1 /* Keyring handling 2 * 3 * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved. 4 * Written by David Howells (dhowells@redhat.com) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/sched.h> 15 #include <linux/slab.h> 16 #include <linux/security.h> 17 #include <linux/seq_file.h> 18 #include <linux/err.h> 19 #include <keys/keyring-type.h> 20 #include <keys/user-type.h> 21 #include <linux/assoc_array_priv.h> 22 #include <linux/uaccess.h> 23 #include "internal.h" 24 25 /* 26 * When plumbing the depths of the key tree, this sets a hard limit 27 * set on how deep we're willing to go. 28 */ 29 #define KEYRING_SEARCH_MAX_DEPTH 6 30 31 /* 32 * We keep all named keyrings in a hash to speed looking them up. 33 */ 34 #define KEYRING_NAME_HASH_SIZE (1 << 5) 35 36 /* 37 * We mark pointers we pass to the associative array with bit 1 set if 38 * they're keyrings and clear otherwise. 39 */ 40 #define KEYRING_PTR_SUBTYPE 0x2UL 41 42 static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x) 43 { 44 return (unsigned long)x & KEYRING_PTR_SUBTYPE; 45 } 46 static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x) 47 { 48 void *object = assoc_array_ptr_to_leaf(x); 49 return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE); 50 } 51 static inline void *keyring_key_to_ptr(struct key *key) 52 { 53 if (key->type == &key_type_keyring) 54 return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE); 55 return key; 56 } 57 58 static struct list_head keyring_name_hash[KEYRING_NAME_HASH_SIZE]; 59 static DEFINE_RWLOCK(keyring_name_lock); 60 61 static inline unsigned keyring_hash(const char *desc) 62 { 63 unsigned bucket = 0; 64 65 for (; *desc; desc++) 66 bucket += (unsigned char)*desc; 67 68 return bucket & (KEYRING_NAME_HASH_SIZE - 1); 69 } 70 71 /* 72 * The keyring key type definition. Keyrings are simply keys of this type and 73 * can be treated as ordinary keys in addition to having their own special 74 * operations. 75 */ 76 static int keyring_preparse(struct key_preparsed_payload *prep); 77 static void keyring_free_preparse(struct key_preparsed_payload *prep); 78 static int keyring_instantiate(struct key *keyring, 79 struct key_preparsed_payload *prep); 80 static void keyring_revoke(struct key *keyring); 81 static void keyring_destroy(struct key *keyring); 82 static void keyring_describe(const struct key *keyring, struct seq_file *m); 83 static long keyring_read(const struct key *keyring, 84 char __user *buffer, size_t buflen); 85 86 struct key_type key_type_keyring = { 87 .name = "keyring", 88 .def_datalen = 0, 89 .preparse = keyring_preparse, 90 .free_preparse = keyring_free_preparse, 91 .instantiate = keyring_instantiate, 92 .revoke = keyring_revoke, 93 .destroy = keyring_destroy, 94 .describe = keyring_describe, 95 .read = keyring_read, 96 }; 97 EXPORT_SYMBOL(key_type_keyring); 98 99 /* 100 * Semaphore to serialise link/link calls to prevent two link calls in parallel 101 * introducing a cycle. 102 */ 103 static DECLARE_RWSEM(keyring_serialise_link_sem); 104 105 /* 106 * Publish the name of a keyring so that it can be found by name (if it has 107 * one). 108 */ 109 static void keyring_publish_name(struct key *keyring) 110 { 111 int bucket; 112 113 if (keyring->description) { 114 bucket = keyring_hash(keyring->description); 115 116 write_lock(&keyring_name_lock); 117 118 if (!keyring_name_hash[bucket].next) 119 INIT_LIST_HEAD(&keyring_name_hash[bucket]); 120 121 list_add_tail(&keyring->name_link, 122 &keyring_name_hash[bucket]); 123 124 write_unlock(&keyring_name_lock); 125 } 126 } 127 128 /* 129 * Preparse a keyring payload 130 */ 131 static int keyring_preparse(struct key_preparsed_payload *prep) 132 { 133 return prep->datalen != 0 ? -EINVAL : 0; 134 } 135 136 /* 137 * Free a preparse of a user defined key payload 138 */ 139 static void keyring_free_preparse(struct key_preparsed_payload *prep) 140 { 141 } 142 143 /* 144 * Initialise a keyring. 145 * 146 * Returns 0 on success, -EINVAL if given any data. 147 */ 148 static int keyring_instantiate(struct key *keyring, 149 struct key_preparsed_payload *prep) 150 { 151 assoc_array_init(&keyring->keys); 152 /* make the keyring available by name if it has one */ 153 keyring_publish_name(keyring); 154 return 0; 155 } 156 157 /* 158 * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit. Ideally we'd 159 * fold the carry back too, but that requires inline asm. 160 */ 161 static u64 mult_64x32_and_fold(u64 x, u32 y) 162 { 163 u64 hi = (u64)(u32)(x >> 32) * y; 164 u64 lo = (u64)(u32)(x) * y; 165 return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32); 166 } 167 168 /* 169 * Hash a key type and description. 170 */ 171 static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key) 172 { 173 const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP; 174 const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK; 175 const char *description = index_key->description; 176 unsigned long hash, type; 177 u32 piece; 178 u64 acc; 179 int n, desc_len = index_key->desc_len; 180 181 type = (unsigned long)index_key->type; 182 183 acc = mult_64x32_and_fold(type, desc_len + 13); 184 acc = mult_64x32_and_fold(acc, 9207); 185 for (;;) { 186 n = desc_len; 187 if (n <= 0) 188 break; 189 if (n > 4) 190 n = 4; 191 piece = 0; 192 memcpy(&piece, description, n); 193 description += n; 194 desc_len -= n; 195 acc = mult_64x32_and_fold(acc, piece); 196 acc = mult_64x32_and_fold(acc, 9207); 197 } 198 199 /* Fold the hash down to 32 bits if need be. */ 200 hash = acc; 201 if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32) 202 hash ^= acc >> 32; 203 204 /* Squidge all the keyrings into a separate part of the tree to 205 * ordinary keys by making sure the lowest level segment in the hash is 206 * zero for keyrings and non-zero otherwise. 