1 /* Keyring handling 2 * 3 * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved. 4 * Written by David Howells (dhowells@redhat.com) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/sched.h> 15 #include <linux/slab.h> 16 #include <linux/security.h> 17 #include <linux/seq_file.h> 18 #include <linux/err.h> 19 #include <keys/keyring-type.h> 20 #include <keys/user-type.h> 21 #include <linux/assoc_array_priv.h> 22 #include <linux/uaccess.h> 23 #include "internal.h" 24 25 /* 26 * When plumbing the depths of the key tree, this sets a hard limit 27 * set on how deep we're willing to go. 28 */ 29 #define KEYRING_SEARCH_MAX_DEPTH 6 30 31 /* 32 * We keep all named keyrings in a hash to speed looking them up. 33 */ 34 #define KEYRING_NAME_HASH_SIZE (1 << 5) 35 36 /* 37 * We mark pointers we pass to the associative array with bit 1 set if 38 * they're keyrings and clear otherwise. 39 */ 40 #define KEYRING_PTR_SUBTYPE 0x2UL 41 42 static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x) 43 { 44 return (unsigned long)x & KEYRING_PTR_SUBTYPE; 45 } 46 static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x) 47 { 48 void *object = assoc_array_ptr_to_leaf(x); 49 return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE); 50 } 51 static inline void *keyring_key_to_ptr(struct key *key) 52 { 53 if (key->type == &key_type_keyring) 54 return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE); 55 return key; 56 } 57 58 static struct list_head keyring_name_hash[KEYRING_NAME_HASH_SIZE]; 59 static DEFINE_RWLOCK(keyring_name_lock); 60 61 static inline unsigned keyring_hash(const char *desc) 62 { 63 unsigned bucket = 0; 64 65 for (; *desc; desc++) 66 bucket += (unsigned char)*desc; 67 68 return bucket & (KEYRING_NAME_HASH_SIZE - 1); 69 } 70 71 /* 72 * The keyring key type definition. Keyrings are simply keys of this type and 73 * can be treated as ordinary keys in addition to having their own special 74 * operations. 75 */ 76 static int keyring_preparse(struct key_preparsed_payload *prep); 77 static void keyring_free_preparse(struct key_preparsed_payload *prep); 78 static int keyring_instantiate(struct key *keyring, 79 struct key_preparsed_payload *prep); 80 static void keyring_revoke(struct key *keyring); 81 static void keyring_destroy(struct key *keyring); 82 static void keyring_describe(const struct key *keyring, struct seq_file *m); 83 static long keyring_read(const struct key *keyring, 84 char __user *buffer, size_t buflen); 85 86 struct key_type key_type_keyring = { 87 .name = "keyring", 88 .def_datalen = 0, 89 .preparse = keyring_preparse, 90 .free_preparse = keyring_free_preparse, 91 .instantiate = keyring_instantiate, 92 .revoke = keyring_revoke, 93 .destroy = keyring_destroy, 94 .describe = keyring_describe, 95 .read = keyring_read, 96 }; 97 EXPORT_SYMBOL(key_type_keyring); 98 99 /* 100 * Semaphore to serialise link/link calls to prevent two link calls in parallel 101 * introducing a cycle. 102 */ 103 static DECLARE_RWSEM(keyring_serialise_link_sem); 104 105 /* 106 * Publish the name of a keyring so that it can be found by name (if it has 107 * one). 108 */ 109 static void keyring_publish_name(struct key *keyring) 110 { 111 int bucket; 112 113 if (keyring->description) { 114 bucket = keyring_hash(keyring->description); 115 116 write_lock(&keyring_name_lock); 117 118 if (!keyring_name_hash[bucket].next) 119 INIT_LIST_HEAD(&keyring_name_hash[bucket]); 120 121 list_add_tail(&keyring->name_link, 122 &keyring_name_hash[bucket]); 123 124 write_unlock(&keyring_name_lock); 125 } 126 } 127 128 /* 129 * Preparse a keyring payload 130 */ 131 static int keyring_preparse(struct key_preparsed_payload *prep) 132 { 133 return prep->datalen != 0 ? -EINVAL : 0; 134 } 135 136 /* 137 * Free a preparse of a user defined key payload 138 */ 139 static void keyring_free_preparse(struct key_preparsed_payload *prep) 140 { 141 } 142 143 /* 144 * Initialise a keyring. 145 * 146 * Returns 0 on success, -EINVAL if given any data. 147 */ 148 static int keyring_instantiate(struct key *keyring, 149 struct key_preparsed_payload *prep) 150 { 151 assoc_array_init(&keyring->keys); 152 /* make the keyring available by name if it has one */ 153 keyring_publish_name(keyring); 154 return 0; 155 } 156 157 /* 158 * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit. Ideally we'd 159 * fold the carry back too, but that requires inline asm. 160 */ 161 static u64 mult_64x32_and_fold(u64 x, u32 y) 162 { 163 u64 hi = (u64)(u32)(x >> 32) * y; 164 u64 lo = (u64)(u32)(x) * y; 165 return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32); 166 } 167 168 /* 169 * Hash a key type and description. 170 */ 171 static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key) 172 { 173 const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP; 174 const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK; 175 const char *description = index_key->description; 176 unsigned long hash, type; 177 u32 piece; 178 u64 acc; 179 int n, desc_len = index_key->desc_len; 180 181 type = (unsigned long)index_key->type; 182 183 acc = mult_64x32_and_fold(type, desc_len + 13); 184 acc = mult_64x32_and_fold(acc, 9207); 185 for (;;) { 186 n = desc_len; 187 if (n <= 0) 188 break; 189 if (n > 4) 190 n = 4; 191 piece = 0; 192 memcpy(&piece, description, n); 193 description += n; 194 desc_len -= n; 195 acc = mult_64x32_and_fold(acc, piece); 196 acc = mult_64x32_and_fold(acc, 9207); 197 } 198 199 /* Fold the hash down to 32 bits if need be. */ 200 hash = acc; 201 if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32) 202 hash ^= acc >> 32; 203 204 /* Squidge all the keyrings into a separate part of the tree to 205 * ordinary keys by making sure the lowest level segment in the hash is 206 * zero for keyrings and non-zero otherwise. 