xref: /openbmc/linux/security/keys/keyring.c (revision 4f6cce39)
1 /* Keyring handling
2  *
3  * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/seq_file.h>
18 #include <linux/err.h>
19 #include <keys/keyring-type.h>
20 #include <keys/user-type.h>
21 #include <linux/assoc_array_priv.h>
22 #include <linux/uaccess.h>
23 #include "internal.h"
24 
25 /*
26  * When plumbing the depths of the key tree, this sets a hard limit
27  * set on how deep we're willing to go.
28  */
29 #define KEYRING_SEARCH_MAX_DEPTH 6
30 
31 /*
32  * We keep all named keyrings in a hash to speed looking them up.
33  */
34 #define KEYRING_NAME_HASH_SIZE	(1 << 5)
35 
36 /*
37  * We mark pointers we pass to the associative array with bit 1 set if
38  * they're keyrings and clear otherwise.
39  */
40 #define KEYRING_PTR_SUBTYPE	0x2UL
41 
42 static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
43 {
44 	return (unsigned long)x & KEYRING_PTR_SUBTYPE;
45 }
46 static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
47 {
48 	void *object = assoc_array_ptr_to_leaf(x);
49 	return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
50 }
51 static inline void *keyring_key_to_ptr(struct key *key)
52 {
53 	if (key->type == &key_type_keyring)
54 		return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
55 	return key;
56 }
57 
58 static struct list_head	keyring_name_hash[KEYRING_NAME_HASH_SIZE];
59 static DEFINE_RWLOCK(keyring_name_lock);
60 
61 static inline unsigned keyring_hash(const char *desc)
62 {
63 	unsigned bucket = 0;
64 
65 	for (; *desc; desc++)
66 		bucket += (unsigned char)*desc;
67 
68 	return bucket & (KEYRING_NAME_HASH_SIZE - 1);
69 }
70 
71 /*
72  * The keyring key type definition.  Keyrings are simply keys of this type and
73  * can be treated as ordinary keys in addition to having their own special
74  * operations.
75  */
76 static int keyring_preparse(struct key_preparsed_payload *prep);
77 static void keyring_free_preparse(struct key_preparsed_payload *prep);
78 static int keyring_instantiate(struct key *keyring,
79 			       struct key_preparsed_payload *prep);
80 static void keyring_revoke(struct key *keyring);
81 static void keyring_destroy(struct key *keyring);
82 static void keyring_describe(const struct key *keyring, struct seq_file *m);
83 static long keyring_read(const struct key *keyring,
84 			 char __user *buffer, size_t buflen);
85 
86 struct key_type key_type_keyring = {
87 	.name		= "keyring",
88 	.def_datalen	= 0,
89 	.preparse	= keyring_preparse,
90 	.free_preparse	= keyring_free_preparse,
91 	.instantiate	= keyring_instantiate,
92 	.revoke		= keyring_revoke,
93 	.destroy	= keyring_destroy,
94 	.describe	= keyring_describe,
95 	.read		= keyring_read,
96 };
97 EXPORT_SYMBOL(key_type_keyring);
98 
99 /*
100  * Semaphore to serialise link/link calls to prevent two link calls in parallel
101  * introducing a cycle.
102  */
103 static DECLARE_RWSEM(keyring_serialise_link_sem);
104 
105 /*
106  * Publish the name of a keyring so that it can be found by name (if it has
107  * one).
108  */
109 static void keyring_publish_name(struct key *keyring)
110 {
111 	int bucket;
112 
113 	if (keyring->description) {
114 		bucket = keyring_hash(keyring->description);
115 
116 		write_lock(&keyring_name_lock);
117 
118 		if (!keyring_name_hash[bucket].next)
119 			INIT_LIST_HEAD(&keyring_name_hash[bucket]);
120 
121 		list_add_tail(&keyring->name_link,
122 			      &keyring_name_hash[bucket]);
123 
124 		write_unlock(&keyring_name_lock);
125 	}
126 }
127 
128 /*
129  * Preparse a keyring payload
130  */
131 static int keyring_preparse(struct key_preparsed_payload *prep)
132 {
133 	return prep->datalen != 0 ? -EINVAL : 0;
134 }
135 
136 /*
137  * Free a preparse of a user defined key payload
138  */
139 static void keyring_free_preparse(struct key_preparsed_payload *prep)
140 {
141 }
142 
143 /*
144  * Initialise a keyring.
145  *
146  * Returns 0 on success, -EINVAL if given any data.
147  */
148 static int keyring_instantiate(struct key *keyring,
149 			       struct key_preparsed_payload *prep)
150 {
151 	assoc_array_init(&keyring->keys);
152 	/* make the keyring available by name if it has one */
153 	keyring_publish_name(keyring);
154 	return 0;
155 }
156 
157 /*
158  * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit.  Ideally we'd
159  * fold the carry back too, but that requires inline asm.
160  */
161 static u64 mult_64x32_and_fold(u64 x, u32 y)
162 {
163 	u64 hi = (u64)(u32)(x >> 32) * y;
164 	u64 lo = (u64)(u32)(x) * y;
165 	return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
166 }
167 
168 /*
169  * Hash a key type and description.
170  */
171 static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key)
172 {
173 	const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
174 	const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
175 	const char *description = index_key->description;
176 	unsigned long hash, type;
177 	u32 piece;
178 	u64 acc;
179 	int n, desc_len = index_key->desc_len;
180 
181 	type = (unsigned long)index_key->type;
182 
183 	acc = mult_64x32_and_fold(type, desc_len + 13);
184 	acc = mult_64x32_and_fold(acc, 9207);
185 	for (;;) {
186 		n = desc_len;
187 		if (n <= 0)
188 			break;
189 		if (n > 4)
190 			n = 4;
191 		piece = 0;
192 		memcpy(&piece, description, n);
193 		description += n;
194 		desc_len -= n;
195 		acc = mult_64x32_and_fold(acc, piece);
196 		acc = mult_64x32_and_fold(acc, 9207);
197 	}
198 
199 	/* Fold the hash down to 32 bits if need be. */
200 	hash = acc;
201 	if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
202 		hash ^= acc >> 32;
203 
204 	/* Squidge all the keyrings into a separate part of the tree to
205 	 * ordinary keys by making sure the lowest level segment in the hash is
206 	 * zero for keyrings and non-zero otherwise.
