xref: /openbmc/linux/security/keys/keyring.c (revision 4a3fad70)
1 /* Keyring handling
2  *
3  * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/seq_file.h>
18 #include <linux/err.h>
19 #include <keys/keyring-type.h>
20 #include <keys/user-type.h>
21 #include <linux/assoc_array_priv.h>
22 #include <linux/uaccess.h>
23 #include "internal.h"
24 
25 /*
26  * When plumbing the depths of the key tree, this sets a hard limit
27  * set on how deep we're willing to go.
28  */
29 #define KEYRING_SEARCH_MAX_DEPTH 6
30 
31 /*
32  * We keep all named keyrings in a hash to speed looking them up.
33  */
34 #define KEYRING_NAME_HASH_SIZE	(1 << 5)
35 
36 /*
37  * We mark pointers we pass to the associative array with bit 1 set if
38  * they're keyrings and clear otherwise.
39  */
40 #define KEYRING_PTR_SUBTYPE	0x2UL
41 
42 static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
43 {
44 	return (unsigned long)x & KEYRING_PTR_SUBTYPE;
45 }
46 static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
47 {
48 	void *object = assoc_array_ptr_to_leaf(x);
49 	return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
50 }
51 static inline void *keyring_key_to_ptr(struct key *key)
52 {
53 	if (key->type == &key_type_keyring)
54 		return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
55 	return key;
56 }
57 
58 static struct list_head	keyring_name_hash[KEYRING_NAME_HASH_SIZE];
59 static DEFINE_RWLOCK(keyring_name_lock);
60 
61 static inline unsigned keyring_hash(const char *desc)
62 {
63 	unsigned bucket = 0;
64 
65 	for (; *desc; desc++)
66 		bucket += (unsigned char)*desc;
67 
68 	return bucket & (KEYRING_NAME_HASH_SIZE - 1);
69 }
70 
71 /*
72  * The keyring key type definition.  Keyrings are simply keys of this type and
73  * can be treated as ordinary keys in addition to having their own special
74  * operations.
75  */
76 static int keyring_preparse(struct key_preparsed_payload *prep);
77 static void keyring_free_preparse(struct key_preparsed_payload *prep);
78 static int keyring_instantiate(struct key *keyring,
79 			       struct key_preparsed_payload *prep);
80 static void keyring_revoke(struct key *keyring);
81 static void keyring_destroy(struct key *keyring);
82 static void keyring_describe(const struct key *keyring, struct seq_file *m);
83 static long keyring_read(const struct key *keyring,
84 			 char __user *buffer, size_t buflen);
85 
86 struct key_type key_type_keyring = {
87 	.name		= "keyring",
88 	.def_datalen	= 0,
89 	.preparse	= keyring_preparse,
90 	.free_preparse	= keyring_free_preparse,
91 	.instantiate	= keyring_instantiate,
92 	.revoke		= keyring_revoke,
93 	.destroy	= keyring_destroy,
94 	.describe	= keyring_describe,
95 	.read		= keyring_read,
96 };
97 EXPORT_SYMBOL(key_type_keyring);
98 
99 /*
100  * Semaphore to serialise link/link calls to prevent two link calls in parallel
101  * introducing a cycle.
102  */
103 static DECLARE_RWSEM(keyring_serialise_link_sem);
104 
105 /*
106  * Publish the name of a keyring so that it can be found by name (if it has
107  * one).
108  */
109 static void keyring_publish_name(struct key *keyring)
110 {
111 	int bucket;
112 
113 	if (keyring->description) {
114 		bucket = keyring_hash(keyring->description);
115 
116 		write_lock(&keyring_name_lock);
117 
118 		if (!keyring_name_hash[bucket].next)
119 			INIT_LIST_HEAD(&keyring_name_hash[bucket]);
120 
121 		list_add_tail(&keyring->name_link,
122 			      &keyring_name_hash[bucket]);
123 
124 		write_unlock(&keyring_name_lock);
125 	}
126 }
127 
128 /*
129  * Preparse a keyring payload
130  */
131 static int keyring_preparse(struct key_preparsed_payload *prep)
132 {
133 	return prep->datalen != 0 ? -EINVAL : 0;
134 }
135 
136 /*
137  * Free a preparse of a user defined key payload
138  */
139 static void keyring_free_preparse(struct key_preparsed_payload *prep)
140 {
141 }
142 
143 /*
144  * Initialise a keyring.
145  *
146  * Returns 0 on success, -EINVAL if given any data.
147  */
148 static int keyring_instantiate(struct key *keyring,
149 			       struct key_preparsed_payload *prep)
150 {
151 	assoc_array_init(&keyring->keys);
152 	/* make the keyring available by name if it has one */
153 	keyring_publish_name(keyring);
154 	return 0;
155 }
156 
157 /*
158  * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit.  Ideally we'd
159  * fold the carry back too, but that requires inline asm.
160  */
161 static u64 mult_64x32_and_fold(u64 x, u32 y)
162 {
163 	u64 hi = (u64)(u32)(x >> 32) * y;
164 	u64 lo = (u64)(u32)(x) * y;
165 	return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
166 }
167 
168 /*
169  * Hash a key type and description.