207 */ 208 if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0) 209 return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1; 210 if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0) 211 return (hash + (hash << level_shift)) & ~fan_mask; 212 return hash; 213 } 214 215 /* 216 * Build the next index key chunk. 217 * 218 * On 32-bit systems the index key is laid out as: 219 * 220 * 0 4 5 9... 221 * hash desclen typeptr desc[] 222 * 223 * On 64-bit systems: 224 * 225 * 0 8 9 17... 226 * hash desclen typeptr desc[] 227 * 228 * We return it one word-sized chunk at a time. 229 */ 230 static unsigned long keyring_get_key_chunk(const void *data, int level) 231 { 232 const struct keyring_index_key *index_key = data; 233 unsigned long chunk = 0; 234 long offset = 0; 235 int desc_len = index_key->desc_len, n = sizeof(chunk); 236 237 level /= ASSOC_ARRAY_KEY_CHUNK_SIZE; 238 switch (level) { 239 case 0: 240 return hash_key_type_and_desc(index_key); 241 case 1: 242 return ((unsigned long)index_key->type << 8) | desc_len; 243 case 2: 244 if (desc_len == 0) 245 return (u8)((unsigned long)index_key->type >> 246 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8)); 247 n--; 248 offset = 1; 249 default: 250 offset += sizeof(chunk) - 1; 251 offset += (level - 3) * sizeof(chunk); 252 if (offset >= desc_len) 253 return 0; 254 desc_len -= offset; 255 if (desc_len > n) 256 desc_len = n; 257 offset += desc_len; 258 do { 259 chunk <<= 8; 260 chunk |= ((u8*)index_key->description)[--offset]; 261 } while (--desc_len > 0); 262 263 if (level == 2) { 264 chunk <<= 8; 265 chunk |= (u8)((unsigned long)index_key->type >> 266 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8)); 267 } 268 return chunk; 269 } 270 } 271 272 static unsigned long keyring_get_object_key_chunk(const void *object, int level) 273 { 274 const struct key *key = keyring_ptr_to_key(object); 275 return keyring_get_key_chunk(&key->index_key, level); 276 } 277 278 static bool keyring_compare_object(const void *object, const void *data) 279 { 280 const struct keyring_index_key *index_key = data; 281 const struct key *key = keyring_ptr_to_key(object); 282 283 return key->index_key.type == index_key->type && 284 key->index_key.desc_len == index_key->desc_len && 285 memcmp(key->index_key.description, index_key->description, 286 index_key->desc_len) == 0; 287 } 288 289 /* 290 * Compare the index keys of a pair of objects and determine the bit position 291 * at which they differ - if they differ. 292 */ 293 static int keyring_diff_objects(const void *object, const void *data) 294 { 295 const struct key *key_a = keyring_ptr_to_key(object); 296 const struct keyring_index_key *a = &key_a->index_key; 297 const struct keyring_index_key *b = data; 298 unsigned long seg_a, seg_b; 299 int level, i; 300 301 level = 0; 302 seg_a = hash_key_type_and_desc(a); 303 seg_b = hash_key_type_and_desc(b); 304 if ((seg_a ^ seg_b) != 0) 305 goto differ; 306 307 /* The number of bits contributed by the hash is controlled by a 308 * constant in the assoc_array headers. Everything else thereafter we 309 * can deal with as being machine word-size dependent. 310 */ 311 level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8; 312 seg_a = a->desc_len; 313 seg_b = b->desc_len; 314 if ((seg_a ^ seg_b) != 0) 315 goto differ; 316 317 /* The next bit may not work on big endian */ 318 level++; 319 seg_a = (unsigned long)a->type; 320 seg_b = (unsigned long)b->type; 321 if ((seg_a ^ seg_b) != 0) 322 goto differ; 323 324 level += sizeof(unsigned long); 325 if (a->desc_len == 0) 326 goto same; 327 328 i = 0; 329 if (((unsigned long)a->description | (unsigned long)b->description) & 330 (sizeof(unsigned long) - 1)) { 331 do { 332 seg_a = *(unsigned long *)(a->description + i); 333 seg_b = *(unsigned long *)(b->description + i); 334 if ((seg_a ^ seg_b) != 0) 335 goto differ_plus_i; 336 i += sizeof(unsigned long); 337 } while (i < (a->desc_len & (sizeof(unsigned long) - 1))); 338 } 339 340 for (; i < a->desc_len; i++) { 341 seg_a = *(unsigned char *)(a->description + i); 342 seg_b = *(unsigned char *)(b->description + i); 343 if ((seg_a ^ seg_b) != 0) 344 goto differ_plus_i; 345 } 346 347 same: 348 return -1; 349 350 differ_plus_i: 351 level += i; 352 differ: 353 i = level * 8 + __ffs(seg_a ^ seg_b); 354 return i; 355 } 356 357 /* 358 * Free an object after stripping the keyring flag off of the pointer. 359 */ 360 static void keyring_free_object(void *object) 361 { 362 key_put(keyring_ptr_to_key(object)); 363 } 364 365 /* 366 * Operations for keyring management by the index-tree routines. 367 */ 368 static const struct assoc_array_ops keyring_assoc_array_ops = { 369 .get_key_chunk = keyring_get_key_chunk, 370 .get_object_key_chunk = keyring_get_object_key_chunk, 371 .compare_object = keyring_compare_object, 372 .diff_objects = keyring_diff_objects, 373 .free_object = keyring_free_object, 374 }; 375 376 /* 377 * Clean up a keyring when it is destroyed. Unpublish its name if it had one 378 * and dispose of its data. 379 * 380 * The garbage collector detects the final key_put(), removes the keyring from 381 * the serial number tree and then does RCU synchronisation before coming here, 382 * so we shouldn't need to worry about code poking around here with the RCU 383 * readlock held by this time. 384 */ 385 static void keyring_destroy(struct key *keyring) 386 { 387 if (keyring->description) { 388 write_lock(&keyring_name_lock); 389 390 if (keyring->name_link.next != NULL && 391 !list_empty(&keyring->name_link)) 392 list_del(&keyring->name_link); 393 394 write_unlock(&keyring_name_lock); 395 } 396 397 if (keyring->restrict_link) { 398 struct key_restriction *keyres = keyring->restrict_link; 399 400 key_put(keyres->key); 401 kfree(keyres); 402 } 403 404 assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops); 405 } 406 407 /* 408 * Describe a keyring for /proc. 409 */ 410 static void keyring_describe(const struct key *keyring, struct seq_file *m) 411 { 412 if (keyring->description) 413 seq_puts(m, keyring->description); 