207 	 */
208 	if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
209 		return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
210 	if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
211 		return (hash + (hash << level_shift)) & ~fan_mask;
212 	return hash;
213 }
214 
215 /*
216  * Build the next index key chunk.
217  *
218  * On 32-bit systems the index key is laid out as:
219  *
220  *	0	4	5	9...
221  *	hash	desclen	typeptr	desc[]
222  *
223  * On 64-bit systems:
224  *
225  *	0	8	9	17...
226  *	hash	desclen	typeptr	desc[]
227  *
228  * We return it one word-sized chunk at a time.
229  */
230 static unsigned long keyring_get_key_chunk(const void *data, int level)
231 {
232 	const struct keyring_index_key *index_key = data;
233 	unsigned long chunk = 0;
234 	long offset = 0;
235 	int desc_len = index_key->desc_len, n = sizeof(chunk);
236 
237 	level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
238 	switch (level) {
239 	case 0:
240 		return hash_key_type_and_desc(index_key);
241 	case 1:
242 		return ((unsigned long)index_key->type << 8) | desc_len;
243 	case 2:
244 		if (desc_len == 0)
245 			return (u8)((unsigned long)index_key->type >>
246 				    (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
247 		n--;
248 		offset = 1;
249 	default:
250 		offset += sizeof(chunk) - 1;
251 		offset += (level - 3) * sizeof(chunk);
252 		if (offset >= desc_len)
253 			return 0;
254 		desc_len -= offset;
255 		if (desc_len > n)
256 			desc_len = n;
257 		offset += desc_len;
258 		do {
259 			chunk <<= 8;
260 			chunk |= ((u8*)index_key->description)[--offset];
261 		} while (--desc_len > 0);
262 
263 		if (level == 2) {
264 			chunk <<= 8;
265 			chunk |= (u8)((unsigned long)index_key->type >>
266 				      (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
267 		}
268 		return chunk;
269 	}
270 }
271 
272 static unsigned long keyring_get_object_key_chunk(const void *object, int level)
273 {
274 	const struct key *key = keyring_ptr_to_key(object);
275 	return keyring_get_key_chunk(&key->index_key, level);
276 }
277 
278 static bool keyring_compare_object(const void *object, const void *data)
279 {
280 	const struct keyring_index_key *index_key = data;
281 	const struct key *key = keyring_ptr_to_key(object);
282 
283 	return key->index_key.type == index_key->type &&
284 		key->index_key.desc_len == index_key->desc_len &&
285 		memcmp(key->index_key.description, index_key->description,
286 		       index_key->desc_len) == 0;
287 }
288 
289 /*
290  * Compare the index keys of a pair of objects and determine the bit position
291  * at which they differ - if they differ.
292  */
293 static int keyring_diff_objects(const void *object, const void *data)
294 {
295 	const struct key *key_a = keyring_ptr_to_key(object);
296 	const struct keyring_index_key *a = &key_a->index_key;
297 	const struct keyring_index_key *b = data;
298 	unsigned long seg_a, seg_b;
299 	int level, i;
300 
301 	level = 0;
302 	seg_a = hash_key_type_and_desc(a);
303 	seg_b = hash_key_type_and_desc(b);
304 	if ((seg_a ^ seg_b) != 0)
305 		goto differ;
306 
307 	/* The number of bits contributed by the hash is controlled by a
308 	 * constant in the assoc_array headers.  Everything else thereafter we
309 	 * can deal with as being machine word-size dependent.
310 	 */
311 	level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
312 	seg_a = a->desc_len;
313 	seg_b = b->desc_len;
314 	if ((seg_a ^ seg_b) != 0)
315 		goto differ;
316 
317 	/* The next bit may not work on big endian */
318 	level++;
319 	seg_a = (unsigned long)a->type;
320 	seg_b = (unsigned long)b->type;
321 	if ((seg_a ^ seg_b) != 0)
322 		goto differ;
323 
324 	level += sizeof(unsigned long);
325 	if (a->desc_len == 0)
326 		goto same;
327 
328 	i = 0;
329 	if (((unsigned long)a->description | (unsigned long)b->description) &
330 	    (sizeof(unsigned long) - 1)) {
331 		do {
332 			seg_a = *(unsigned long *)(a->description + i);
333 			seg_b = *(unsigned long *)(b->description + i);
334 			if ((seg_a ^ seg_b) != 0)
335 				goto differ_plus_i;
336 			i += sizeof(unsigned long);
337 		} while (i < (a->desc_len & (sizeof(unsigned long) - 1)));
338 	}
339 
340 	for (; i < a->desc_len; i++) {
341 		seg_a = *(unsigned char *)(a->description + i);
342 		seg_b = *(unsigned char *)(b->description + i);
343 		if ((seg_a ^ seg_b) != 0)
344 			goto differ_plus_i;
345 	}
346 
347 same:
348 	return -1;
349 
350 differ_plus_i:
351 	level += i;
352 differ:
353 	i = level * 8 + __ffs(seg_a ^ seg_b);
354 	return i;
355 }
356 
357 /*
358  * Free an object after stripping the keyring flag off of the pointer.
359  */
360 static void keyring_free_object(void *object)
361 {
362 	key_put(keyring_ptr_to_key(object));
363 }
364 
365 /*
366  * Operations for keyring management by the index-tree routines.
367  */
368 static const struct assoc_array_ops keyring_assoc_array_ops = {
369 	.get_key_chunk		= keyring_get_key_chunk,
370 	.get_object_key_chunk	= keyring_get_object_key_chunk,
371 	.compare_object		= keyring_compare_object,
372 	.diff_objects		= keyring_diff_objects,
373 	.free_object		= keyring_free_object,
374 };
375 
376 /*
377  * Clean up a keyring when it is destroyed.  Unpublish its name if it had one
378  * and dispose of its data.
