-EACCES);
558 		kleave(" = %d [!perm]", ctx->skipped_ret);
559 		goto skipped;
560 	}
561 
562 	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
563 		/* we set a different error code if we pass a negative key */
564 		if (kflags & (1 << KEY_FLAG_NEGATIVE)) {
565 			smp_rmb();
566 			ctx->result = ERR_PTR(key->type_data.reject_error);
567 			kleave(" = %d [neg]", ctx->skipped_ret);
568 			goto skipped;
569 		}
570 	}
571 
572 	/* Found */
573 	ctx->result = make_key_ref(key, ctx->possessed);
574 	kleave(" = 1 [found]");
575 	return 1;
576 
577 skipped:
578 	return ctx->skipped_ret;
579 }
580 
581 /*
582  * Search inside a keyring for a key.  We can search by walking to it
583  * directly based on its index-key or we can iterate over the entire
584  * tree looking for it, based on the match function.
585  */
586 static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
587 {
588 	if ((ctx->flags & KEYRING_SEARCH_LOOKUP_TYPE) ==
589 	    KEYRING_SEARCH_LOOKUP_DIRECT) {
590 		const void *object;
591 
592 		object = assoc_array_find(&keyring->keys,
593 					  &keyring_assoc_array_ops,
594 					  &ctx->index_key);
595 		return object ? ctx->iterator(object, ctx) : 0;
596 	}
597 	return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
598 }
599 
600 /*
601  * Search a tree of keyrings that point to other keyrings up to the maximum
602  * depth.
603  */
604 static bool search_nested_keyrings(struct key *keyring,
605 				   struct keyring_search_context *ctx)
606 {
607 	struct {
608 		struct key *keyring;
609 		struct assoc_array_node *node;
610 		int slot;
611 	} stack[KEYRING_SEARCH_MAX_DEPTH];
612 
613 	struct assoc_array_shortcut *shortcut;
614 	struct assoc_array_node *node;
615 	struct assoc_array_ptr *ptr;
616 	struct key *key;
617 	int sp = 0, slot;
618 
619 	kenter("{%d},{%s,%s}",
620 	       keyring->serial,
621 	       ctx->index_key.type->name,
622 	       ctx->index_key.description);
623 
624 	if (ctx->index_key.description)
625 		ctx->index_key.desc_len = strlen(ctx->index_key.description);
626 
627 	/* Check to see if this top-level keyring is what we are looking for
628 	 * and whether it is valid or not.
629 	 */
630 	if (ctx->flags & KEYRING_SEARCH_LOOKUP_ITERATE ||
631 	    keyring_compare_object(keyring, &ctx->index_key)) {
632 		ctx->skipped_ret = 2;
633 		ctx->flags |= KEYRING_SEARCH_DO_STATE_CHECK;
634 		switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
635 		case 1:
636 			goto found;
637 		case 2:
638 			return false;
639 		default:
640 			break;
641 		}
642 	}
643 
644 	ctx->skipped_ret = 0;
645 	if (ctx->flags & KEYRING_SEARCH_NO_STATE_CHECK)
646 		ctx->flags &= ~KEYRING_SEARCH_DO_STATE_CHECK;
647 
648 	/* Start processing a new keyring */
649 descend_to_keyring:
650 	kdebug("descend to %d", keyring->serial);
651 	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
652 			      (1 << KEY_FLAG_REVOKED)))
653 		goto not_this_keyring;
654 
655 	/* Search through the keys in this keyring before its searching its
656 	 * subtrees.
657 	 */
658 	if (search_keyring(keyring, ctx))
659 		goto found;
660 
661 	/* Then manually iterate through the keyrings nested in this one.
662 	 *
663 	 * Start from the root node of the index tree.  Because of the way the
664 	 * hash function has been set up, keyrings cluster on the leftmost
665 	 * branch of the root node (root slot 0) or in the root node itself.
666 	 * Non-keyrings avoid the leftmost branch of the root entirely (root
667 	 * slots 1-15).