414 else 415 seq_puts(m, "[anon]"); 416 417 if (key_is_positive(keyring)) { 418 if (keyring->keys.nr_leaves_on_tree != 0) 419 seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree); 420 else 421 seq_puts(m, ": empty"); 422 } 423 } 424 425 struct keyring_read_iterator_context { 426 size_t buflen; 427 size_t count; 428 key_serial_t __user *buffer; 429 }; 430 431 static int keyring_read_iterator(const void *object, void *data) 432 { 433 struct keyring_read_iterator_context *ctx = data; 434 const struct key *key = keyring_ptr_to_key(object); 435 int ret; 436 437 kenter("{%s,%d},,{%zu/%zu}", 438 key->type->name, key->serial, ctx->count, ctx->buflen); 439 440 if (ctx->count >= ctx->buflen) 441 return 1; 442 443 ret = put_user(key->serial, ctx->buffer); 444 if (ret < 0) 445 return ret; 446 ctx->buffer++; 447 ctx->count += sizeof(key->serial); 448 return 0; 449 } 450 451 /* 452 * Read a list of key IDs from the keyring's contents in binary form 453 * 454 * The keyring's semaphore is read-locked by the caller. This prevents someone 455 * from modifying it under us - which could cause us to read key IDs multiple 456 * times. 457 */ 458 static long keyring_read(const struct key *keyring, 459 char __user *buffer, size_t buflen) 460 { 461 struct keyring_read_iterator_context ctx; 462 long ret; 463 464 kenter("{%d},,%zu", key_serial(keyring), buflen); 465 466 if (buflen & (sizeof(key_serial_t) - 1)) 467 return -EINVAL; 468 469 /* Copy as many key IDs as fit into the buffer */ 470 if (buffer && buflen) { 471 ctx.buffer = (key_serial_t __user *)buffer; 472 ctx.buflen = buflen; 473 ctx.count = 0; 474 ret = assoc_array_iterate(&keyring->keys, 475 keyring_read_iterator, &ctx); 476 if (ret < 0) { 477 kleave(" = %ld [iterate]", ret); 478 return ret; 479 } 480 } 481 482 /* Return the size of the buffer needed */ 483 ret = keyring->keys.nr_leaves_on_tree * sizeof(key_serial_t); 484 if (ret <= buflen) 485 kleave("= %ld [ok]", ret); 486 else 487 kleave("= %ld [buffer too small]", ret); 488 return ret; 489 } 490 491 /* 492 * Allocate a keyring and link into the destination keyring. 493 */ 494 struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid, 495 const struct cred *cred, key_perm_t perm, 496 unsigned long flags, 497 struct key_restriction *restrict_link, 498 struct key *dest) 499 { 500 struct key *keyring; 501 int ret; 502 503 keyring = key_alloc(&key_type_keyring, description, 504 uid, gid, cred, perm, flags, restrict_link); 505 if (!IS_ERR(keyring)) { 506 ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL); 507 if (ret < 0) { 508 key_put(keyring); 509 keyring = ERR_PTR(ret); 510 } 511 } 512 513 return keyring; 514 } 515 EXPORT_SYMBOL(keyring_alloc); 516 517 /** 518 * restrict_link_reject - Give -EPERM to restrict link 519 * @keyring: The keyring being added to. 520 * @type: The type of key being added. 521 * @payload: The payload of the key intended to be added. 522 * @data: Additional data for evaluating restriction. 523 * 524 * Reject the addition of any links to a keyring. It can be overridden by 525 * passing KEY_ALLOC_BYPASS_RESTRICTION to key_instantiate_and_link() when 526 * adding a key to a keyring. 527 * 528 * This is meant to be stored in a key_restriction structure which is passed 529 * in the restrict_link parameter to keyring_alloc(). 530 */ 531 int restrict_link_reject(struct key *keyring, 532 const struct key_type *type, 533 const union key_payload *payload, 534 struct key *restriction_key) 535 { 536 return -EPERM; 537 } 538 539 /* 540 * By default, we keys found by getting an exact match on their descriptions. 541 */ 542 bool key_default_cmp(const struct key *key, 543 const struct key_match_data *match_data) 544 { 545 return strcmp(key->description, match_data->raw_data) == 0; 546 } 547 548 /* 549 * Iteration function to consider each key found. 550 */ 551 static int keyring_search_iterator(const void *object, void *iterator_data) 552 { 553 struct keyring_search_context *ctx = iterator_data; 554 const struct key *key = keyring_ptr_to_key(object); 555 unsigned long kflags = READ_ONCE(key->flags); 556 short state = READ_ONCE(key->state); 557 558 kenter("{%d}", key->serial); 559 560 /* ignore keys not of this type */ 561 if (key->type != ctx->index_key.type) { 562 kleave(" = 0 [!type]"); 563 return 0; 564 } 565 566 /* skip invalidated, revoked and expired keys */ 567 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) { 568 time64_t expiry = READ_ONCE(key->expiry); 569 570 if (kflags & ((1 << KEY_FLAG_INVALIDATED) | 571 (1 << KEY_FLAG_REVOKED))) { 572 ctx->result = ERR_PTR(-EKEYREVOKED); 573 kleave(" = %d [invrev]", ctx->skipped_ret); 574 goto skipped; 575 } 576 577 if (expiry && ctx->now >= expiry) { 578 if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED)) 579 ctx->result = ERR_PTR(-EKEYEXPIRED); 580 kleave(" = %d [expire]", ctx->skipped_ret); 581 goto skipped; 582 } 583 } 584 585 /* keys that don't match */ 586 if (!ctx->match_data.cmp(key, &ctx->match_data)) { 587 kleave(" = 0 [!match]"); 588 return 0; 589 } 590 591 /* key must have search permissions */ 592 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) && 593 key_task_permission(make_key_ref(key, ctx->possessed), 594 ctx->cred, KEY_NEED_SEARCH) < 0) { 595 ctx->result = ERR_PTR(-EACCES); 596 kleave(" = %d [!perm]", ctx->skipped_ret); 597 goto skipped; 598 } 599 600 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) { 601 /* we set a different error code if we pass a negative key */ 602 if (state < 0) { 603 ctx->result = ERR_PTR(state); 604 kleave(" = %d [neg]", ctx->skipped_ret); 605 goto skipped; 606 } 607 } 608 609 /* Found */ 610 ctx->result = make_key_ref(key, ctx->possessed); 611 kleave(" = 1 [found]"); 612 return 1; 613 614 skipped: 615 return ctx->skipped_ret; 616 } 617 618 /* 619 * Search inside a keyring for a key. We can search by walking to it 620 * directly based on its index-key or we can iterate over the entire 621 * tree looking for it, based on the match function. 