379  *
380  * The garbage collector detects the final key_put(), removes the keyring from
381  * the serial number tree and then does RCU synchronisation before coming here,
382  * so we shouldn't need to worry about code poking around here with the RCU
383  * readlock held by this time.
384  */
385 static void keyring_destroy(struct key *keyring)
386 {
387 	if (keyring->description) {
388 		write_lock(&keyring_name_lock);
389 
390 		if (keyring->name_link.next != NULL &&
391 		    !list_empty(&keyring->name_link))
392 			list_del(&keyring->name_link);
393 
394 		write_unlock(&keyring_name_lock);
395 	}
396 
397 	assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
398 }
399 
400 /*
401  * Describe a keyring for /proc.
402  */
403 static void keyring_describe(const struct key *keyring, struct seq_file *m)
404 {
405 	if (keyring->description)
406 		seq_puts(m, keyring->description);
407 	else
408 		seq_puts(m, "[anon]");
409 
410 	if (key_is_instantiated(keyring)) {
411 		if (keyring->keys.nr_leaves_on_tree != 0)
412 			seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
413 		else
414 			seq_puts(m, ": empty");
415 	}
416 }
417 
418 struct keyring_read_iterator_context {
419 	size_t			qty;
420 	size_t			count;
421 	key_serial_t __user	*buffer;
422 };
423 
424 static int keyring_read_iterator(const void *object, void *data)
425 {
426 	struct keyring_read_iterator_context *ctx = data;
427 	const struct key *key = keyring_ptr_to_key(object);
428 	int ret;
429 
430 	kenter("{%s,%d},,{%zu/%zu}",
431 	       key->type->name, key->serial, ctx->count, ctx->qty);
432 
433 	if (ctx->count >= ctx->qty)
434 		return 1;
435 
436 	ret = put_user(key->serial, ctx->buffer);
437 	if (ret < 0)
438 		return ret;
439 	ctx->buffer++;
440 	ctx->count += sizeof(key->serial);
441 	return 0;
442 }
443 
444 /*
445  * Read a list of key IDs from the keyring's contents in binary form
446  *
447  * The keyring's semaphore is read-locked by the caller.  This prevents someone
448  * from modifying it under us - which could cause us to read key IDs multiple
449  * times.
450  */
451 static long keyring_read(const struct key *keyring,
452 			 char __user *buffer, size_t buflen)
453 {
454 	struct keyring_read_iterator_context ctx;
455 	unsigned long nr_keys;
456 	int ret;
457 
458 	kenter("{%d},,%zu", key_serial(keyring), buflen);
459 
460 	if (buflen & (sizeof(key_serial_t) - 1))
461 		return -EINVAL;
462 
463 	nr_keys = keyring->keys.nr_leaves_on_tree;
464 	if (nr_keys == 0)
465 		return 0;
466 
467 	/* Calculate how much data we could return */
468 	ctx.qty = nr_keys * sizeof(key_serial_t);
469 
470 	if (!buffer || !buflen)
471 		return ctx.qty;
472 
473 	if (buflen > ctx.qty)
474 		ctx.qty = buflen;
475 
476 	/* Copy the IDs of the subscribed keys into the buffer */
477 	ctx.buffer = (key_serial_t __user *)buffer;
478 	ctx.count = 0;
479 	ret = assoc_array_iterate(&keyring->keys, keyring_read_iterator, &ctx);
480 	if (ret < 0) {
481 		kleave(" = %d [iterate]", ret);
482 		return ret;
483 	}
484 
485 	kleave(" = %zu [ok]", ctx.count);
486 	return ctx.count;
487 }
488 
489 /*
490  * Allocate a keyring and link into the destination keyring.
491  */
492 struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
493 			  const struct cred *cred, key_perm_t perm,
494 			  unsigned long flags,
495 			  int (*restrict_link)(struct key *,
496 					       const struct key_type *,
497 					       const union key_payload *),
498 			  struct key *dest)
499 {
500 	struct key *keyring;
501 	int ret;
502 
503 	keyring = key_alloc(&key_type_keyring, description,
504 			    uid, gid, cred, perm, flags, restrict_link);
505 	if (!IS_ERR(keyring)) {
506 		ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
507 		if (ret < 0) {
508 			key_put(keyring);
509 			keyring = ERR_PTR(ret);
510 		}
511 	}
512 
513 	return keyring;
514 }
515 EXPORT_SYMBOL(keyring_alloc);
516 
517 /**
518  * restrict_link_reject - Give -EPERM to restrict link
519  * @keyring: The keyring being added to.
520  * @type: The type of key being added.
521  * @payload: The payload of the key intended to be added.
522  *
523  * Reject the addition of any links to a keyring.  It can be overridden by
524  * passing KEY_ALLOC_BYPASS_RESTRICTION to key_instantiate_and_link() when
525  * adding a key to a keyring.
526  *
527  * This is meant to be passed as the restrict_link parameter to
528  * keyring_alloc().
529  */
530 int restrict_link_reject(struct key *keyring,
531 			 const struct key_type *type,
532 			 const union key_payload *payload)
533 {
534 	return -EPERM;
535 }
536 
537 /*
538  * By default, we keys found by getting an exact match on their descriptions.
539  */
540 bool key_default_cmp(const struct key *key,
541 		     const struct key_match_data *match_data)
542 {
543 	return strcmp(key->description, match_data->raw_data) == 0;
544 }
545 
546 /*
547  * Iteration function to consider each key found.