207 */ 208 if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0) 209 return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1; 210 if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0) 211 return (hash + (hash << level_shift)) & ~fan_mask; 212 return hash; 213 } 214 215 /* 216 * Build the next index key chunk. 217 * 218 * On 32-bit systems the index key is laid out as: 219 * 220 * 0 4 5 9... 221 * hash desclen typeptr desc[] 222 * 223 * On 64-bit systems: 224 * 225 * 0 8 9 17... 226 * hash desclen typeptr desc[] 227 * 228 * We return it one word-sized chunk at a time. 229 */ 230 static unsigned long keyring_get_key_chunk(const void *data, int level) 231 { 232 const struct keyring_index_key *index_key = data; 233 unsigned long chunk = 0; 234 long offset = 0; 235 int desc_len = index_key->desc_len, n = sizeof(chunk); 236 237 level /= ASSOC_ARRAY_KEY_CHUNK_SIZE; 238 switch (level) { 239 case 0: 240 return hash_key_type_and_desc(index_key); 241 case 1: 242 return ((unsigned long)index_key->type << 8) | desc_len; 243 case 2: 244 if (desc_len == 0) 245 return (u8)((unsigned long)index_key->type >> 246 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8)); 247 n--; 248 offset = 1; 249 default: 250 offset += sizeof(chunk) - 1; 251 offset += (level - 3) * sizeof(chunk); 252 if (offset >= desc_len) 253 return 0; 254 desc_len -= offset; 255 if (desc_len > n) 256 desc_len = n; 257 offset += desc_len; 258 do { 259 chunk <<= 8; 260 chunk |= ((u8*)index_key->description)[--offset]; 261 } while (--desc_len > 0); 262 263 if (level == 2) { 264 chunk <<= 8; 265 chunk |= (u8)((unsigned long)index_key->type >> 266 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8)); 267 } 268 return chunk; 269 } 270 } 271 272 static unsigned long keyring_get_object_key_chunk(const void *object, int level) 273 { 274 const struct key *key = keyring_ptr_to_key(object); 275 return keyring_get_key_chunk(&key->index_key, level); 276 } 277 278 static bool keyring_compare_object(const void *object, const void *data) 279 { 280 const struct keyring_index_key *index_key = data; 281 const struct key *key = keyring_ptr_to_key(object); 282 283 return key->index_key.type == index_key->type && 284 key->index_key.desc_len == index_key->desc_len && 285 memcmp(key->index_key.description, index_key->description, 286 index_key->desc_len) == 0; 287 } 288 289 /* 290 * Compare the index keys of a pair of objects and determine the bit position 291 * at which they differ - if they differ. 292 */ 293 static int keyring_diff_objects(const void *object, const void *data) 294 { 295 const struct key *key_a = keyring_ptr_to_key(object); 296 const struct keyring_index_key *a = &key_a->index_key; 297 const struct keyring_index_key *b = data; 298 unsigned long seg_a, seg_b; 299 int level, i; 300 301 level = 0; 302 seg_a = hash_key_type_and_desc(a); 303 seg_b = hash_key_type_and_desc(b); 304 if ((seg_a ^ seg_b) != 0) 305 goto differ; 306 307 /* The number of bits contributed by the hash is controlled by a 308 * constant in the assoc_array headers. Everything else thereafter we 309 * can deal with as being machine word-size dependent. 310 */ 311 level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8; 312 seg_a = a->desc_len; 313 seg_b = b->desc_len; 314 if ((seg_a ^ seg_b) != 0) 315 goto differ; 316 317 /* The next bit may not work on big endian */ 318 level++; 319 seg_a = (unsigned long)a->type; 320 seg_b = (unsigned long)b->type; 321 if ((seg_a ^ seg_b) != 0) 322 goto differ; 323 324 level += sizeof(unsigned long); 325 if (a->desc_len == 0) 326 goto same; 327 328 i = 0; 329 if (((unsigned long)a->description | (unsigned long)b->description) & 330 (sizeof(unsigned long) - 1)) { 331 do { 332 seg_a = *(unsigned long *)(a->description + i); 333 seg_b = *(unsigned long *)(b->description + i); 334 if ((seg_a ^ seg_b) != 0) 335 goto differ_plus_i; 336 i += sizeof(unsigned long); 337 } while (i < (a->desc_len & (sizeof(unsigned long) - 1))); 338 } 339 340 for (; i < a->desc_len; i++) { 341 seg_a = *(unsigned char *)(a->description + i); 342 seg_b = *(unsigned char *)(b->description + i); 343 if ((seg_a ^ seg_b) != 0) 344 goto differ_plus_i; 345 } 346 347 same: 348 return -1; 349 350 differ_plus_i: 351 level += i; 352 differ: 353 i = level * 8 + __ffs(seg_a ^ seg_b); 354 return i; 355 } 356 357 /* 358 * Free an object after stripping the keyring flag off of the pointer. 359 */ 360 static void keyring_free_object(void *object) 361 { 362 key_put(keyring_ptr_to_key(object)); 363 } 364 365 /* 366 * Operations for keyring management by the index-tree routines. 