622 */ 623 static int search_keyring(struct key *keyring, struct keyring_search_context *ctx) 624 { 625 if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) { 626 const void *object; 627 628 object = assoc_array_find(&keyring->keys, 629 &keyring_assoc_array_ops, 630 &ctx->index_key); 631 return object ? ctx->iterator(object, ctx) : 0; 632 } 633 return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx); 634 } 635 636 /* 637 * Search a tree of keyrings that point to other keyrings up to the maximum 638 * depth. 639 */ 640 static bool search_nested_keyrings(struct key *keyring, 641 struct keyring_search_context *ctx) 642 { 643 struct { 644 struct key *keyring; 645 struct assoc_array_node *node; 646 int slot; 647 } stack[KEYRING_SEARCH_MAX_DEPTH]; 648 649 struct assoc_array_shortcut *shortcut; 650 struct assoc_array_node *node; 651 struct assoc_array_ptr *ptr; 652 struct key *key; 653 int sp = 0, slot; 654 655 kenter("{%d},{%s,%s}", 656 keyring->serial, 657 ctx->index_key.type->name, 658 ctx->index_key.description); 659 660 #define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK) 661 BUG_ON((ctx->flags & STATE_CHECKS) == 0 || 662 (ctx->flags & STATE_CHECKS) == STATE_CHECKS); 663 664 if (ctx->index_key.description) 665 ctx->index_key.desc_len = strlen(ctx->index_key.description); 666 667 /* Check to see if this top-level keyring is what we are looking for 668 * and whether it is valid or not. 669 */ 670 if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE || 671 keyring_compare_object(keyring, &ctx->index_key)) { 672 ctx->skipped_ret = 2; 673 switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) { 674 case 1: 675 goto found; 676 case 2: 677 return false; 678 default: 679 break; 680 } 681 } 682 683 ctx->skipped_ret = 0; 684 685 /* Start processing a new keyring */ 686 descend_to_keyring: 687 kdebug("descend to %d", keyring->serial); 688 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) | 689 (1 << KEY_FLAG_REVOKED))) 690 goto not_this_keyring; 691 692 /* Search through the keys in this keyring before its searching its 693 * subtrees. 694 */ 695 if (search_keyring(keyring, ctx)) 696 goto found; 697 698 /* Then manually iterate through the keyrings nested in this one. 699 * 700 * Start from the root node of the index tree. Because of the way the 701 * hash function has been set up, keyrings cluster on the leftmost 702 * branch of the root node (root slot 0) or in the root node itself. 703 * Non-keyrings avoid the leftmost branch of the root entirely (root 704 * slots 1-15). 705 */ 706 ptr = READ_ONCE(keyring->keys.root); 707 if (!ptr) 708 goto not_this_keyring; 709 710 if (assoc_array_ptr_is_shortcut(ptr)) { 711 /* If the root is a shortcut, either the keyring only contains 712 * keyring pointers (everything clusters behind root slot 0) or 713 * doesn't contain any keyring pointers. 714 */ 715 shortcut = assoc_array_ptr_to_shortcut(ptr); 716 smp_read_barrier_depends(); 717 if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0) 718 goto not_this_keyring; 719 720 ptr = READ_ONCE(shortcut->next_node); 721 node = assoc_array_ptr_to_node(ptr); 722 goto begin_node; 723 } 724 725 node = assoc_array_ptr_to_node(ptr); 726 smp_read_barrier_depends(); 727 728 ptr = node->slots[0]; 729 if (!assoc_array_ptr_is_meta(ptr)) 730 goto begin_node; 731 732 descend_to_node: 733 /* Descend to a more distal node in this keyring's content tree and go 734 * through that. 735 */ 736 kdebug("descend"); 737 if (assoc_array_ptr_is_shortcut(ptr)) { 738 shortcut = assoc_array_ptr_to_shortcut(ptr); 739 smp_read_barrier_depends(); 740 ptr = READ_ONCE(shortcut->next_node); 741 BUG_ON(!assoc_array_ptr_is_node(ptr)); 742 } 743 node = assoc_array_ptr_to_node(ptr); 744 745 begin_node: 746 kdebug("begin_node"); 747 smp_read_barrier_depends(); 748 slot = 0; 749 ascend_to_node: 750 /* Go through the slots in a node */ 751 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) { 752 ptr = READ_ONCE(node->slots[slot]); 753 754 if (assoc_array_ptr_is_meta(ptr) && node->back_pointer) 755 goto descend_to_node; 756 757 if (!keyring_ptr_is_keyring(ptr)) 758 continue; 759 760 key = keyring_ptr_to_key(ptr); 761 762 if (sp >= KEYRING_SEARCH_MAX_DEPTH) { 763 if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) { 764 ctx->result = ERR_PTR(-ELOOP); 765 return false; 766 } 767 goto not_this_keyring; 768 } 769 770 /* Search a nested keyring */ 771 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) && 772 key_task_permission(make_key_ref(key, ctx->possessed), 773 ctx->cred, KEY_NEED_SEARCH) < 0) 774 continue; 775 776 /* stack the current position */ 777 stack[sp].keyring = keyring; 778 stack[sp].node = node; 779 stack[sp].slot = slot; 780 sp++; 781 782 /* begin again with the new keyring */ 783 keyring = key; 784 goto descend_to_keyring; 785 } 786 787 /* We've dealt with all the slots in the current node, so now we need 788 * to ascend to the parent and continue processing there. 789 */ 790 ptr = READ_ONCE(node->back_pointer); 791 slot = node->parent_slot; 792 793 if (ptr && assoc_array_ptr_is_shortcut(ptr)) { 794 shortcut = assoc_array_ptr_to_shortcut(ptr); 795 smp_read_barrier_depends(); 796 ptr = READ_ONCE(shortcut->back_pointer); 797 slot = shortcut->parent_slot; 798 } 799 if (!ptr) 800 goto not_this_keyring; 801 node = assoc_array_ptr_to_node(ptr); 802 smp_read_barrier_depends(); 803 slot++; 804 805 /* If we've ascended to the root (zero backpointer), we must have just 806 * finished processing the leftmost branch rather than the root slots - 807 * so there can't be any more keyrings for us to find. 808 */ 809 if (node->back_pointer) { 810 kdebug("ascend %d", slot); 811 goto ascend_to_node; 812 } 813 814 /* The keyring we're looking at was disqualified or didn't contain a 815 * matching key. 816 */ 817 not_this_keyring: 818 kdebug("not_this_keyring %d", sp); 819 if (sp <= 0) { 820 kleave(" = false"); 821 return false; 822 } 823 824 /* Resume the processing of a keyring higher up in the tree */ 825 sp--; 826 keyring = stack[sp].keyring; 827 node = stack[sp].node; 828 slot = stack[sp].slot + 1; 829 kdebug("ascend to %d [%d]", keyring->serial, slot); 830 goto ascend_to_node; 831 832 /* We found a viable match */ 833 found: 834 key = key_ref_to_ptr(ctx->result); 835 key_check(key); 836 if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) { 837 key->last_used_at = ctx->now; 838 keyring->last_used_at = ctx->now; 839 while (sp > 0) 840 stack[--sp].keyring->last_used_at = ctx->now; 841 } 842 kleave(" = true"); 843 return true; 844 } 845 846 /** 847 * keyring_search_aux - Search a keyring tree for a key matching some criteria 848 * @keyring_ref: A pointer to the keyring with possession indicator. 