668 	 */
669 	ptr = ACCESS_ONCE(keyring->keys.root);
670 	if (!ptr)
671 		goto not_this_keyring;
672 
673 	if (assoc_array_ptr_is_shortcut(ptr)) {
674 		/* If the root is a shortcut, either the keyring only contains
675 		 * keyring pointers (everything clusters behind root slot 0) or
676 		 * doesn't contain any keyring pointers.
677 		 */
678 		shortcut = assoc_array_ptr_to_shortcut(ptr);
679 		smp_read_barrier_depends();
680 		if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
681 			goto not_this_keyring;
682 
683 		ptr = ACCESS_ONCE(shortcut->next_node);
684 		node = assoc_array_ptr_to_node(ptr);
685 		goto begin_node;
686 	}
687 
688 	node = assoc_array_ptr_to_node(ptr);
689 	smp_read_barrier_depends();
690 
691 	ptr = node->slots[0];
692 	if (!assoc_array_ptr_is_meta(ptr))
693 		goto begin_node;
694 
695 descend_to_node:
696 	/* Descend to a more distal node in this keyring's content tree and go
697 	 * through that.
698 	 */
699 	kdebug("descend");
700 	if (assoc_array_ptr_is_shortcut(ptr)) {
701 		shortcut = assoc_array_ptr_to_shortcut(ptr);
702 		smp_read_barrier_depends();
703 		ptr = ACCESS_ONCE(shortcut->next_node);
704 		BUG_ON(!assoc_array_ptr_is_node(ptr));
705 	}
706 	node = assoc_array_ptr_to_node(ptr);
707 
708 begin_node:
709 	kdebug("begin_node");
710 	smp_read_barrier_depends();
711 	slot = 0;
712 ascend_to_node:
713 	/* Go through the slots in a node */
714 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
715 		ptr = ACCESS_ONCE(node->slots[slot]);
716 
717 		if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
718 			goto descend_to_node;
719 
720 		if (!keyring_ptr_is_keyring(ptr))
721 			continue;
722 
723 		key = keyring_ptr_to_key(ptr);
724 
725 		if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
726 			if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
727 				ctx->result = ERR_PTR(-ELOOP);
728 				return false;
729 			}
730 			goto not_this_keyring;
731 		}
732 
733 		/* Search a nested keyring */
734 		if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
735 		    key_task_permission(make_key_ref(key, ctx->possessed),
736 					ctx->cred, KEY_NEED_SEARCH) < 0)
737 			continue;
738 
739 		/* stack the current position */
740 		stack[sp].keyring = keyring;
741 		stack[sp].node = node;
742 		stack[sp].slot = slot;
743 		sp++;
744 
745 		/* begin again with the new keyring */
746 		keyring = key;
747 		goto descend_to_keyring;
748 	}
749 
750 	/* We've dealt with all the slots in the current node, so now we need
751 	 * to ascend to the parent and continue processing there.
752 	 */
753 	ptr = ACCESS_ONCE(node->back_pointer);
754 	slot = node->parent_slot;
755 
756 	if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
757 		shortcut = assoc_array_ptr_to_shortcut(ptr);
758 		smp_read_barrier_depends();
759 		ptr = ACCESS_ONCE(shortcut->back_pointer);
760 		slot = shortcut->parent_slot;
761 	}
762 	if (!ptr)
763 		goto not_this_keyring;
764 	node = assoc_array_ptr_to_node(ptr);
765 	smp_read_barrier_depends();
766 	slot++;
767 
768 	/* If we've ascended to the root (zero backpointer), we must have just
769 	 * finished processing the leftmost branch rather than the root slots -
770 	 * so there can't be any more keyrings for us to find.
771 	 */
772 	if (node->back_pointer) {
773 		kdebug("ascend %d", slot);
774 		goto ascend_to_node;
775 	}
776 
777 	/* The keyring we're looking at was disqualified or didn't contain a
778 	 * matching key.