548  */
549 static int keyring_search_iterator(const void *object, void *iterator_data)
550 {
551 	struct keyring_search_context *ctx = iterator_data;
552 	const struct key *key = keyring_ptr_to_key(object);
553 	unsigned long kflags = key->flags;
554 
555 	kenter("{%d}", key->serial);
556 
557 	/* ignore keys not of this type */
558 	if (key->type != ctx->index_key.type) {
559 		kleave(" = 0 [!type]");
560 		return 0;
561 	}
562 
563 	/* skip invalidated, revoked and expired keys */
564 	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
565 		if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
566 			      (1 << KEY_FLAG_REVOKED))) {
567 			ctx->result = ERR_PTR(-EKEYREVOKED);
568 			kleave(" = %d [invrev]", ctx->skipped_ret);
569 			goto skipped;
570 		}
571 
572 		if (key->expiry && ctx->now.tv_sec >= key->expiry) {
573 			if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED))
574 				ctx->result = ERR_PTR(-EKEYEXPIRED);
575 			kleave(" = %d [expire]", ctx->skipped_ret);
576 			goto skipped;
577 		}
578 	}
579 
580 	/* keys that don't match */
581 	if (!ctx->match_data.cmp(key, &ctx->match_data)) {
582 		kleave(" = 0 [!match]");
583 		return 0;
584 	}
585 
586 	/* key must have search permissions */
587 	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
588 	    key_task_permission(make_key_ref(key, ctx->possessed),
589 				ctx->cred, KEY_NEED_SEARCH) < 0) {
590 		ctx->result = ERR_PTR(-EACCES);
591 		kleave(" = %d [!perm]", ctx->skipped_ret);
592 		goto skipped;
593 	}
594 
595 	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
596 		/* we set a different error code if we pass a negative key */
597 		if (kflags & (1 << KEY_FLAG_NEGATIVE)) {
598 			smp_rmb();
599 			ctx->result = ERR_PTR(key->reject_error);
600 			kleave(" = %d [neg]", ctx->skipped_ret);
601 			goto skipped;
602 		}
603 	}
604 
605 	/* Found */
606 	ctx->result = make_key_ref(key, ctx->possessed);
607 	kleave(" = 1 [found]");
608 	return 1;
609 
610 skipped:
611 	return ctx->skipped_ret;
612 }
613 
614 /*
615  * Search inside a keyring for a key.  We can search by walking to it
616  * directly based on its index-key or we can iterate over the entire
617  * tree looking for it, based on the match function.
618  */
619 static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
620 {
621 	if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) {
622 		const void *object;
623 
624 		object = assoc_array_find(&keyring->keys,
625 					  &keyring_assoc_array_ops,
626 					  &ctx->index_key);
627 		return object ? ctx->iterator(object, ctx) : 0;
628 	}
629 	return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
630 }
631 
632 /*
633  * Search a tree of keyrings that point to other keyrings up to the maximum
634  * depth.
635  */
636 static bool search_nested_keyrings(struct key *keyring,
637 				   struct keyring_search_context *ctx)
638 {
639 	struct {
640 		struct key *keyring;
641 		struct assoc_array_node *node;
642 		int slot;
643 	} stack[KEYRING_SEARCH_MAX_DEPTH];
644 
645 	struct assoc_array_shortcut *shortcut;
646 	struct assoc_array_node *node;
647 	struct assoc_array_ptr *ptr;
648 	struct key *key;
649 	int sp = 0, slot;
650 
651 	kenter("{%d},{%s,%s}",
652 	       keyring->serial,
653 	       ctx->index_key.type->name,
654 	       ctx->index_key.description);
655 
656 #define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK)
657 	BUG_ON((ctx->flags & STATE_CHECKS) == 0 ||
658 	       (ctx->flags & STATE_CHECKS) == STATE_CHECKS);
659 
660 	if (ctx->index_key.description)
661 		ctx->index_key.desc_len = strlen(ctx->index_key.description);
662 
663 	/* Check to see if this top-level keyring is what we are looking for
664 	 * and whether it is valid or not.
665 	 */
666 	if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE ||
667 	    keyring_compare_object(keyring, &ctx->index_key)) {
668 		ctx->skipped_ret = 2;
669 		switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
670 		case 1:
671 			goto found;
672 		case 2:
673 			return false;
674 		default:
675 			break;
676 		}
677 	}
678 
679 	ctx->skipped_ret = 0;
680 
681 	/* Start processing a new keyring */
682 descend_to_keyring:
683 	kdebug("descend to %d", keyring->serial);
684 	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
685 			      (1 << KEY_FLAG_REVOKED)))
686 		goto not_this_keyring;
687 
688 	/* Search through the keys in this keyring before its searching its
689 	 * subtrees.
690 	 */
691 	if (search_keyring(keyring, ctx))
692 		goto found;
693 
694 	/* Then manually iterate through the keyrings nested in this one.
695 	 *
696 	 * Start from the root node of the index tree.  Because of the way the
697 	 * hash function has been set up, keyrings cluster on the leftmost
698 	 * branch of the root node (root slot 0) or in the root node itself.
699 	 * Non-keyrings avoid the leftmost branch of the root entirely (root
700 	 * slots 1-15).
701 	 */
702 	ptr = ACCESS_ONCE(keyring->keys.root);
703 	if (!ptr)
704 		goto not_this_keyring;
705 
706 	if (assoc_array_ptr_is_shortcut(ptr)) {
707 		/* If the root is a shortcut, either the keyring only contains
708 		 * keyring pointers (everything clusters behind root slot 0) or
709 		 * doesn't contain any keyring pointers.
710 		 */
711 		shortcut = assoc_array_ptr_to_shortcut(ptr);
712 		smp_read_barrier_depends();
713 		if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
714 			goto not_this_keyring;
715 
716 		ptr = ACCESS_ONCE(shortcut->next_node);
717 		node = assoc_array_ptr_to_node(ptr);
718 		goto begin_node;
719 	}
720 
721 	node = assoc_array_ptr_to_node(ptr);
722 	smp_read_barrier_depends();
723 
724 	ptr = node->slots[0];
725 	if (!assoc_array_ptr_is_meta(ptr))
726 		goto begin_node;
727 
728 descend_to_node:
729 	/* Descend to a more distal node in this keyring's content tree and go
730 	 * through that.