367 */ 368 static const struct assoc_array_ops keyring_assoc_array_ops = { 369 .get_key_chunk = keyring_get_key_chunk, 370 .get_object_key_chunk = keyring_get_object_key_chunk, 371 .compare_object = keyring_compare_object, 372 .diff_objects = keyring_diff_objects, 373 .free_object = keyring_free_object, 374 }; 375 376 /* 377 * Clean up a keyring when it is destroyed. Unpublish its name if it had one 378 * and dispose of its data. 379 * 380 * The garbage collector detects the final key_put(), removes the keyring from 381 * the serial number tree and then does RCU synchronisation before coming here, 382 * so we shouldn't need to worry about code poking around here with the RCU 383 * readlock held by this time. 384 */ 385 static void keyring_destroy(struct key *keyring) 386 { 387 if (keyring->description) { 388 write_lock(&keyring_name_lock); 389 390 if (keyring->name_link.next != NULL && 391 !list_empty(&keyring->name_link)) 392 list_del(&keyring->name_link); 393 394 write_unlock(&keyring_name_lock); 395 } 396 397 assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops); 398 } 399 400 /* 401 * Describe a keyring for /proc. 402 */ 403 static void keyring_describe(const struct key *keyring, struct seq_file *m) 404 { 405 if (keyring->description) 406 seq_puts(m, keyring->description); 407 else 408 seq_puts(m, "[anon]"); 409 410 if (key_is_instantiated(keyring)) { 411 if (keyring->keys.nr_leaves_on_tree != 0) 412 seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree); 413 else 414 seq_puts(m, ": empty"); 415 } 416 } 417 418 struct keyring_read_iterator_context { 419 size_t qty; 420 size_t count; 421 key_serial_t __user *buffer; 422 }; 423 424 static int keyring_read_iterator(const void *object, void *data) 425 { 426 struct keyring_read_iterator_context *ctx = data; 427 const struct key *key = keyring_ptr_to_key(object); 428 int ret; 429 430 kenter("{%s,%d},,{%zu/%zu}", 431 key->type->name, key->serial, ctx->count, ctx->qty); 432 433 if (ctx->count >= ctx->qty) 434 return 1; 435 436 ret = put_user(key->serial, ctx->buffer); 437 if (ret < 0) 438 return ret; 439 ctx->buffer++; 440 ctx->count += sizeof(key->serial); 441 return 0; 442 } 443 444 /* 445 * Read a list of key IDs from the keyring's contents in binary form 446 * 447 * The keyring's semaphore is read-locked by the caller. This prevents someone 448 * from modifying it under us - which could cause us to read key IDs multiple 449 * times. 450 */ 451 static long keyring_read(const struct key *keyring, 452 char __user *buffer, size_t buflen) 453 { 454 struct keyring_read_iterator_context ctx; 455 unsigned long nr_keys; 456 int ret; 457 458 kenter("{%d},,%zu", key_serial(keyring), buflen); 459 460 if (buflen & (sizeof(key_serial_t) - 1)) 461 return -EINVAL; 462 463 nr_keys = keyring->keys.nr_leaves_on_tree; 464 if (nr_keys == 0) 465 return 0; 466 467 /* Calculate how much data we could return */ 468 ctx.qty = nr_keys * sizeof(key_serial_t); 469 470 if (!buffer || !buflen) 471 return ctx.qty; 472 473 if (buflen > ctx.qty) 474 ctx.qty = buflen; 475 476 /* Copy the IDs of the subscribed keys into the buffer */ 477 ctx.buffer = (key_serial_t __user *)buffer; 478 ctx.count = 0; 479 ret = assoc_array_iterate(&keyring->keys, keyring_read_iterator, &ctx); 480 if (ret < 0) { 481 kleave(" = %d [iterate]", ret); 482 return ret; 483 } 484 485 kleave(" = %zu [ok]", ctx.count); 486 return ctx.count; 487 } 488 489 /* 490 * Allocate a keyring and link into the destination keyring. 491 */ 492 struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid, 493 const struct cred *cred, key_perm_t perm, 494 unsigned long flags, 495 int (*restrict_link)(struct key *, 496 const struct key_type *, 497 const union key_payload *), 498 struct key *dest) 499 { 500 struct key *keyring; 501 int ret; 502 503 keyring = key_alloc(&key_type_keyring, description, 504 uid, gid, cred, perm, flags, restrict_link); 505 if (!IS_ERR(keyring)) { 506 ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL); 507 if (ret < 0) { 508 key_put(keyring); 509 keyring = ERR_PTR(ret); 510 } 511 } 512 513 return keyring; 514 } 515 EXPORT_SYMBOL(keyring_alloc); 516 517 /** 518 * restrict_link_reject - Give -EPERM to restrict link 519 * @keyring: The keyring being added to. 520 * @type: The type of key being added. 521 * @payload: The payload of the key intended to be added. 522 * 523 * Reject the addition of any links to a keyring. It can be overridden by 524 * passing KEY_ALLOC_BYPASS_RESTRICTION to key_instantiate_and_link() when 525 * adding a key to a keyring. 526 * 527 * This is meant to be passed as the restrict_link parameter to 528 * keyring_alloc(). 529 */ 530 int restrict_link_reject(struct key *keyring, 531 const struct key_type *type, 532 const union key_payload *payload) 533 { 534 return -EPERM; 535 } 536 537 /* 538 * By default, we keys found by getting an exact match on their descriptions. 539 */ 540 bool key_default_cmp(const struct key *key, 541 const struct key_match_data *match_data) 542 { 543 return strcmp(key->description, match_data->raw_data) == 0; 544 } 545 546 /* 547 * Iteration function to consider each key found. 