779 	 */
780 not_this_keyring:
781 	kdebug("not_this_keyring %d", sp);
782 	if (sp <= 0) {
783 		kleave(" = false");
784 		return false;
785 	}
786 
787 	/* Resume the processing of a keyring higher up in the tree */
788 	sp--;
789 	keyring = stack[sp].keyring;
790 	node = stack[sp].node;
791 	slot = stack[sp].slot + 1;
792 	kdebug("ascend to %d [%d]", keyring->serial, slot);
793 	goto ascend_to_node;
794 
795 	/* We found a viable match */
796 found:
797 	key = key_ref_to_ptr(ctx->result);
798 	key_check(key);
799 	if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
800 		key->last_used_at = ctx->now.tv_sec;
801 		keyring->last_used_at = ctx->now.tv_sec;
802 		while (sp > 0)
803 			stack[--sp].keyring->last_used_at = ctx->now.tv_sec;
804 	}
805 	kleave(" = true");
806 	return true;
807 }
808 
809 /**
810  * keyring_search_aux - Search a keyring tree for a key matching some criteria
811  * @keyring_ref: A pointer to the keyring with possession indicator.
812  * @ctx: The keyring search context.
813  *
814  * Search the supplied keyring tree for a key that matches the criteria given.
815  * The root keyring and any linked keyrings must grant Search permission to the
816  * caller to be searchable and keys can only be found if they too grant Search
817  * to the caller. The possession flag on the root keyring pointer controls use
818  * of the possessor bits in permissions checking of the entire tree.  In
819  * addition, the LSM gets to forbid keyring searches and key matches.
820  *
821  * The search is performed as a breadth-then-depth search up to the prescribed
822  * limit (KEYRING_SEARCH_MAX_DEPTH).
823  *
824  * Keys are matched to the type provided and are then filtered by the match
825  * function, which is given the description to use in any way it sees fit.  The
826  * match function may use any attributes of a key that it wishes to to
827  * determine the match.  Normally the match function from the key type would be
828  * used.
829  *
830  * RCU can be used to prevent the keyring key lists from disappearing without
831  * the need to take lots of locks.
832  *
833  * Returns a pointer to the found key and increments the key usage count if
834  * successful; -EAGAIN if no matching keys were found, or if expired or revoked
835  * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
836  * specified keyring wasn't a keyring.
837  *
838  * In the case of a successful return, the possession attribute from
839  * @keyring_ref is propagated to the returned key reference.
840  */
841 key_ref_t keyring_search_aux(key_ref_t keyring_ref,
842 			     struct keyring_search_context *ctx)
843 {
844 	struct key *keyring;
845 	long err;
846 
847 	ctx->iterator = keyring_search_iterator;
848 	ctx->possessed = is_key_possessed(keyring_ref);
849 	ctx->result = ERR_PTR(-EAGAIN);
850 
851 	keyring = key_ref_to_ptr(keyring_ref);
852 	key_check(keyring);
853 
854 	if (keyring->type != &key_type_keyring)
855 		return ERR_PTR(-ENOTDIR);
856 
857 	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
858 		err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH);
859 		if (err < 0)
860 			return ERR_PTR(err);
861 	}
862 
863 	rcu_read_lock();
864 	ctx->now = current_kernel_time();
865 	if (search_nested_keyrings(keyring, ctx))
866 		__key_get(key_ref_to_ptr(ctx->result));
867 	rcu_read_unlock();
868 	return ctx->result;
869 }
870 
871 /**
872  * keyring_search - Search the supplied keyring tree for a matching key
873  * @keyring: The root of the keyring tree to be searched.
874  * @type: The type of keyring we want to find.
875  * @description: The name of the keyring we want to find.
876  *
877  * As keyring_search_aux() above, but using the current task's credentials and
878  * type's default matching function and preferred search method.
879  */
880 key_ref_t keyring_search(key_ref_t keyring,
881 			 struct key_type *type,
882 			 const char *description)
883 {
884 	struct keyring_search_context ctx = {
885 		.index_key.type		= type,
886 		.index_key.description	= description,
887 		.cred			= current_cred(),
888 		.match			= type->match,
889 		.match_data		= description,
890 		.flags			= (type->def_lookup_type |
891 					   KEYRING_SEARCH_DO_STATE_CHECK),
892 	};
893 
894 	if (!ctx.match)
895 		return ERR_PTR(-ENOKEY);
896 
897 	return keyring_search_aux(keyring, &ctx);
898 }
899 EXPORT_SYMBOL(keyring_search);
900 
901 /*
902  * Search the given keyring for a key that might be updated.