731 	 */
732 	kdebug("descend");
733 	if (assoc_array_ptr_is_shortcut(ptr)) {
734 		shortcut = assoc_array_ptr_to_shortcut(ptr);
735 		smp_read_barrier_depends();
736 		ptr = ACCESS_ONCE(shortcut->next_node);
737 		BUG_ON(!assoc_array_ptr_is_node(ptr));
738 	}
739 	node = assoc_array_ptr_to_node(ptr);
740 
741 begin_node:
742 	kdebug("begin_node");
743 	smp_read_barrier_depends();
744 	slot = 0;
745 ascend_to_node:
746 	/* Go through the slots in a node */
747 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
748 		ptr = ACCESS_ONCE(node->slots[slot]);
749 
750 		if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
751 			goto descend_to_node;
752 
753 		if (!keyring_ptr_is_keyring(ptr))
754 			continue;
755 
756 		key = keyring_ptr_to_key(ptr);
757 
758 		if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
759 			if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
760 				ctx->result = ERR_PTR(-ELOOP);
761 				return false;
762 			}
763 			goto not_this_keyring;
764 		}
765 
766 		/* Search a nested keyring */
767 		if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
768 		    key_task_permission(make_key_ref(key, ctx->possessed),
769 					ctx->cred, KEY_NEED_SEARCH) < 0)
770 			continue;
771 
772 		/* stack the current position */
773 		stack[sp].keyring = keyring;
774 		stack[sp].node = node;
775 		stack[sp].slot = slot;
776 		sp++;
777 
778 		/* begin again with the new keyring */
779 		keyring = key;
780 		goto descend_to_keyring;
781 	}
782 
783 	/* We've dealt with all the slots in the current node, so now we need
784 	 * to ascend to the parent and continue processing there.
785 	 */
786 	ptr = ACCESS_ONCE(node->back_pointer);
787 	slot = node->parent_slot;
788 
789 	if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
790 		shortcut = assoc_array_ptr_to_shortcut(ptr);
791 		smp_read_barrier_depends();
792 		ptr = ACCESS_ONCE(shortcut->back_pointer);
793 		slot = shortcut->parent_slot;
794 	}
795 	if (!ptr)
796 		goto not_this_keyring;
797 	node = assoc_array_ptr_to_node(ptr);
798 	smp_read_barrier_depends();
799 	slot++;
800 
801 	/* If we've ascended to the root (zero backpointer), we must have just
802 	 * finished processing the leftmost branch rather than the root slots -
803 	 * so there can't be any more keyrings for us to find.
804 	 */
805 	if (node->back_pointer) {
806 		kdebug("ascend %d", slot);
807 		goto ascend_to_node;
808 	}
809 
810 	/* The keyring we're looking at was disqualified or didn't contain a
811 	 * matching key.
812 	 */
813 not_this_keyring:
814 	kdebug("not_this_keyring %d", sp);
815 	if (sp <= 0) {
816 		kleave(" = false");
817 		return false;
818 	}
819 
820 	/* Resume the processing of a keyring higher up in the tree */
821 	sp--;
822 	keyring = stack[sp].keyring;
823 	node = stack[sp].node;
824 	slot = stack[sp].slot + 1;
825 	kdebug("ascend to %d [%d]", keyring->serial, slot);
826 	goto ascend_to_node;
827 
828 	/* We found a viable match */
829 found:
830 	key = key_ref_to_ptr(ctx->result);
831 	key_check(key);
832 	if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
833 		key->last_used_at = ctx->now.tv_sec;
834 		keyring->last_used_at = ctx->now.tv_sec;
835 		while (sp > 0)
836 			stack[--sp].keyring->last_used_at = ctx->now.tv_sec;
837 	}
838 	kleave(" = true");
839 	return true;
840 }
841 
842 /**
843  * keyring_search_aux - Search a keyring tree for a key matching some criteria
844  * @keyring_ref: A pointer to the keyring with possession indicator.
845  * @ctx: The keyring search context.
846  *
847  * Search the supplied keyring tree for a key that matches the criteria given.
848  * The root keyring and any linked keyrings must grant Search permission to the
849  * caller to be searchable and keys can only be found if they too grant Search
850  * to the caller. The possession flag on the root keyring pointer controls use
851  * of the possessor bits in permissions checking of the entire tree.  In
852  * addition, the LSM gets to forbid keyring searches and key matches.
853  *
854  * The search is performed as a breadth-then-depth search up to the prescribed
855  * limit (KEYRING_SEARCH_MAX_DEPTH).
856  *
857  * Keys are matched to the type provided and are then filtered by the match
858  * function, which is given the description to use in any way it sees fit.  The
859  * match function may use any attributes of a key that it wishes to to
860  * determine the match.  Normally the match function from the key type would be
861  * used.
862  *
863  * RCU can be used to prevent the keyring key lists from disappearing without
864  * the need to take lots of locks.
865  *
866  * Returns a pointer to the found key and increments the key usage count if
867  * successful; -EAGAIN if no matching keys were found, or if expired or revoked
868  * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
869  * specified keyring wasn't a keyring.
870  *
871  * In the case of a successful return, the possession attribute from
872  * @keyring_ref is propagated to the returned key reference.
873  */
874 key_ref_t keyring_search_aux(key_ref_t keyring_ref,
875 			     struct keyring_search_context *ctx)
876 {
877 	struct key *keyring;
878 	long err;
879 
880 	ctx->iterator = keyring_search_iterator;
881 	ctx->possessed = is_key_possessed(keyring_ref);
882 	ctx->result = ERR_PTR(-EAGAIN);
883 
884 	keyring = key_ref_to_ptr(keyring_ref);
885 	key_check(keyring);
886 
887 	if (keyring->type != &key_type_keyring)
888 		return ERR_PTR(-ENOTDIR);
889 
890 	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
891 		err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH);
892 		if (err < 0)
893 			return ERR_PTR(err);
894 	}
895 
896 	rcu_read_lock();
897 	ctx->now = current_kernel_time();
898 	if (search_nested_keyrings(keyring, ctx))
899 		__key_get(key_ref_to_ptr(ctx->result));
900 	rcu_read_unlock();
901 	return ctx->result;
902 }
903 
904 /**
905  * keyring_search - Search the supplied keyring tree for a matching key
906  * @keyring: The root of the keyring tree to be searched.