548 */ 549 static int keyring_search_iterator(const void *object, void *iterator_data) 550 { 551 struct keyring_search_context *ctx = iterator_data; 552 const struct key *key = keyring_ptr_to_key(object); 553 unsigned long kflags = key->flags; 554 555 kenter("{%d}", key->serial); 556 557 /* ignore keys not of this type */ 558 if (key->type != ctx->index_key.type) { 559 kleave(" = 0 [!type]"); 560 return 0; 561 } 562 563 /* skip invalidated, revoked and expired keys */ 564 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) { 565 if (kflags & ((1 << KEY_FLAG_INVALIDATED) | 566 (1 << KEY_FLAG_REVOKED))) { 567 ctx->result = ERR_PTR(-EKEYREVOKED); 568 kleave(" = %d [invrev]", ctx->skipped_ret); 569 goto skipped; 570 } 571 572 if (key->expiry && ctx->now.tv_sec >= key->expiry) { 573 if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED)) 574 ctx->result = ERR_PTR(-EKEYEXPIRED); 575 kleave(" = %d [expire]", ctx->skipped_ret); 576 goto skipped; 577 } 578 } 579 580 /* keys that don't match */ 581 if (!ctx->match_data.cmp(key, &ctx->match_data)) { 582 kleave(" = 0 [!match]"); 583 return 0; 584 } 585 586 /* key must have search permissions */ 587 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) && 588 key_task_permission(make_key_ref(key, ctx->possessed), 589 ctx->cred, KEY_NEED_SEARCH) < 0) { 590 ctx->result = ERR_PTR(-EACCES); 591 kleave(" = %d [!perm]", ctx->skipped_ret); 592 goto skipped; 593 } 594 595 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) { 596 /* we set a different error code if we pass a negative key */ 597 if (kflags & (1 << KEY_FLAG_NEGATIVE)) { 598 smp_rmb(); 599 ctx->result = ERR_PTR(key->reject_error); 600 kleave(" = %d [neg]", ctx->skipped_ret); 601 goto skipped; 602 } 603 } 604 605 /* Found */ 606 ctx->result = make_key_ref(key, ctx->possessed); 607 kleave(" = 1 [found]"); 608 return 1; 609 610 skipped: 611 return ctx->skipped_ret; 612 } 613 614 /* 615 * Search inside a keyring for a key. We can search by walking to it 616 * directly based on its index-key or we can iterate over the entire 617 * tree looking for it, based on the match function. 618 */ 619 static int search_keyring(struct key *keyring, struct keyring_search_context *ctx) 620 { 621 if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) { 622 const void *object; 623 624 object = assoc_array_find(&keyring->keys, 625 &keyring_assoc_array_ops, 626 &ctx->index_key); 627 return object ? ctx->iterator(object, ctx) : 0; 628 } 629 return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx); 630 } 631 632 /* 633 * Search a tree of keyrings that point to other keyrings up to the maximum 634 * depth. 635 */ 636 static bool search_nested_keyrings(struct key *keyring, 637 struct keyring_search_context *ctx) 638 { 639 struct { 640 struct key *keyring; 641 struct assoc_array_node *node; 642 int slot; 643 } stack[KEYRING_SEARCH_MAX_DEPTH]; 644 645 struct assoc_array_shortcut *shortcut; 646 struct assoc_array_node *node; 647 struct assoc_array_ptr *ptr; 648 struct key *key; 649 int sp = 0, slot; 650 651 kenter("{%d},{%s,%s}", 652 keyring->serial, 653 ctx->index_key.type->name, 654 ctx->index_key.description); 655 656 #define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK) 657 BUG_ON((ctx->flags & STATE_CHECKS) == 0 || 658 (ctx->flags & STATE_CHECKS) == STATE_CHECKS); 659 660 if (ctx->index_key.description) 661 ctx->index_key.desc_len = strlen(ctx->index_key.description); 662 663 /* Check to see if this top-level keyring is what we are looking for 664 * and whether it is valid or not. 665 */ 666 if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE || 667 keyring_compare_object(keyring, &ctx->index_key)) { 668 ctx->skipped_ret = 2; 669 switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) { 670 case 1: 671 goto found; 672 case 2: 673 return false; 674 default: 675 break; 676 } 677 } 678 679 ctx->skipped_ret = 0; 680 681 /* Start processing a new keyring */ 682 descend_to_keyring: 683 kdebug("descend to %d", keyring->serial); 684 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) | 685 (1 << KEY_FLAG_REVOKED))) 686 goto not_this_keyring; 687 688 /* Search through the keys in this keyring before its searching its 689 * subtrees. 690 */ 691 if (search_keyring(keyring, ctx)) 692 goto found; 693 694 /* Then manually iterate through the keyrings nested in this one. 695 * 696 * Start from the root node of the index tree. Because of the way the 697 * hash function has been set up, keyrings cluster on the leftmost 698 * branch of the root node (root slot 0) or in the root node itself. 699 * Non-keyrings avoid the leftmost branch of the root entirely (root 700 * slots 1-15). 701 */ 702 ptr = ACCESS_ONCE(keyring->keys.root); 703 if (!ptr) 704 goto not_this_keyring; 705 706 if (assoc_array_ptr_is_shortcut(ptr)) { 707 /* If the root is a shortcut, either the keyring only contains 708 * keyring pointers (everything clusters behind root slot 0) or 709 * doesn't contain any keyring pointers. 