903  *
904  * The caller must guarantee that the keyring is a keyring and that the
905  * permission is granted to modify the keyring as no check is made here.  The
906  * caller must also hold a lock on the keyring semaphore.
907  *
908  * Returns a pointer to the found key with usage count incremented if
909  * successful and returns NULL if not found.  Revoked and invalidated keys are
910  * skipped over.
911  *
912  * If successful, the possession indicator is propagated from the keyring ref
913  * to the returned key reference.
914  */
915 key_ref_t find_key_to_update(key_ref_t keyring_ref,
916 			     const struct keyring_index_key *index_key)
917 {
918 	struct key *keyring, *key;
919 	const void *object;
920 
921 	keyring = key_ref_to_ptr(keyring_ref);
922 
923 	kenter("{%d},{%s,%s}",
924 	       keyring->serial, index_key->type->name, index_key->description);
925 
926 	object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
927 				  index_key);
928 
929 	if (object)
930 		goto found;
931 
932 	kleave(" = NULL");
933 	return NULL;
934 
935 found:
936 	key = keyring_ptr_to_key(object);
937 	if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
938 			  (1 << KEY_FLAG_REVOKED))) {
939 		kleave(" = NULL [x]");
940 		return NULL;
941 	}
942 	__key_get(key);
943 	kleave(" = {%d}", key->serial);
944 	return make_key_ref(key, is_key_possessed(keyring_ref));
945 }
946 
947 /*
948  * Find a keyring with the specified name.
949  *
950  * All named keyrings in the current user namespace are searched, provided they
951  * grant Search permission directly to the caller (unless this check is
952  * skipped).  Keyrings whose usage points have reached zero or who have been
953  * revoked are skipped.
954  *
955  * Returns a pointer to the keyring with the keyring's refcount having being
956  * incremented on success.  -ENOKEY is returned if a key could not be found.
957  */
958 struct key *find_keyring_by_name(const char *name, bool skip_perm_check)
959 {
960 	struct key *keyring;
961 	int bucket;
962 
963 	if (!name)
964 		return ERR_PTR(-EINVAL);
965 
966 	bucket = keyring_hash(name);
967 
968 	read_lock(&keyring_name_lock);
969 
970 	if (keyring_name_hash[bucket].next) {
971 		/* search this hash bucket for a keyring with a matching name
972 		 * that's readable and that hasn't been revoked */
973 		list_for_each_entry(keyring,
974 				    &keyring_name_hash[bucket],
975 				    type_data.link
976 				    ) {
977 			if (!kuid_has_mapping(current_user_ns(), keyring->user->uid))
978 				continue;
979 
980 			if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
981 				continue;
982 
983 			if (strcmp(keyring->description, name) != 0)
984 				continue;
985 
986 			if (!skip_perm_check &&
987 			    key_permission(make_key_ref(keyring, 0),
988 					   KEY_NEED_SEARCH) < 0)
989 				continue;
990 
991 			/* we've got a match but we might end up racing with
992 			 * key_cleanup() if the keyring is currently 'dead'
993 			 * (ie. it has a zero usage count) */
994 			if (!atomic_inc_not_zero(&keyring->usage))
995 				continue;
996 			keyring->last_used_at = current_kernel_time().tv_sec;
997 			goto out;
998 		}
999 	}
1000 
1001 	keyring = ERR_PTR(-ENOKEY);
1002 out:
1003 	read_unlock(&keyring_name_lock);
1004 	return keyring;
1005 }
1006 
1007 static int keyring_detect_cycle_iterator(const void *object,
1008 					 void *iterator_data)
1009 {
1010 	struct keyring_search_context *ctx = iterator_data;
1011 	const struct key *key = keyring_ptr_to_key(object);
1012 
1013 	kenter("{%d}", key->serial);
1014 
1015 	/* We might get a keyring with matching index-key that is nonetheless a
1016 	 * different keyring. */
1017 	if (key != ctx->match_data)
1018 		return 0;
1019 
1020 	ctx->result = ERR_PTR(-EDEADLK);
1021 	return 1;
1022 }
1023 
1024 /*
1025  * See if a cycle will will be created by inserting acyclic tree B in acyclic
1026  * tree A at the topmost level (ie: as a direct child of A).