907  * @type: The type of keyring we want to find.
908  * @description: The name of the keyring we want to find.
909  *
910  * As keyring_search_aux() above, but using the current task's credentials and
911  * type's default matching function and preferred search method.
912  */
913 key_ref_t keyring_search(key_ref_t keyring,
914 			 struct key_type *type,
915 			 const char *description)
916 {
917 	struct keyring_search_context ctx = {
918 		.index_key.type		= type,
919 		.index_key.description	= description,
920 		.cred			= current_cred(),
921 		.match_data.cmp		= key_default_cmp,
922 		.match_data.raw_data	= description,
923 		.match_data.lookup_type	= KEYRING_SEARCH_LOOKUP_DIRECT,
924 		.flags			= KEYRING_SEARCH_DO_STATE_CHECK,
925 	};
926 	key_ref_t key;
927 	int ret;
928 
929 	if (type->match_preparse) {
930 		ret = type->match_preparse(&ctx.match_data);
931 		if (ret < 0)
932 			return ERR_PTR(ret);
933 	}
934 
935 	key = keyring_search_aux(keyring, &ctx);
936 
937 	if (type->match_free)
938 		type->match_free(&ctx.match_data);
939 	return key;
940 }
941 EXPORT_SYMBOL(keyring_search);
942 
943 /*
944  * Search the given keyring for a key that might be updated.
945  *
946  * The caller must guarantee that the keyring is a keyring and that the
947  * permission is granted to modify the keyring as no check is made here.  The
948  * caller must also hold a lock on the keyring semaphore.
949  *
950  * Returns a pointer to the found key with usage count incremented if
951  * successful and returns NULL if not found.  Revoked and invalidated keys are
952  * skipped over.
953  *
954  * If successful, the possession indicator is propagated from the keyring ref
955  * to the returned key reference.
956  */
957 key_ref_t find_key_to_update(key_ref_t keyring_ref,
958 			     const struct keyring_index_key *index_key)
959 {
960 	struct key *keyring, *key;
961 	const void *object;
962 
963 	keyring = key_ref_to_ptr(keyring_ref);
964 
965 	kenter("{%d},{%s,%s}",
966 	       keyring->serial, index_key->type->name, index_key->description);
967 
968 	object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
969 				  index_key);
970 
971 	if (object)
972 		goto found;
973 
974 	kleave(" = NULL");
975 	return NULL;
976 
977 found:
978 	key = keyring_ptr_to_key(object);
979 	if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
980 			  (1 << KEY_FLAG_REVOKED))) {
981 		kleave(" = NULL [x]");
982 		return NULL;
983 	}
984 	__key_get(key);
985 	kleave(" = {%d}", key->serial);
986 	return make_key_ref(key, is_key_possessed(keyring_ref));
987 }
988 
989 /*
990  * Find a keyring with the specified name.
991  *
992  * All named keyrings in the current user namespace are searched, provided they
993  * grant Search permission directly to the caller (unless this check is
994  * skipped).  Keyrings whose usage points have reached zero or who have been
995  * revoked are skipped.
996  *
997  * Returns a pointer to the keyring with the keyring's refcount having being
998  * incremented on success.  -ENOKEY is returned if a key could not be found.
999  */
1000 struct key *find_keyring_by_name(const char *name, bool skip_perm_check)
1001 {
1002 	struct key *keyring;
1003 	int bucket;
1004 
1005 	if (!name)
1006 		return ERR_PTR(-EINVAL);
1007 
1008 	bucket = keyring_hash(name);
1009 
1010 	read_lock(&keyring_name_lock);
1011 
1012 	if (keyring_name_hash[bucket].next) {
1013 		/* search this hash bucket for a keyring with a matching name
1014 		 * that's readable and that hasn't been revoked */
1015 		list_for_each_entry(keyring,
1016 				    &keyring_name_hash[bucket],
1017 				    name_link
1018 				    ) {
1019 			if (!kuid_has_mapping(current_user_ns(), keyring->user->uid))
1020 				continue;
1021 
1022 			if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1023 				continue;
1024 
1025 			if (strcmp(keyring->description, name) != 0)
1026 				continue;
1027 
1028 			if (!skip_perm_check &&
1029 			    key_permission(make_key_ref(keyring, 0),
1030 					   KEY_NEED_SEARCH) < 0)
1031 				continue;
1032 
1033 			/* we've got a match but we might end up racing with
1034 			 * key_cleanup() if the keyring is currently 'dead'
1035 			 * (ie. it has a zero usage count) */
1036 			if (!atomic_inc_not_zero(&keyring->usage))
1037 				continue;
1038 			keyring->last_used_at = current_kernel_time().tv_sec;
1039 			goto out;
1040 		}
1041 	}
1042 
1043 	keyring = ERR_PTR(-ENOKEY);
1044 out:
1045 	read_unlock(&keyring_name_lock);
1046 	return keyring;
1047 }
1048 
1049 static int keyring_detect_cycle_iterator(const void *object,
1050 					 void *iterator_data)
1051 {
1052 	struct keyring_search_context *ctx = iterator_data;
1053 	const struct key *key = keyring_ptr_to_key(object);
1054 
1055 	kenter("{%d}", key->serial);
1056 
1057 	/* We might get a keyring with matching index-key that is nonetheless a
1058 	 * different keyring. */
1059 	if (key != ctx->match_data.raw_data)
1060 		return 0;
1061 
1062 	ctx->result = ERR_PTR(-EDEADLK);
1063 	return 1;
1064 }
1065 
1066 /*
1067  * See if a cycle will will be created by inserting acyclic tree B in acyclic
1068  * tree A at the topmost level (ie: as a direct child of A).
1069  *
1070  * Since we are adding B to A at the top level, checking for cycles should just
1071  * be a matter of seeing if node A is somewhere in tree B.