849 * @ctx: The keyring search context. 850 * 851 * Search the supplied keyring tree for a key that matches the criteria given. 852 * The root keyring and any linked keyrings must grant Search permission to the 853 * caller to be searchable and keys can only be found if they too grant Search 854 * to the caller. The possession flag on the root keyring pointer controls use 855 * of the possessor bits in permissions checking of the entire tree. In 856 * addition, the LSM gets to forbid keyring searches and key matches. 857 * 858 * The search is performed as a breadth-then-depth search up to the prescribed 859 * limit (KEYRING_SEARCH_MAX_DEPTH). 860 * 861 * Keys are matched to the type provided and are then filtered by the match 862 * function, which is given the description to use in any way it sees fit. The 863 * match function may use any attributes of a key that it wishes to to 864 * determine the match. Normally the match function from the key type would be 865 * used. 866 * 867 * RCU can be used to prevent the keyring key lists from disappearing without 868 * the need to take lots of locks. 869 * 870 * Returns a pointer to the found key and increments the key usage count if 871 * successful; -EAGAIN if no matching keys were found, or if expired or revoked 872 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the 873 * specified keyring wasn't a keyring. 874 * 875 * In the case of a successful return, the possession attribute from 876 * @keyring_ref is propagated to the returned key reference. 877 */ 878 key_ref_t keyring_search_aux(key_ref_t keyring_ref, 879 struct keyring_search_context *ctx) 880 { 881 struct key *keyring; 882 long err; 883 884 ctx->iterator = keyring_search_iterator; 885 ctx->possessed = is_key_possessed(keyring_ref); 886 ctx->result = ERR_PTR(-EAGAIN); 887 888 keyring = key_ref_to_ptr(keyring_ref); 889 key_check(keyring); 890 891 if (keyring->type != &key_type_keyring) 892 return ERR_PTR(-ENOTDIR); 893 894 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) { 895 err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH); 896 if (err < 0) 897 return ERR_PTR(err); 898 } 899 900 rcu_read_lock(); 901 ctx->now = ktime_get_real_seconds(); 902 if (search_nested_keyrings(keyring, ctx)) 903 __key_get(key_ref_to_ptr(ctx->result)); 904 rcu_read_unlock(); 905 return ctx->result; 906 } 907 908 /** 909 * keyring_search - Search the supplied keyring tree for a matching key 910 * @keyring: The root of the keyring tree to be searched. 911 * @type: The type of keyring we want to find. 912 * @description: The name of the keyring we want to find. 913 * 914 * As keyring_search_aux() above, but using the current task's credentials and 915 * type's default matching function and preferred search method. 916 */ 917 key_ref_t keyring_search(key_ref_t keyring, 918 struct key_type *type, 919 const char *description) 920 { 921 struct keyring_search_context ctx = { 922 .index_key.type = type, 923 .index_key.description = description, 924 .cred = current_cred(), 925 .match_data.cmp = key_default_cmp, 926 .match_data.raw_data = description, 927 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT, 928 .flags = KEYRING_SEARCH_DO_STATE_CHECK, 929 }; 930 key_ref_t key; 931 int ret; 932 933 if (type->match_preparse) { 934 ret = type->match_preparse(&ctx.match_data); 935 if (ret < 0) 936 return ERR_PTR(ret); 937 } 938 939 key = keyring_search_aux(keyring, &ctx); 940 941 if (type->match_free) 942 type->match_free(&ctx.match_data); 943 return key; 944 } 945 EXPORT_SYMBOL(keyring_search); 946 947 static struct key_restriction *keyring_restriction_alloc( 948 key_restrict_link_func_t check) 949 { 950 struct key_restriction *keyres = 951 kzalloc(sizeof(struct key_restriction), GFP_KERNEL); 952 953 if (!keyres) 954 return ERR_PTR(-ENOMEM); 955 956 keyres->check = check; 957 958 return keyres; 959 } 960 961 /* 962 * Semaphore to serialise restriction setup to prevent reference count 963 * cycles through restriction key pointers. 964 */ 965 static DECLARE_RWSEM(keyring_serialise_restrict_sem); 966 967 /* 968 * Check for restriction cycles that would prevent keyring garbage collection. 969 * keyring_serialise_restrict_sem must be held. 970 */ 971 static bool keyring_detect_restriction_cycle(const struct key *dest_keyring, 972 struct key_restriction *keyres) 973 { 974 while (keyres && keyres->key && 975 keyres->key->type == &key_type_keyring) { 976 if (keyres->key == dest_keyring) 977 return true; 978 979 keyres = keyres->key->restrict_link; 980 } 981 982 return false; 983 } 984 985 /** 986 * keyring_restrict - Look up and apply a restriction to a keyring 987 * 988 * @keyring: The keyring to be restricted 989 * @restriction: The restriction options to apply to the keyring 990 */ 991 int keyring_restrict(key_ref_t keyring_ref, const char *type, 992 const char *restriction) 993 { 994 struct key *keyring; 995 struct key_type *restrict_type = NULL; 996 struct key_restriction *restrict_link; 997 int ret = 0; 998 999 keyring = key_ref_to_ptr(keyring_ref); 1000 key_check(keyring); 