1027  *
1028  * Since we are adding B to A at the top level, checking for cycles should just
1029  * be a matter of seeing if node A is somewhere in tree B.
1030  */
1031 static int keyring_detect_cycle(struct key *A, struct key *B)
1032 {
1033 	struct keyring_search_context ctx = {
1034 		.index_key	= A->index_key,
1035 		.match_data	= A,
1036 		.iterator	= keyring_detect_cycle_iterator,
1037 		.flags		= (KEYRING_SEARCH_LOOKUP_DIRECT |
1038 				   KEYRING_SEARCH_NO_STATE_CHECK |
1039 				   KEYRING_SEARCH_NO_UPDATE_TIME |
1040 				   KEYRING_SEARCH_NO_CHECK_PERM |
1041 				   KEYRING_SEARCH_DETECT_TOO_DEEP),
1042 	};
1043 
1044 	rcu_read_lock();
1045 	search_nested_keyrings(B, &ctx);
1046 	rcu_read_unlock();
1047 	return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
1048 }
1049 
1050 /*
1051  * Preallocate memory so that a key can be linked into to a keyring.
1052  */
1053 int __key_link_begin(struct key *keyring,
1054 		     const struct keyring_index_key *index_key,
1055 		     struct assoc_array_edit **_edit)
1056 	__acquires(&keyring->sem)
1057 	__acquires(&keyring_serialise_link_sem)
1058 {
1059 	struct assoc_array_edit *edit;
1060 	int ret;
1061 
1062 	kenter("%d,%s,%s,",
1063 	       keyring->serial, index_key->type->name, index_key->description);
1064 
1065 	BUG_ON(index_key->desc_len == 0);
1066 
1067 	if (keyring->type != &key_type_keyring)
1068 		return -ENOTDIR;
1069 
1070 	down_write(&keyring->sem);
1071 
1072 	ret = -EKEYREVOKED;
1073 	if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1074 		goto error_krsem;
1075 
1076 	/* serialise link/link calls to prevent parallel calls causing a cycle
1077 	 * when linking two keyring in opposite orders */
1078 	if (index_key->type == &key_type_keyring)
1079 		down_write(&keyring_serialise_link_sem);
1080 
1081 	/* Create an edit script that will insert/replace the key in the
1082 	 * keyring tree.
1083 	 */
1084 	edit = assoc_array_insert(&keyring->keys,
1085 				  &keyring_assoc_array_ops,
1086 				  index_key,
1087 				  NULL);
1088 	if (IS_ERR(edit)) {
1089 		ret = PTR_ERR(edit);
1090 		goto error_sem;
1091 	}
1092 
1093 	/* If we're not replacing a link in-place then we're going to need some
1094 	 * extra quota.
1095 	 */
1096 	if (!edit->dead_leaf) {
1097 		ret = key_payload_reserve(keyring,
1098 					  keyring->datalen + KEYQUOTA_LINK_BYTES);
1099 		if (ret < 0)
1100 			goto error_cancel;
1101 	}
1102 
1103 	*_edit = edit;
1104 	kleave(" = 0");
1105 	return 0;
1106 
1107 error_cancel:
1108 	assoc_array_cancel_edit(edit);
1109 error_sem:
1110 	if (index_key->type == &key_type_keyring)
1111 		up_write(&keyring_serialise_link_sem);
1112 error_krsem:
1113 	up_write(&keyring->sem);
1114 	kleave(" = %d", ret);
1115 	return ret;
1116 }
1117 
1118 /*
1119  * Check already instantiated keys aren't going to be a problem.
1120  *
1121  * The caller must have called __key_link_begin(). Don't need to call this for
1122  * keys that were created since __key_link_begin() was called.
1123  */
1124 int __key_link_check_live_key(struct key *keyring, struct key *key)
1125 {
1126 	if (key->type == &key_type_keyring)
1127 		/* check that we aren't going to create a cycle by linking one
1128 		 * keyring to another */
1129 		return keyring_detect_cycle(keyring, key);
1130 	return 0;
1131 }
1132 
1133 /*
1134  * Link a key into to a keyring.