1072  */
1073 static int keyring_detect_cycle(struct key *A, struct key *B)
1074 {
1075 	struct keyring_search_context ctx = {
1076 		.index_key		= A->index_key,
1077 		.match_data.raw_data	= A,
1078 		.match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
1079 		.iterator		= keyring_detect_cycle_iterator,
1080 		.flags			= (KEYRING_SEARCH_NO_STATE_CHECK |
1081 					   KEYRING_SEARCH_NO_UPDATE_TIME |
1082 					   KEYRING_SEARCH_NO_CHECK_PERM |
1083 					   KEYRING_SEARCH_DETECT_TOO_DEEP),
1084 	};
1085 
1086 	rcu_read_lock();
1087 	search_nested_keyrings(B, &ctx);
1088 	rcu_read_unlock();
1089 	return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
1090 }
1091 
1092 /*
1093  * Preallocate memory so that a key can be linked into to a keyring.
1094  */
1095 int __key_link_begin(struct key *keyring,
1096 		     const struct keyring_index_key *index_key,
1097 		     struct assoc_array_edit **_edit)
1098 	__acquires(&keyring->sem)
1099 	__acquires(&keyring_serialise_link_sem)
1100 {
1101 	struct assoc_array_edit *edit;
1102 	int ret;
1103 
1104 	kenter("%d,%s,%s,",
1105 	       keyring->serial, index_key->type->name, index_key->description);
1106 
1107 	BUG_ON(index_key->desc_len == 0);
1108 
1109 	if (keyring->type != &key_type_keyring)
1110 		return -ENOTDIR;
1111 
1112 	down_write(&keyring->sem);
1113 
1114 	ret = -EKEYREVOKED;
1115 	if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1116 		goto error_krsem;
1117 
1118 	/* serialise link/link calls to prevent parallel calls causing a cycle
1119 	 * when linking two keyring in opposite orders */
1120 	if (index_key->type == &key_type_keyring)
1121 		down_write(&keyring_serialise_link_sem);
1122 
1123 	/* Create an edit script that will insert/replace the key in the
1124 	 * keyring tree.
1125 	 */
1126 	edit = assoc_array_insert(&keyring->keys,
1127 				  &keyring_assoc_array_ops,
1128 				  index_key,
1129 				  NULL);
1130 	if (IS_ERR(edit)) {
1131 		ret = PTR_ERR(edit);
1132 		goto error_sem;
1133 	}
1134 
1135 	/* If we're not replacing a link in-place then we're going to need some
1136 	 * extra quota.
1137 	 */
1138 	if (!edit->dead_leaf) {
1139 		ret = key_payload_reserve(keyring,
1140 					  keyring->datalen + KEYQUOTA_LINK_BYTES);
1141 		if (ret < 0)
1142 			goto error_cancel;
1143 	}
1144 
1145 	*_edit = edit;
1146 	kleave(" = 0");
1147 	return 0;
1148 
1149 error_cancel:
1150 	assoc_array_cancel_edit(edit);
1151 error_sem:
1152 	if (index_key->type == &key_type_keyring)
1153 		up_write(&keyring_serialise_link_sem);
1154 error_krsem:
1155 	up_write(&keyring->sem);
1156 	kleave(" = %d", ret);
1157 	return ret;
1158 }
1159 
1160 /*
1161  * Check already instantiated keys aren't going to be a problem.
1162  *
1163  * The caller must have called __key_link_begin(). Don't need to call this for
1164  * keys that were created since __key_link_begin() was called.
1165  */
1166 int __key_link_check_live_key(struct key *keyring, struct key *key)
1167 {
1168 	if (key->type == &key_type_keyring)
1169 		/* check that we aren't going to create a cycle by linking one
1170 		 * keyring to another */
1171 		return keyring_detect_cycle(keyring, key);
1172 	return 0;
1173 }
1174 
1175 /*
1176  * Link a key into to a keyring.
1177  *
1178  * Must be called with __key_link_begin() having being called.  Discards any
1179  * already extant link to matching key if there is one, so that each keyring
1180  * holds at most one link to any given key of a particular type+description
1181  * combination.
1182  */
1183 void __key_link(struct key *key, struct assoc_array_edit **_edit)
1184 {
1185 	__key_get(key);
1186 	assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
1187 	assoc_array_apply_edit(*_edit);
1188 	*_edit = NULL;
1189 }
1190 
1191 /*
1192  * Finish linking a key into to a keyring.
1193  *
1194  * Must be called with __key_link_begin() having being called.
1195  */
1196 void __key_link_end(struct key *keyring,
1197 		    const struct keyring_index_key *index_key,
1198 		    struct assoc_array_edit *edit)
1199 	__releases(&keyring->sem)
1200 	__releases(&keyring_serialise_link_sem)
1201 {
1202 	BUG_ON(index_key->type == NULL);
1203 	kenter("%d,%s,", keyring->serial, index_key->type->name);
1204 
1205 	if (index_key->type == &key_type_keyring)
1206 		up_write(&keyring_serialise_link_sem);
1207 
1208 	if (edit) {
1209 		if (!edit->dead_leaf) {
1210 			key_payload_reserve(keyring,
1211 				keyring->datalen - KEYQUOTA_LINK_BYTES);
1212 		}
1213 		assoc_array_cancel_edit(edit);
1214 	}
1215 	up_write(&keyring->sem);
1216 }
1217 
1218 /*
1219  * Check addition of keys to restricted keyrings.
1220  */
1221 static int __key_link_check_restriction(struct key *keyring, struct key *key)
1222 {
1223 	if (!keyring->restrict_link)
1224 		return 0;
1225 	return keyring->restrict_link(keyring, key->type, &key->payload);
1226 }
1227 
1228 /**
1229  * key_link - Link a key to a keyring
1230  * @keyring: The keyring to make the link in.
1231  * @key: The key to link to.
1232  *
1233  * Make a link in a keyring to a key, such that the keyring holds a reference
1234  * on that key and the key can potentially be found by searching that keyring.
1235  *
1236  * This function will write-lock the keyring's semaphore and will consume some
1237  * of the user's key data quota to hold the link.