1001 1002 if (keyring->type != &key_type_keyring) 1003 return -ENOTDIR; 1004 1005 if (!type) { 1006 restrict_link = keyring_restriction_alloc(restrict_link_reject); 1007 } else { 1008 restrict_type = key_type_lookup(type); 1009 1010 if (IS_ERR(restrict_type)) 1011 return PTR_ERR(restrict_type); 1012 1013 if (!restrict_type->lookup_restriction) { 1014 ret = -ENOENT; 1015 goto error; 1016 } 1017 1018 restrict_link = restrict_type->lookup_restriction(restriction); 1019 } 1020 1021 if (IS_ERR(restrict_link)) { 1022 ret = PTR_ERR(restrict_link); 1023 goto error; 1024 } 1025 1026 down_write(&keyring->sem); 1027 down_write(&keyring_serialise_restrict_sem); 1028 1029 if (keyring->restrict_link) 1030 ret = -EEXIST; 1031 else if (keyring_detect_restriction_cycle(keyring, restrict_link)) 1032 ret = -EDEADLK; 1033 else 1034 keyring->restrict_link = restrict_link; 1035 1036 up_write(&keyring_serialise_restrict_sem); 1037 up_write(&keyring->sem); 1038 1039 if (ret < 0) { 1040 key_put(restrict_link->key); 1041 kfree(restrict_link); 1042 } 1043 1044 error: 1045 if (restrict_type) 1046 key_type_put(restrict_type); 1047 1048 return ret; 1049 } 1050 EXPORT_SYMBOL(keyring_restrict); 1051 1052 /* 1053 * Search the given keyring for a key that might be updated. 1054 * 1055 * The caller must guarantee that the keyring is a keyring and that the 1056 * permission is granted to modify the keyring as no check is made here. The 1057 * caller must also hold a lock on the keyring semaphore. 1058 * 1059 * Returns a pointer to the found key with usage count incremented if 1060 * successful and returns NULL if not found. Revoked and invalidated keys are 1061 * skipped over. 1062 * 1063 * If successful, the possession indicator is propagated from the keyring ref 1064 * to the returned key reference. 1065 */ 1066 key_ref_t find_key_to_update(key_ref_t keyring_ref, 1067 const struct keyring_index_key *index_key) 1068 { 1069 struct key *keyring, *key; 1070 const void *object; 1071 1072 keyring = key_ref_to_ptr(keyring_ref); 1073 1074 kenter("{%d},{%s,%s}", 1075 keyring->serial, index_key->type->name, index_key->description); 1076 1077 object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops, 1078 index_key); 1079 1080 if (object) 1081 goto found; 1082 1083 kleave(" = NULL"); 1084 return NULL; 1085 1086 found: 1087 key = keyring_ptr_to_key(object); 1088 if (key->flags & ((1 << KEY_FLAG_INVALIDATED) | 1089 (1 << KEY_FLAG_REVOKED))) { 1090 kleave(" = NULL [x]"); 1091 return NULL; 1092 } 1093 __key_get(key); 1094 kleave(" = {%d}", key->serial); 1095 return make_key_ref(key, is_key_possessed(keyring_ref)); 1096 } 1097 1098 /* 1099 * Find a keyring with the specified name. 1100 * 1101 * Only keyrings that have nonzero refcount, are not revoked, and are owned by a 1102 * user in the current user namespace are considered. If @uid_keyring is %true, 1103 * the keyring additionally must have been allocated as a user or user session 1104 * keyring; otherwise, it must grant Search permission directly to the caller. 1105 * 1106 * Returns a pointer to the keyring with the keyring's refcount having being 1107 * incremented on success. -ENOKEY is returned if a key could not be found. 1108 */ 1109 struct key *find_keyring_by_name(const char *name, bool uid_keyring) 1110 { 1111 struct key *keyring; 1112 int bucket; 1113 1114 if (!name) 1115 return ERR_PTR(-EINVAL); 1116 1117 bucket = keyring_hash(name); 1118 1119 read_lock(&keyring_name_lock); 1120 1121 if (keyring_name_hash[bucket].next) { 1122 /* search this hash bucket for a keyring with a matching name 1123 * that's readable and that hasn't been revoked */ 1124 list_for_each_entry(keyring, 1125 &keyring_name_hash[bucket], 1126 name_link 1127 ) { 1128 if (!kuid_has_mapping(current_user_ns(), keyring->user->uid)) 1129 continue; 1130 1131 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags)) 1132 continue; 1133 1134 if (strcmp(keyring->description, name) != 0) 1135 continue; 1136 1137 if (uid_keyring) { 1138 if (!test_bit(KEY_FLAG_UID_KEYRING, 1139 &keyring->flags)) 1140 continue; 1141 } else { 1142 if (key_permission(make_key_ref(keyring, 0), 1143 KEY_NEED_SEARCH) < 0) 1144 continue; 1145 } 1146 1147 /* we've got a match but we might end up racing with 1148 * key_cleanup() if the keyring is currently 'dead' 1149 * (ie. it has a zero usage count) */ 1150 if (!refcount_inc_not_zero(&keyring->usage)) 1151 continue; 1152 keyring->last_used_at = ktime_get_real_seconds(); 1153 goto out; 1154 } 1155 } 1156 1157 keyring = ERR_PTR(-ENOKEY); 1158 out: 1159 read_unlock(&keyring_name_lock); 1160 return keyring; 1161 } 1162 1163 static int keyring_detect_cycle_iterator(const void *object, 1164 void *iterator_data) 1165 { 1166 struct keyring_search_context *ctx = iterator_data; 1167 const struct key *key = keyring_ptr_to_key(object); 1168 1169 kenter("{%d}", key->serial); 1170 1171 /* We might get a keyring with matching index-key that is nonetheless a 1172 * different keyring. */ 1173 if (key != ctx->match_data.raw_data) 1174 return 0; 1175 1176 ctx->result = ERR_PTR(-EDEADLK); 1177 return 1; 1178 } 1179 1180 /* 1181 * See if a cycle will will be created by inserting acyclic tree B in acyclic 1182 * tree A at the topmost level (ie: as a direct child of A). 1183 * 1184 * Since we are adding B to A at the top level, checking for cycles should just 1185 * be a matter of seeing if node A is somewhere in tree B. 1186 */ 1187 static int keyring_detect_cycle(struct key *A, struct key *B) 1188 { 1189 struct keyring_search_context ctx = { 1190 .index_key = A->index_key, 1191 .match_data.raw_data = A, 1192 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT, 1193 .iterator = keyring_detect_cycle_iterator, 1194 .flags = (KEYRING_SEARCH_NO_STATE_CHECK | 1195 KEYRING_SEARCH_NO_UPDATE_TIME | 1196 KEYRING_SEARCH_NO_CHECK_PERM | 1197 KEYRING_SEARCH_DETECT_TOO_DEEP), 1198 }; 1199 1200 rcu_read_lock(); 1201 search_nested_keyrings(B, &ctx); 1202 rcu_read_unlock(); 1203 return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result); 1204 } 1205 1206 /* 1207 * Preallocate memory so that a key can be linked into to a keyring. 