1135  *
1136  * Must be called with __key_link_begin() having being called.  Discards any
1137  * already extant link to matching key if there is one, so that each keyring
1138  * holds at most one link to any given key of a particular type+description
1139  * combination.
1140  */
1141 void __key_link(struct key *key, struct assoc_array_edit **_edit)
1142 {
1143 	__key_get(key);
1144 	assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
1145 	assoc_array_apply_edit(*_edit);
1146 	*_edit = NULL;
1147 }
1148 
1149 /*
1150  * Finish linking a key into to a keyring.
1151  *
1152  * Must be called with __key_link_begin() having being called.
1153  */
1154 void __key_link_end(struct key *keyring,
1155 		    const struct keyring_index_key *index_key,
1156 		    struct assoc_array_edit *edit)
1157 	__releases(&keyring->sem)
1158 	__releases(&keyring_serialise_link_sem)
1159 {
1160 	BUG_ON(index_key->type == NULL);
1161 	kenter("%d,%s,", keyring->serial, index_key->type->name);
1162 
1163 	if (index_key->type == &key_type_keyring)
1164 		up_write(&keyring_serialise_link_sem);
1165 
1166 	if (edit && !edit->dead_leaf) {
1167 		key_payload_reserve(keyring,
1168 				    keyring->datalen - KEYQUOTA_LINK_BYTES);
1169 		assoc_array_cancel_edit(edit);
1170 	}
1171 	up_write(&keyring->sem);
1172 }
1173 
1174 /**
1175  * key_link - Link a key to a keyring
1176  * @keyring: The keyring to make the link in.
1177  * @key: The key to link to.
1178  *
1179  * Make a link in a keyring to a key, such that the keyring holds a reference
1180  * on that key and the key can potentially be found by searching that keyring.
1181  *
1182  * This function will write-lock the keyring's semaphore and will consume some
1183  * of the user's key data quota to hold the link.
1184  *
1185  * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
1186  * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
1187  * full, -EDQUOT if there is insufficient key data quota remaining to add
1188  * another link or -ENOMEM if there's insufficient memory.
1189  *
1190  * It is assumed that the caller has checked that it is permitted for a link to
1191  * be made (the keyring should have Write permission and the key Link
1192  * permission).
1193  */
1194 int key_link(struct key *keyring, struct key *key)
1195 {
1196 	struct assoc_array_edit *edit;
1197 	int ret;
1198 
1199 	kenter("{%d,%d}", keyring->serial, atomic_read(&keyring->usage));
1200 
1201 	key_check(keyring);
1202 	key_check(key);
1203 
1204 	if (test_bit(KEY_FLAG_TRUSTED_ONLY, &keyring->flags) &&
1205 	    !test_bit(KEY_FLAG_TRUSTED, &key->flags))
1206 		return -EPERM;
1207 
1208 	ret = __key_link_begin(keyring, &key->index_key, &edit);
1209 	if (ret == 0) {
1210 		kdebug("begun {%d,%d}", keyring->serial, atomic_read(&keyring->usage));
1211 		ret = __key_link_check_live_key(keyring, key);
1212 		if (ret == 0)
1213 			__key_link(key, &edit);
1214 		__key_link_end(keyring, &key->index_key, edit);
1215 	}
1216 
1217 	kleave(" = %d {%d,%d}", ret, keyring->serial, atomic_read(&keyring->usage));
1218 	return ret;
1219 }
1220 EXPORT_SYMBOL(key_link);
1221 
1222 /**
1223  * key_unlink - Unlink the first link to a key from a keyring.
1224  * @keyring: The keyring to remove the link from.
1225  * @key: The key the link is to.
1226  *
1227  * Remove a link from a keyring to a key.
1228  *
1229  * This function will write-lock the keyring's semaphore.
1230  *
1231  * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1232  * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1233  * memory.
1234  *
1235  * It is assumed that the caller has checked that it is permitted for a link to
1236  * be removed (the keyring should have Write permission; no permissions are
1237  * required on the key).