1238  *
1239  * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
1240  * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
1241  * full, -EDQUOT if there is insufficient key data quota remaining to add
1242  * another link or -ENOMEM if there's insufficient memory.
1243  *
1244  * It is assumed that the caller has checked that it is permitted for a link to
1245  * be made (the keyring should have Write permission and the key Link
1246  * permission).
1247  */
1248 int key_link(struct key *keyring, struct key *key)
1249 {
1250 	struct assoc_array_edit *edit;
1251 	int ret;
1252 
1253 	kenter("{%d,%d}", keyring->serial, atomic_read(&keyring->usage));
1254 
1255 	key_check(keyring);
1256 	key_check(key);
1257 
1258 	ret = __key_link_begin(keyring, &key->index_key, &edit);
1259 	if (ret == 0) {
1260 		kdebug("begun {%d,%d}", keyring->serial, atomic_read(&keyring->usage));
1261 		ret = __key_link_check_restriction(keyring, key);
1262 		if (ret == 0)
1263 			ret = __key_link_check_live_key(keyring, key);
1264 		if (ret == 0)
1265 			__key_link(key, &edit);
1266 		__key_link_end(keyring, &key->index_key, edit);
1267 	}
1268 
1269 	kleave(" = %d {%d,%d}", ret, keyring->serial, atomic_read(&keyring->usage));
1270 	return ret;
1271 }
1272 EXPORT_SYMBOL(key_link);
1273 
1274 /**
1275  * key_unlink - Unlink the first link to a key from a keyring.
1276  * @keyring: The keyring to remove the link from.
1277  * @key: The key the link is to.
1278  *
1279  * Remove a link from a keyring to a key.
1280  *
1281  * This function will write-lock the keyring's semaphore.
1282  *
1283  * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1284  * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1285  * memory.
1286  *
1287  * It is assumed that the caller has checked that it is permitted for a link to
1288  * be removed (the keyring should have Write permission; no permissions are
1289  * required on the key).
1290  */
1291 int key_unlink(struct key *keyring, struct key *key)
1292 {
1293 	struct assoc_array_edit *edit;
1294 	int ret;
1295 
1296 	key_check(keyring);
1297 	key_check(key);
1298 
1299 	if (keyring->type != &key_type_keyring)
1300 		return -ENOTDIR;
1301 
1302 	down_write(&keyring->sem);
1303 
1304 	edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
1305 				  &key->index_key);
1306 	if (IS_ERR(edit)) {
1307 		ret = PTR_ERR(edit);
1308 		goto error;
1309 	}
1310 	ret = -ENOENT;
1311 	if (edit == NULL)
1312 		goto error;
1313 
1314 	assoc_array_apply_edit(edit);
1315 	key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
1316 	ret = 0;
1317 
1318 error:
1319 	up_write(&keyring->sem);
1320 	return ret;
1321 }
1322 EXPORT_SYMBOL(key_unlink);
1323 
1324 /**
1325  * keyring_clear - Clear a keyring
1326  * @keyring: The keyring to clear.
1327  *
1328  * Clear the contents of the specified keyring.
1329  *
1330  * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1331  */
1332 int keyring_clear(struct key *keyring)
1333 {
1334 	struct assoc_array_edit *edit;
1335 	int ret;
1336 
1337 	if (keyring->type != &key_type_keyring)
1338 		return -ENOTDIR;
1339 
1340 	down_write(&keyring->sem);
1341 
1342 	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1343 	if (IS_ERR(edit)) {
1344 		ret = PTR_ERR(edit);
1345 	} else {
1346 		if (edit)
1347 			assoc_array_apply_edit(edit);
1348 		key_payload_reserve(keyring, 0);
1349 		ret = 0;
1350 	}
1351 
1352 	up_write(&keyring->sem);
1353 	return ret;
1354 }
1355 EXPORT_SYMBOL(keyring_clear);
1356 
1357 /*
1358  * Dispose of the links from a revoked keyring.
1359  *
1360  * This is called with the key sem write-locked.
1361  */
1362 static void keyring_revoke(struct key *keyring)
1363 {
1364 	struct assoc_array_edit *edit;
1365 
1366 	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1367 	if (!IS_ERR(edit)) {
1368 		if (edit)
1369 			assoc_array_apply_edit(edit);
1370 		key_payload_reserve(keyring, 0);
1371 	}
1372 }
1373 
1374 static bool keyring_gc_select_iterator(void *object, void *iterator_data)
1375 {
1376 	struct key *key = keyring_ptr_to_key(object);
1377 	time_t *limit = iterator_data;
1378 
1379 	if (key_is_dead(key, *limit))
1380 		return false;
1381 	key_get(key);
1382 	return true;
1383 }
1384 
1385 static int keyring_gc_check_iterator(const void *object, void *iterator_data)
1386 {
1387 	const struct key *key = keyring_ptr_to_key(object);
1388 	time_t *limit = iterator_data;
1389 
1390 	key_check(key);
1391 	return key_is_dead(key, *limit);
1392 }
1393 
1394 /*
1395  * Garbage collect pointers from a keyring.
1396  *
1397  * Not called with any locks held.  The keyring's key struct will not be
1398  * deallocated under us as only our caller may deallocate it.
1399  */
1400 void keyring_gc(struct key *keyring, time_t limit)
1401 {
1402 	int result;
1403 
1404 	kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1405 
1406 	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
1407 			      (1 << KEY_FLAG_REVOKED)))
1408 		goto dont_gc;
1409 
1410 	/* scan the keyring looking for dead keys */
1411 	rcu_read_lock();
1412 	result = assoc_array_iterate(&keyring->keys,
1413 				     keyring_gc_check_iterator, &limit);
1414 	rcu_read_unlock();
1415 	if (result == true)
1416 		goto do_gc;
1417 
1418 dont_gc:
1419 	kleave(" [no gc]");
1420 	return;
1421 
1422 do_gc:
1423 	down_write(&keyring->sem);
1424 	assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
1425 		       keyring_gc_select_iterator, &limit);
1426 	up_write(&keyring->sem);
1427 	kleave(" [gc]");
1428 }
1429