1208 */ 1209 int __key_link_begin(struct key *keyring, 1210 const struct keyring_index_key *index_key, 1211 struct assoc_array_edit **_edit) 1212 __acquires(&keyring->sem) 1213 __acquires(&keyring_serialise_link_sem) 1214 { 1215 struct assoc_array_edit *edit; 1216 int ret; 1217 1218 kenter("%d,%s,%s,", 1219 keyring->serial, index_key->type->name, index_key->description); 1220 1221 BUG_ON(index_key->desc_len == 0); 1222 1223 if (keyring->type != &key_type_keyring) 1224 return -ENOTDIR; 1225 1226 down_write(&keyring->sem); 1227 1228 ret = -EKEYREVOKED; 1229 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags)) 1230 goto error_krsem; 1231 1232 /* serialise link/link calls to prevent parallel calls causing a cycle 1233 * when linking two keyring in opposite orders */ 1234 if (index_key->type == &key_type_keyring) 1235 down_write(&keyring_serialise_link_sem); 1236 1237 /* Create an edit script that will insert/replace the key in the 1238 * keyring tree. 1239 */ 1240 edit = assoc_array_insert(&keyring->keys, 1241 &keyring_assoc_array_ops, 1242 index_key, 1243 NULL); 1244 if (IS_ERR(edit)) { 1245 ret = PTR_ERR(edit); 1246 goto error_sem; 1247 } 1248 1249 /* If we're not replacing a link in-place then we're going to need some 1250 * extra quota. 1251 */ 1252 if (!edit->dead_leaf) { 1253 ret = key_payload_reserve(keyring, 1254 keyring->datalen + KEYQUOTA_LINK_BYTES); 1255 if (ret < 0) 1256 goto error_cancel; 1257 } 1258 1259 *_edit = edit; 1260 kleave(" = 0"); 1261 return 0; 1262 1263 error_cancel: 1264 assoc_array_cancel_edit(edit); 1265 error_sem: 1266 if (index_key->type == &key_type_keyring) 1267 up_write(&keyring_serialise_link_sem); 1268 error_krsem: 1269 up_write(&keyring->sem); 1270 kleave(" = %d", ret); 1271 return ret; 1272 } 1273 1274 /* 1275 * Check already instantiated keys aren't going to be a problem. 1276 * 1277 * The caller must have called __key_link_begin(). Don't need to call this for 1278 * keys that were created since __key_link_begin() was called. 1279 */ 1280 int __key_link_check_live_key(struct key *keyring, struct key *key) 1281 { 1282 if (key->type == &key_type_keyring) 1283 /* check that we aren't going to create a cycle by linking one 1284 * keyring to another */ 1285 return keyring_detect_cycle(keyring, key); 1286 return 0; 1287 } 1288 1289 /* 1290 * Link a key into to a keyring. 1291 * 1292 * Must be called with __key_link_begin() having being called. Discards any 1293 * already extant link to matching key if there is one, so that each keyring 1294 * holds at most one link to any given key of a particular type+description 1295 * combination. 1296 */ 1297 void __key_link(struct key *key, struct assoc_array_edit **_edit) 1298 { 1299 __key_get(key); 1300 assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key)); 1301 assoc_array_apply_edit(*_edit); 1302 *_edit = NULL; 1303 } 1304 1305 /* 1306 * Finish linking a key into to a keyring. 1307 * 1308 * Must be called with __key_link_begin() having being called. 1309 */ 1310 void __key_link_end(struct key *keyring, 1311 const struct keyring_index_key *index_key, 1312 struct assoc_array_edit *edit) 1313 __releases(&keyring->sem) 1314 __releases(&keyring_serialise_link_sem) 1315 { 1316 BUG_ON(index_key->type == NULL); 1317 kenter("%d,%s,", keyring->serial, index_key->type->name); 1318 1319 if (index_key->type == &key_type_keyring) 1320 up_write(&keyring_serialise_link_sem); 1321 1322 if (edit) { 1323 if (!edit->dead_leaf) { 1324 key_payload_reserve(keyring, 1325 keyring->datalen - KEYQUOTA_LINK_BYTES); 1326 } 1327 assoc_array_cancel_edit(edit); 1328 } 1329 up_write(&keyring->sem); 1330 } 1331 1332 /* 1333 * Check addition of keys to restricted keyrings. 1334 */ 1335 static int __key_link_check_restriction(struct key *keyring, struct key *key) 1336 { 1337 if (!keyring->restrict_link || !keyring->restrict_link->check) 1338 return 0; 1339 return keyring->restrict_link->check(keyring, key->type, &key->payload, 1340 keyring->restrict_link->key); 1341 } 1342 1343 /** 1344 * key_link - Link a key to a keyring 1345 * @keyring: The keyring to make the link in. 1346 * @key: The key to link to. 1347 * 1348 * Make a link in a keyring to a key, such that the keyring holds a reference 1349 * on that key and the key can potentially be found by searching that keyring. 1350 * 1351 * This function will write-lock the keyring's semaphore and will consume some 1352 * of the user's key data quota to hold the link. 1353 * 1354 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, 1355 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is 1356 * full, -EDQUOT if there is insufficient key data quota remaining to add 1357 * another link or -ENOMEM if there's insufficient memory. 1358 * 1359 * It is assumed that the caller has checked that it is permitted for a link to 1360 * be made (the keyring should have Write permission and the key Link 1361 * permission). 1362 */ 1363 int key_link(struct key *keyring, struct key *key) 1364 { 1365 struct assoc_array_edit *edit; 1366 int ret; 1367 1368 kenter("{%d,%d}", keyring->serial, refcount_read(&keyring->usage)); 1369 1370 key_check(keyring); 1371 key_check(key); 1372 1373 ret = __key_link_begin(keyring, &key->index_key, &edit); 1374 if (ret == 0) { 1375 kdebug("begun {%d,%d}", keyring->serial, refcount_read(&keyring->usage)); 1376 ret = __key_link_check_restriction(keyring, key); 1377 if (ret == 0) 1378 ret = __key_link_check_live_key(keyring, key); 1379 if (ret == 0) 1380 __key_link(key, &edit); 1381 __key_link_end(keyring, &key->index_key, edit); 1382 } 1383 1384 kleave(" = %d {%d,%d}", ret, keyring->serial, refcount_read(&keyring->usage)); 1385 return ret; 1386 } 1387 EXPORT_SYMBOL(key_link); 1388 1389 /** 1390 * key_unlink - Unlink the first link to a key from a keyring. 