710 */ 711 shortcut = assoc_array_ptr_to_shortcut(ptr); 712 smp_read_barrier_depends(); 713 if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0) 714 goto not_this_keyring; 715 716 ptr = ACCESS_ONCE(shortcut->next_node); 717 node = assoc_array_ptr_to_node(ptr); 718 goto begin_node; 719 } 720 721 node = assoc_array_ptr_to_node(ptr); 722 smp_read_barrier_depends(); 723 724 ptr = node->slots[0]; 725 if (!assoc_array_ptr_is_meta(ptr)) 726 goto begin_node; 727 728 descend_to_node: 729 /* Descend to a more distal node in this keyring's content tree and go 730 * through that. 731 */ 732 kdebug("descend"); 733 if (assoc_array_ptr_is_shortcut(ptr)) { 734 shortcut = assoc_array_ptr_to_shortcut(ptr); 735 smp_read_barrier_depends(); 736 ptr = ACCESS_ONCE(shortcut->next_node); 737 BUG_ON(!assoc_array_ptr_is_node(ptr)); 738 } 739 node = assoc_array_ptr_to_node(ptr); 740 741 begin_node: 742 kdebug("begin_node"); 743 smp_read_barrier_depends(); 744 slot = 0; 745 ascend_to_node: 746 /* Go through the slots in a node */ 747 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) { 748 ptr = ACCESS_ONCE(node->slots[slot]); 749 750 if (assoc_array_ptr_is_meta(ptr) && node->back_pointer) 751 goto descend_to_node; 752 753 if (!keyring_ptr_is_keyring(ptr)) 754 continue; 755 756 key = keyring_ptr_to_key(ptr); 757 758 if (sp >= KEYRING_SEARCH_MAX_DEPTH) { 759 if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) { 760 ctx->result = ERR_PTR(-ELOOP); 761 return false; 762 } 763 goto not_this_keyring; 764 } 765 766 /* Search a nested keyring */ 767 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) && 768 key_task_permission(make_key_ref(key, ctx->possessed), 769 ctx->cred, KEY_NEED_SEARCH) < 0) 770 continue; 771 772 /* stack the current position */ 773 stack[sp].keyring = keyring; 774 stack[sp].node = node; 775 stack[sp].slot = slot; 776 sp++; 777 778 /* begin again with the new keyring */ 779 keyring = key; 780 goto descend_to_keyring; 781 } 782 783 /* We've dealt with all the slots in the current node, so now we need 784 * to ascend to the parent and continue processing there. 785 */ 786 ptr = ACCESS_ONCE(node->back_pointer); 787 slot = node->parent_slot; 788 789 if (ptr && assoc_array_ptr_is_shortcut(ptr)) { 790 shortcut = assoc_array_ptr_to_shortcut(ptr); 791 smp_read_barrier_depends(); 792 ptr = ACCESS_ONCE(shortcut->back_pointer); 793 slot = shortcut->parent_slot; 794 } 795 if (!ptr) 796 goto not_this_keyring; 797 node = assoc_array_ptr_to_node(ptr); 798 smp_read_barrier_depends(); 799 slot++; 800 801 /* If we've ascended to the root (zero backpointer), we must have just 802 * finished processing the leftmost branch rather than the root slots - 803 * so there can't be any more keyrings for us to find. 804 */ 805 if (node->back_pointer) { 806 kdebug("ascend %d", slot); 807 goto ascend_to_node; 808 } 809 810 /* The keyring we're looking at was disqualified or didn't contain a 811 * matching key. 812 */ 813 not_this_keyring: 814 kdebug("not_this_keyring %d", sp); 815 if (sp <= 0) { 816 kleave(" = false"); 817 return false; 818 } 819 820 /* Resume the processing of a keyring higher up in the tree */ 821 sp--; 822 keyring = stack[sp].keyring; 823 node = stack[sp].node; 824 slot = stack[sp].slot + 1; 825 kdebug("ascend to %d [%d]", keyring->serial, slot); 826 goto ascend_to_node; 827 828 /* We found a viable match */ 829 found: 830 key = key_ref_to_ptr(ctx->result); 831 key_check(key); 832 if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) { 833 key->last_used_at = ctx->now.tv_sec; 834 keyring->last_used_at = ctx->now.tv_sec; 835 while (sp > 0) 836 stack[--sp].keyring->last_used_at = ctx->now.tv_sec; 837 } 838 kleave(" = true"); 839 return true; 840 } 841 842 /** 843 * keyring_search_aux - Search a keyring tree for a key matching some criteria 844 * @keyring_ref: A pointer to the keyring with possession indicator. 845 * @ctx: The keyring search context. 846 * 847 * Search the supplied keyring tree for a key that matches the criteria given. 848 * The root keyring and any linked keyrings must grant Search permission to the 849 * caller to be searchable and keys can only be found if they too grant Search 850 * to the caller. The possession flag on the root keyring pointer controls use 851 * of the possessor bits in permissions checking of the entire tree. In 852 * addition, the LSM gets to forbid keyring searches and key matches. 853 * 854 * The search is performed as a breadth-then-depth search up to the prescribed 855 * limit (KEYRING_SEARCH_MAX_DEPTH). 856 * 857 * Keys are matched to the type provided and are then filtered by the match 858 * function, which is given the description to use in any way it sees fit. The 859 * match function may use any attributes of a key that it wishes to to 860 * determine the match. Normally the match function from the key type would be 861 * used. 862 * 863 * RCU can be used to prevent the keyring key lists from disappearing without 864 * the need to take lots of locks. 865 * 866 * Returns a pointer to the found key and increments the key usage count if 867 * successful; -EAGAIN if no matching keys were found, or if expired or revoked 868 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the 869 * specified keyring wasn't a keyring. 870 * 871 * In the case of a successful return, the possession attribute from 872 * @keyring_ref is propagated to the returned key reference. 873 */ 874 key_ref_t keyring_search_aux(key_ref_t keyring_ref, 875 struct keyring_search_context *ctx) 876 { 877 struct key *keyring; 878 long err; 879 880 ctx->iterator = keyring_search_iterator; 881 ctx->possessed = is_key_possessed(keyring_ref); 882 ctx->result = ERR_PTR(-EAGAIN); 883 884 keyring = key_ref_to_ptr(keyring_ref); 885 key_check(keyring); 886 887 if (keyring->type != &key_type_keyring) 888 return ERR_PTR(-ENOTDIR); 889 890 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) { 891 err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH); 892 if (err < 0) 893 return ERR_PTR(err); 894 } 895 896 rcu_read_lock(); 897 ctx->now = current_kernel_time(); 898 if (search_nested_keyrings(keyring, ctx)) 899 __key_get(key_ref_to_ptr(ctx->result)); 900 rcu_read_unlock(); 901 return ctx->result; 902 } 903 904 /** 905 * keyring_search - Search the supplied keyring tree for a matching key 906 * @keyring: The root of the keyring tree to be searched. 