1238  */
1239 int key_unlink(struct key *keyring, struct key *key)
1240 {
1241 	struct assoc_array_edit *edit;
1242 	int ret;
1243 
1244 	key_check(keyring);
1245 	key_check(key);
1246 
1247 	if (keyring->type != &key_type_keyring)
1248 		return -ENOTDIR;
1249 
1250 	down_write(&keyring->sem);
1251 
1252 	edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
1253 				  &key->index_key);
1254 	if (IS_ERR(edit)) {
1255 		ret = PTR_ERR(edit);
1256 		goto error;
1257 	}
1258 	ret = -ENOENT;
1259 	if (edit == NULL)
1260 		goto error;
1261 
1262 	assoc_array_apply_edit(edit);
1263 	key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
1264 	ret = 0;
1265 
1266 error:
1267 	up_write(&keyring->sem);
1268 	return ret;
1269 }
1270 EXPORT_SYMBOL(key_unlink);
1271 
1272 /**
1273  * keyring_clear - Clear a keyring
1274  * @keyring: The keyring to clear.
1275  *
1276  * Clear the contents of the specified keyring.
1277  *
1278  * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1279  */
1280 int keyring_clear(struct key *keyring)
1281 {
1282 	struct assoc_array_edit *edit;
1283 	int ret;
1284 
1285 	if (keyring->type != &key_type_keyring)
1286 		return -ENOTDIR;
1287 
1288 	down_write(&keyring->sem);
1289 
1290 	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1291 	if (IS_ERR(edit)) {
1292 		ret = PTR_ERR(edit);
1293 	} else {
1294 		if (edit)
1295 			assoc_array_apply_edit(edit);
1296 		key_payload_reserve(keyring, 0);
1297 		ret = 0;
1298 	}
1299 
1300 	up_write(&keyring->sem);
1301 	return ret;
1302 }
1303 EXPORT_SYMBOL(keyring_clear);
1304 
1305 /*
1306  * Dispose of the links from a revoked keyring.
1307  *
1308  * This is called with the key sem write-locked.
1309  */
1310 static void keyring_revoke(struct key *keyring)
1311 {
1312 	struct assoc_array_edit *edit;
1313 
1314 	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1315 	if (!IS_ERR(edit)) {
1316 		if (edit)
1317 			assoc_array_apply_edit(edit);
1318 		key_payload_reserve(keyring, 0);
1319 	}
1320 }
1321 
1322 static bool keyring_gc_select_iterator(void *object, void *iterator_data)
1323 {
1324 	struct key *key = keyring_ptr_to_key(object);
1325 	time_t *limit = iterator_data;
1326 
1327 	if (key_is_dead(key, *limit))
1328 		return false;
1329 	key_get(key);
1330 	return true;
1331 }
1332 
1333 static int keyring_gc_check_iterator(const void *object, void *iterator_data)
1334 {
1335 	const struct key *key = keyring_ptr_to_key(object);
1336 	time_t *limit = iterator_data;
1337 
1338 	key_check(key);
1339 	return key_is_dead(key, *limit);
1340 }
1341 
1342 /*
1343  * Garbage collect pointers from a keyring.
1344  *
1345  * Not called with any locks held.  The keyring's key struct will not be
1346  * deallocated under us as only our caller may deallocate it.
1347  */
1348 void keyring_gc(struct key *keyring, time_t limit)
1349 {
1350 	int result;
1351 
1352 	kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1353 
1354 	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
1355 			      (1 << KEY_FLAG_REVOKED)))
1356 		goto dont_gc;
1357 
1358 	/* scan the keyring looking for dead keys */
1359 	rcu_read_lock();
1360 	result = assoc_array_iterate(&keyring->keys,
1361 				     keyring_gc_check_iterator, &limit);
1362 	rcu_read_unlock();
1363 	if (result == true)
1364 		goto do_gc;
1365 
1366 dont_gc:
1367 	kleave(" [no gc]");
1368 	return;
1369 
1370 do_gc:
1371 	down_write(&keyring->sem);
1372 	assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
1373 		       keyring_gc_select_iterator, &limit);
1374 	up_write(&keyring->sem);
1375 	kleave(" [gc]");
1376 }
1377