1391 * @keyring: The keyring to remove the link from. 1392 * @key: The key the link is to. 1393 * 1394 * Remove a link from a keyring to a key. 1395 * 1396 * This function will write-lock the keyring's semaphore. 1397 * 1398 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if 1399 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient 1400 * memory. 1401 * 1402 * It is assumed that the caller has checked that it is permitted for a link to 1403 * be removed (the keyring should have Write permission; no permissions are 1404 * required on the key). 1405 */ 1406 int key_unlink(struct key *keyring, struct key *key) 1407 { 1408 struct assoc_array_edit *edit; 1409 int ret; 1410 1411 key_check(keyring); 1412 key_check(key); 1413 1414 if (keyring->type != &key_type_keyring) 1415 return -ENOTDIR; 1416 1417 down_write(&keyring->sem); 1418 1419 edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops, 1420 &key->index_key); 1421 if (IS_ERR(edit)) { 1422 ret = PTR_ERR(edit); 1423 goto error; 1424 } 1425 ret = -ENOENT; 1426 if (edit == NULL) 1427 goto error; 1428 1429 assoc_array_apply_edit(edit); 1430 key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES); 1431 ret = 0; 1432 1433 error: 1434 up_write(&keyring->sem); 1435 return ret; 1436 } 1437 EXPORT_SYMBOL(key_unlink); 1438 1439 /** 1440 * keyring_clear - Clear a keyring 1441 * @keyring: The keyring to clear. 1442 * 1443 * Clear the contents of the specified keyring. 1444 * 1445 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring. 1446 */ 1447 int keyring_clear(struct key *keyring) 1448 { 1449 struct assoc_array_edit *edit; 1450 int ret; 1451 1452 if (keyring->type != &key_type_keyring) 1453 return -ENOTDIR; 1454 1455 down_write(&keyring->sem); 1456 1457 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops); 1458 if (IS_ERR(edit)) { 1459 ret = PTR_ERR(edit); 1460 } else { 1461 if (edit) 1462 assoc_array_apply_edit(edit); 1463 key_payload_reserve(keyring, 0); 1464 ret = 0; 1465 } 1466 1467 up_write(&keyring->sem); 1468 return ret; 1469 } 1470 EXPORT_SYMBOL(keyring_clear); 1471 1472 /* 1473 * Dispose of the links from a revoked keyring. 1474 * 1475 * This is called with the key sem write-locked. 1476 */ 1477 static void keyring_revoke(struct key *keyring) 1478 { 1479 struct assoc_array_edit *edit; 1480 1481 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops); 1482 if (!IS_ERR(edit)) { 1483 if (edit) 1484 assoc_array_apply_edit(edit); 1485 key_payload_reserve(keyring, 0); 1486 } 1487 } 1488 1489 static bool keyring_gc_select_iterator(void *object, void *iterator_data) 1490 { 1491 struct key *key = keyring_ptr_to_key(object); 1492 time64_t *limit = iterator_data; 1493 1494 if (key_is_dead(key, *limit)) 1495 return false; 1496 key_get(key); 1497 return true; 1498 } 1499 1500 static int keyring_gc_check_iterator(const void *object, void *iterator_data) 1501 { 1502 const struct key *key = keyring_ptr_to_key(object); 1503 time64_t *limit = iterator_data; 1504 1505 key_check(key); 1506 return key_is_dead(key, *limit); 1507 } 1508 1509 /* 1510 * Garbage collect pointers from a keyring. 1511 * 1512 * Not called with any locks held. The keyring's key struct will not be 1513 * deallocated under us as only our caller may deallocate it. 1514 */ 1515 void keyring_gc(struct key *keyring, time64_t limit) 1516 { 1517 int result; 1518 1519 kenter("%x{%s}", keyring->serial, keyring->description ?: ""); 1520 1521 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) | 1522 (1 << KEY_FLAG_REVOKED))) 1523 goto dont_gc; 1524 1525 /* scan the keyring looking for dead keys */ 1526 rcu_read_lock(); 1527 result = assoc_array_iterate(&keyring->keys, 1528 keyring_gc_check_iterator, &limit); 1529 rcu_read_unlock(); 1530 if (result == true) 1531 goto do_gc; 1532 1533 dont_gc: 1534 kleave(" [no gc]"); 1535 return; 1536 1537 do_gc: 1538 down_write(&keyring->sem); 1539 assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops, 1540 keyring_gc_select_iterator, &limit); 1541 up_write(&keyring->sem); 1542 kleave(" [gc]"); 1543 } 1544 1545 /* 1546 * Garbage collect restriction pointers from a keyring. 1547 * 1548 * Keyring restrictions are associated with a key type, and must be cleaned 1549 * up if the key type is unregistered. The restriction is altered to always 1550 * reject additional keys so a keyring cannot be opened up by unregistering 1551 * a key type. 1552 * 1553 * Not called with any keyring locks held. The keyring's key struct will not 1554 * be deallocated under us as only our caller may deallocate it. 1555 * 1556 * The caller is required to hold key_types_sem and dead_type->sem. This is 1557 * fulfilled by key_gc_keytype() holding the locks on behalf of 1558 * key_garbage_collector(), which it invokes on a workqueue. 1559 */ 1560 void keyring_restriction_gc(struct key *keyring, struct key_type *dead_type) 1561 { 1562 struct key_restriction *keyres; 1563 1564 kenter("%x{%s}", keyring->serial, keyring->description ?: ""); 1565 1566 /* 1567 * keyring->restrict_link is only assigned at key allocation time 1568 * or with the key type locked, so the only values that could be 1569 * concurrently assigned to keyring->restrict_link are for key 1570 * types other than dead_type. Given this, it's ok to check 1571 * the key type before acquiring keyring->sem. 1572 */ 1573 if (!dead_type || !keyring->restrict_link || 1574 keyring->restrict_link->keytype != dead_type) { 1575 kleave(" [no restriction gc]"); 1576 return; 1577 } 1578 1579 /* Lock the keyring to ensure that a link is not in progress */ 1580 down_write(&keyring->sem); 1581 1582 keyres = keyring->restrict_link; 1583 1584 keyres->check = restrict_link_reject; 1585 1586 key_put(keyres->key); 1587 keyres->key = NULL; 1588 keyres->keytype = NULL; 1589 1590 up_write(&keyring->sem); 1591 1592 kleave(" [restriction gc]"); 1593 } 1594