907 * @type: The type of keyring we want to find. 908 * @description: The name of the keyring we want to find. 909 * 910 * As keyring_search_aux() above, but using the current task's credentials and 911 * type's default matching function and preferred search method. 912 */ 913 key_ref_t keyring_search(key_ref_t keyring, 914 struct key_type *type, 915 const char *description) 916 { 917 struct keyring_search_context ctx = { 918 .index_key.type = type, 919 .index_key.description = description, 920 .cred = current_cred(), 921 .match_data.cmp = key_default_cmp, 922 .match_data.raw_data = description, 923 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT, 924 .flags = KEYRING_SEARCH_DO_STATE_CHECK, 925 }; 926 key_ref_t key; 927 int ret; 928 929 if (type->match_preparse) { 930 ret = type->match_preparse(&ctx.match_data); 931 if (ret < 0) 932 return ERR_PTR(ret); 933 } 934 935 key = keyring_search_aux(keyring, &ctx); 936 937 if (type->match_free) 938 type->match_free(&ctx.match_data); 939 return key; 940 } 941 EXPORT_SYMBOL(keyring_search); 942 943 /* 944 * Search the given keyring for a key that might be updated. 945 * 946 * The caller must guarantee that the keyring is a keyring and that the 947 * permission is granted to modify the keyring as no check is made here. The 948 * caller must also hold a lock on the keyring semaphore. 949 * 950 * Returns a pointer to the found key with usage count incremented if 951 * successful and returns NULL if not found. Revoked and invalidated keys are 952 * skipped over. 953 * 954 * If successful, the possession indicator is propagated from the keyring ref 955 * to the returned key reference. 956 */ 957 key_ref_t find_key_to_update(key_ref_t keyring_ref, 958 const struct keyring_index_key *index_key) 959 { 960 struct key *keyring, *key; 961 const void *object; 962 963 keyring = key_ref_to_ptr(keyring_ref); 964 965 kenter("{%d},{%s,%s}", 966 keyring->serial, index_key->type->name, index_key->description); 967 968 object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops, 969 index_key); 970 971 if (object) 972 goto found; 973 974 kleave(" = NULL"); 975 return NULL; 976 977 found: 978 key = keyring_ptr_to_key(object); 979 if (key->flags & ((1 << KEY_FLAG_INVALIDATED) | 980 (1 << KEY_FLAG_REVOKED))) { 981 kleave(" = NULL [x]"); 982 return NULL; 983 } 984 __key_get(key); 985 kleave(" = {%d}", key->serial); 986 return make_key_ref(key, is_key_possessed(keyring_ref)); 987 } 988 989 /* 990 * Find a keyring with the specified name. 991 * 992 * All named keyrings in the current user namespace are searched, provided they 993 * grant Search permission directly to the caller (unless this check is 994 * skipped). Keyrings whose usage points have reached zero or who have been 995 * revoked are skipped. 996 * 997 * Returns a pointer to the keyring with the keyring's refcount having being 998 * incremented on success. -ENOKEY is returned if a key could not be found. 999 */ 1000 struct key *find_keyring_by_name(const char *name, bool skip_perm_check) 1001 { 1002 struct key *keyring; 1003 int bucket; 1004 1005 if (!name) 1006 return ERR_PTR(-EINVAL); 1007 1008 bucket = keyring_hash(name); 1009 1010 read_lock(&keyring_name_lock); 1011 1012 if (keyring_name_hash[bucket].next) { 1013 /* search this hash bucket for a keyring with a matching name 1014 * that's readable and that hasn't been revoked */ 1015 list_for_each_entry(keyring, 1016 &keyring_name_hash[bucket], 1017 name_link 1018 ) { 1019 if (!kuid_has_mapping(current_user_ns(), keyring->user->uid)) 1020 continue; 1021 1022 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags)) 1023 continue; 1024 1025 if (strcmp(keyring->description, name) != 0) 1026 continue; 1027 1028 if (!skip_perm_check && 1029 key_permission(make_key_ref(keyring, 0), 1030 KEY_NEED_SEARCH) < 0) 1031 continue; 1032 1033 /* we've got a match but we might end up racing with 1034 * key_cleanup() if the keyring is currently 'dead' 1035 * (ie. it has a zero usage count) */ 1036 if (!atomic_inc_not_zero(&keyring->usage)) 1037 continue; 1038 keyring->last_used_at = current_kernel_time().tv_sec; 1039 goto out; 1040 } 1041 } 1042 1043 keyring = ERR_PTR(-ENOKEY); 1044 out: 1045 read_unlock(&keyring_name_lock); 1046 return keyring; 1047 } 1048 1049 static int keyring_detect_cycle_iterator(const void *object, 1050 void *iterator_data) 1051 { 1052 struct keyring_search_context *ctx = iterator_data; 1053 const struct key *key = keyring_ptr_to_key(object); 1054 1055 kenter("{%d}", key->serial); 1056 1057 /* We might get a keyring with matching index-key that is nonetheless a 1058 * different keyring. */ 1059 if (key != ctx->match_data.raw_data) 1060 return 0; 1061 1062 ctx->result = ERR_PTR(-EDEADLK); 1063 return 1; 1064 } 1065 1066 /* 1067 * See if a cycle will will be created by inserting acyclic tree B in acyclic 1068 * tree A at the topmost level (ie: as a direct child of A). 1069 * 1070 * Since we are adding B to A at the top level, checking for cycles should just 1071 * be a matter of seeing if node A is somewhere in tree B. 1072 */ 1073 static int keyring_detect_cycle(struct key *A, struct key *B) 1074 { 1075 struct keyring_search_context ctx = { 1076 .index_key = A->index_key, 1077 .match_data.raw_data = A, 1078 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT, 1079 .iterator = keyring_detect_cycle_iterator, 1080 .flags = (KEYRING_SEARCH_NO_STATE_CHECK | 1081 KEYRING_SEARCH_NO_UPDATE_TIME | 1082 KEYRING_SEARCH_NO_CHECK_PERM | 1083 KEYRING_SEARCH_DETECT_TOO_DEEP), 1084 }; 1085 1086 rcu_read_lock(); 1087 search_nested_keyrings(B, &ctx); 1088 rcu_read_unlock(); 1089 return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result); 1090 } 1091 1092 /* 1093 * Preallocate memory so that a key can be linked into to a keyring. 1094 */ 1095 int __key_link_begin(struct key *keyring, 1096 const struct keyring_index_key *index_key, 1097 struct assoc_array_edit **_edit) 1098 __acquires(&keyring->sem) 1099 __acquires(&keyring_serialise_link_sem) 1100 { 1101 struct assoc_array_edit *edit; 1102 int ret; 1103 1104 kenter("%d,%s,%s,", 1105 keyring->serial, index_key->type->name, index_key->description); 1106 1107 BUG_ON(index_key->desc_len == 0); 1108 1109 if (keyring->type != &key_type_keyring) 1110 return -ENOTDIR; 1111 1112 down_write(&keyring->sem); 1113 1114 ret = -EKEYREVOKED; 1115 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags)) 1116 goto error_krsem; 1117 1118 /* serialise link/link calls to prevent parallel calls causing a cycle 1119 * when linking two keyring in opposite orders */ 1120 if (index_key->type == &key_type_keyring) 1121 down_write(&keyring_serialise_link_sem); 1122 1123 /* Create an edit script that will insert/replace the key in the 1124 * keyring tree. 1125 */ 1126 edit = assoc_array_insert(&keyring->keys, 1127 &keyring_assoc_array_ops, 1128 index_key, 1129 NULL); 1130 if (IS_ERR(edit)) { 1131 ret = PTR_ERR(edit); 1132 goto error_sem; 1133 } 1134 1135 /* If we're not replacing a link in-place then we're going to need some 1136 * extra quota. 1137 */ 1138 if (!edit->dead_leaf) { 1139 ret = key_payload_reserve(keyring, 1140 keyring->datalen + KEYQUOTA_LINK_BYTES); 1141 if (ret < 0) 1142 goto error_cancel; 1143 } 1144 1145 *_edit = edit; 1146 kleave(" = 0"); 1147 return 0; 1148 1149 error_cancel: 1150 assoc_array_cancel_edit(edit); 1151 error_sem: 1152 if (index_key->type == &key_type_keyring) 1153 up_write(&keyring_serialise_link_sem); 1154 error_krsem: 1155 up_write(&keyring->sem); 1156 kleave(" = %d", ret); 1157 return ret; 1158 } 1159 1160 /* 1161 * Check already instantiated keys aren't going to be a problem. 1162 * 1163 * The caller must have called __key_link_begin(). Don't need to call this for 1164 * keys that were created since __key_link_begin() was called. 1165 */ 1166 int __key_link_check_live_key(struct key *keyring, struct key *key) 1167 { 1168 if (key->type == &key_type_keyring) 1169 /* check that we aren't going to create a cycle by linking one 1170 * keyring to another */ 1171 return keyring_detect_cycle(keyring, key); 1172 return 0; 1173 } 1174 1175 /* 1176 * Link a key into to a keyring. 1177 * 1178 * Must be called with __key_link_begin() having being called. Discards any 1179 * already extant link to matching key if there is one, so that each keyring 1180 * holds at most one link to any given key of a particular type+description 1181 * combination. 1182 */ 1183 void __key_link(struct key *key, struct assoc_array_edit **_edit) 1184 { 1185 __key_get(key); 1186 assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key)); 1187 assoc_array_apply_edit(*_edit); 1188 *_edit = NULL; 1189 } 1190 1191 /* 1192 * Finish linking a key into to a keyring. 1193 * 1194 * Must be called with __key_link_begin() having being called. 1195 */ 1196 void __key_link_end(struct key *keyring, 1197 const struct keyring_index_key *index_key, 1198 struct assoc_array_edit *edit) 1199 __releases(&keyring->sem) 1200 __releases(&keyring_serialise_link_sem) 1201 { 1202 BUG_ON(index_key->type == NULL); 1203 kenter("%d,%s,", keyring->serial, index_key->type->name); 1204 1205 if (index_key->type == &key_type_keyring) 1206 up_write(&keyring_serialise_link_sem); 1207 1208 if (edit) { 1209 if (!edit->dead_leaf) { 1210 key_payload_reserve(keyring, 1211 keyring->datalen - KEYQUOTA_LINK_BYTES); 1212 } 1213 assoc_array_cancel_edit(edit); 1214 } 1215 up_write(&keyring->sem); 1216 } 1217 1218 /* 1219 * Check addition of keys to restricted keyrings. 1220 */ 1221 static int __key_link_check_restriction(struct key *keyring, struct key *key) 1222 { 1223 if (!keyring->restrict_link) 1224 return 0; 1225 return keyring->restrict_link(keyring, key->type, &key->payload); 1226 } 1227 1228 /** 1229 * key_link - Link a key to a keyring 1230 * @keyring: The keyring to make the link in. 1231 * @key: The key to link to. 1232 * 1233 * Make a link in a keyring to a key, such that the keyring holds a reference 1234 * on that key and the key can potentially be found by searching that keyring. 1235 * 1236 * This function will write-lock the keyring's semaphore and will consume some 1237 * of the user's key data quota to hold the link. 1238 * 1239 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, 1240 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is 1241 * full, -EDQUOT if there is insufficient key data quota remaining to add 1242 * another link or -ENOMEM if there's insufficient memory. 1243 * 1244 * It is assumed that the caller has checked that it is permitted for a link to 1245 * be made (the keyring should have Write permission and the key Link 1246 * permission). 1247 */ 1248 int key_link(struct key *keyring, struct key *key) 1249 { 1250 struct assoc_array_edit *edit; 1251 int ret; 1252 1253 kenter("{%d,%d}", keyring->serial, atomic_read(&keyring->usage)); 1254 1255 key_check(keyring); 1256 key_check(key); 1257 1258 ret = __key_link_begin(keyring, &key->index_key, &edit); 1259 if (ret == 0) { 1260 kdebug("begun {%d,%d}", keyring->serial, atomic_read(&keyring->usage)); 1261 ret = __key_link_check_restriction(keyring, key); 1262 if (ret == 0) 1263 ret = __key_link_check_live_key(keyring, key); 1264 if (ret == 0) 1265 __key_link(key, &edit); 1266 __key_link_end(keyring, &key->index_key, edit); 1267 } 1268 1269 kleave(" = %d {%d,%d}", ret, keyring->serial, atomic_read(&keyring->usage)); 1270 return ret; 1271 } 1272 EXPORT_SYMBOL(key_link); 1273 1274 /** 1275 * key_unlink - Unlink the first link to a key from a keyring. 1276 * @keyring: The keyring to remove the link from. 1277 * @key: The key the link is to. 1278 * 1279 * Remove a link from a keyring to a key. 1280 * 1281 * This function will write-lock the keyring's semaphore. 1282 * 1283 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if 1284 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient 1285 * memory. 1286 * 1287 * It is assumed that the caller has checked that it is permitted for a link to 1288 * be removed (the keyring should have Write permission; no permissions are 1289 * required on the key). 1290 */ 1291 int key_unlink(struct key *keyring, struct key *key) 1292 { 1293 struct assoc_array_edit *edit; 1294 int ret; 1295 1296 key_check(keyring); 1297 key_check(key); 1298 1299 if (keyring->type != &key_type_keyring) 1300 return -ENOTDIR; 1301 1302 down_write(&keyring->sem); 1303 1304 edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops, 1305 &key->index_key); 1306 if (IS_ERR(edit)) { 1307 ret = PTR_ERR(edit); 1308 goto error; 1309 } 1310 ret = -ENOENT; 1311 if (edit == NULL) 1312 goto error; 1313 1314 assoc_array_apply_edit(edit); 1315 key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES); 1316 ret = 0; 1317 1318 error: 1319 up_write(&keyring->sem); 1320 return ret; 1321 } 1322 EXPORT_SYMBOL(key_unlink); 1323 1324 /** 1325 * keyring_clear - Clear a keyring 1326 * @keyring: The keyring to clear. 1327 * 1328 * Clear the contents of the specified keyring. 1329 * 1330 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring. 1331 */ 1332 int keyring_clear(struct key *keyring) 1333 { 1334 struct assoc_array_edit *edit; 1335 int ret; 1336 1337 if (keyring->type != &key_type_keyring) 1338 return -ENOTDIR; 1339 1340 down_write(&keyring->sem); 1341 1342 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops); 1343 if (IS_ERR(edit)) { 1344 ret = PTR_ERR(edit); 1345 } else { 1346 if (edit) 1347 assoc_array_apply_edit(edit); 1348 key_payload_reserve(keyring, 0); 1349 ret = 0; 1350 } 1351 1352 up_write(&keyring->sem); 1353 return ret; 1354 } 1355 EXPORT_SYMBOL(keyring_clear); 1356 1357 /* 1358 * Dispose of the links from a revoked keyring. 1359 * 1360 * This is called with the key sem write-locked. 1361 */ 1362 static void keyring_revoke(struct key *keyring) 1363 { 1364 struct assoc_array_edit *edit; 1365 1366 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops); 1367 if (!IS_ERR(edit)) { 1368 if (edit) 1369 assoc_array_apply_edit(edit); 1370 key_payload_reserve(keyring, 0); 1371 } 1372 } 1373 1374 static bool keyring_gc_select_iterator(void *object, void *iterator_data) 1375 { 1376 struct key *key = keyring_ptr_to_key(object); 1377 time_t *limit = iterator_data; 1378 1379 if (key_is_dead(key, *limit)) 1380 return false; 1381 key_get(key); 1382 return true; 1383 } 1384 1385 static int keyring_gc_check_iterator(const void *object, void *iterator_data) 1386 { 1387 const struct key *key = keyring_ptr_to_key(object); 1388 time_t *limit = iterator_data; 1389 1390 key_check(key); 1391 return key_is_dead(key, *limit); 1392 } 1393 1394 /* 1395 * Garbage collect pointers from a keyring. 1396 * 1397 * Not called with any locks held. The keyring's key struct will not be 1398 * deallocated under us as only our caller may deallocate it. 1399 */ 1400 void keyring_gc(struct key *keyring, time_t limit) 1401 { 1402 int result; 1403 1404 kenter("%x{%s}", keyring->serial, keyring->description ?: ""); 1405 1406 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) | 1407 (1 << KEY_FLAG_REVOKED))) 1408 goto dont_gc; 1409 1410 /* scan the keyring looking for dead keys */ 1411 rcu_read_lock(); 1412 result = assoc_array_iterate(&keyring->keys, 1413 keyring_gc_check_iterator, &limit); 1414 rcu_read_unlock(); 1415 if (result == true) 1416 goto do_gc; 1417 1418 dont_gc: 1419 kleave(" [no gc]"); 1420 return; 1421 1422 do_gc: 1423 down_write(&keyring->sem); 1424 assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops, 1425 keyring_gc_select_iterator, &limit); 1426 up_write(&keyring->sem); 1427 kleave(" [gc]"); 1428 } 1429