170  */
171 static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key)
172 {
173 	const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
174 	const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
175 	const char *description = index_key->description;
176 	unsigned long hash, type;
177 	u32 piece;
178 	u64 acc;
179 	int n, desc_len = index_key->desc_len;
180 
181 	type = (unsigned long)index_key->type;
182 
183 	acc = mult_64x32_and_fold(type, desc_len + 13);
184 	acc = mult_64x32_and_fold(acc, 9207);
185 	for (;;) {
186 		n = desc_len;
187 		if (n <= 0)
188 			break;
189 		if (n > 4)
190 			n = 4;
191 		piece = 0;
192 		memcpy(&piece, description, n);
193 		description += n;
194 		desc_len -= n;
195 		acc = mult_64x32_and_fold(acc, piece);
196 		acc = mult_64x32_and_fold(acc, 9207);
197 	}
198 
199 	/* Fold the hash down to 32 bits if need be. */
200 	hash = acc;
201 	if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
202 		hash ^= acc >> 32;
203 
204 	/* Squidge all the keyrings into a separate part of the tree to
205 	 * ordinary keys by making sure the lowest level segment in the hash is
206 	 * zero for keyrings and non-zero otherwise.
207 	 */
208 	if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
209 		return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
210 	if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
211 		return (hash + (hash << level_shift)) & ~fan_mask;
212 	return hash;
213 }
214 
215 /*
216  * Build the next index key chunk.
217  *
218  * On 32-bit systems the index key is laid out as:
219  *
220  *	0	4	5	9...
221  *	hash	desclen	typeptr	desc[]
222  *
223  * On 64-bit systems:
224  *
225  *	0	8	9	17...
226  *	hash	desclen	typeptr	desc[]
227  *
228  * We return it one word-sized chunk at a time.
229  */
230 static unsigned long keyring_get_key_chunk(const void *data, int level)
231 {
232 	const struct keyring_index_key *index_key = data;
233 	unsigned long chunk = 0;
234 	long offset = 0;
235 	int desc_len = index_key->desc_len, n = sizeof(chunk);
236 
237 	level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
238 	switch (level) {
239 	case 0:
240 		return hash_key_type_and_desc(index_key);
241 	case 1:
242 		return ((unsigned long)index_key->type << 8) | desc_len;
243 	case 2:
244 		if (desc_len == 0)
245 			return (u8)((unsigned long)index_key->type >>
246 				    (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
247 		n--;
248 		offset = 1;
249 	default:
250 		offset += sizeof(chunk) - 1;
251 		offset += (level - 3) * sizeof(chunk);
252 		if (offset >= desc_len)
253 			return 0;
254 		desc_len -= offset;
255 		if (desc_len > n)
256 			desc_len = n;
257 		offset += desc_len;
258 		do {
259 			chunk <<= 8;
260 			chunk |= ((u8*)index_key->description)[--offset];
261 		} while (--desc_len > 0);
262 
263 		if (level == 2) {
264 			chunk <<= 8;
265 			chunk |= (u8)((unsigned long)index_key->type >>
266 				      (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
267 		}
268 		return chunk;
269 	}
270 }
271 
272 static unsigned long keyring_get_object_key_chunk(const void *object, int level)
273 {
274 	const struct key *key = keyring_ptr_to_key(object);
275 	return keyring_get_key_chunk(&key->index_key, level);
276 }
277 
278 static bool keyring_compare_object(const void *object, const void *data)
279 {
280 	const struct keyring_index_key *index_key = data;
281 	const struct key *key = keyring_ptr_to_key(object);
282 
283 	return key->index_key.type == index_key->type &&
284 		key->index_key.desc_len == index_key->desc_len &&
285 		memcmp(key->index_key.description, index_key->description,
286 		       index_key->desc_len) == 0;
287 }
288 
289 /*
290  * Compare the index keys of a pair of objects and determine the bit position
291  * at which they differ - if they differ.
292  */
293 static int keyring_diff_objects(const void *object, const void *data)
294 {
295 	const struct key *key_a = keyring_ptr_to_key(object);
296 	const struct keyring_index_key *a = &key_a->index_key;
297 	const struct keyring_index_key *b = data;
298 	unsigned long seg_a, seg_b;
299 	int level, i;
300 
301 	level = 0;
302 	seg_a = hash_key_type_and_desc(a);
303 	seg_b = hash_key_type_and_desc(b);
304 	if ((seg_a ^ seg_b) != 0)
305 		goto differ;
306 
307 	/* The number of bits contributed by the hash is controlled by a
308 	 * constant in the assoc_array headers.  Everything else thereafter we
309 	 * can deal with as being machine word-size dependent.
310 	 */
311 	level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
312 	seg_a = a->desc_len;
313 	seg_b = b->desc_len;
314 	if ((seg_a ^ seg_b) != 0)
315 		goto differ;
316 
317 	/* The next bit may not work on big endian */
318 	level++;
319 	seg_a = (unsigned long)a->type;
320 	seg_b = (unsigned long)b->type;
321 	if ((seg_a ^ seg_b) != 0)
322 		goto differ;
323 
324 	level += sizeof(unsigned long);
325 	if (a->desc_len == 0)
326 		goto same;
327 
328 	i = 0;
329 	if (((unsigned long)a->description | (unsigned long)b->description) &
330 	    (sizeof(unsigned long) - 1)) {
331 		do {
332 			seg_a = *(unsigned long *)(a->description + i);
333 			seg_b = *(unsigned long *)(b->description + i);
334 			if ((seg_a ^ seg_b) != 0)
335 				goto differ_plus_i;
336 			i += sizeof(unsigned long);
337 		} while (i < (a->desc_len & (sizeof(unsigned long) - 1)));
338 	}
339 
340 	for (; i < a->desc_len; i++) {
341 		seg_a = *(unsigned char *)(a->description + i);
342 		seg_b = *(unsigned char *)(b->description + i);
343 		if ((seg_a ^ seg_b) != 0)
344 			goto differ_plus_i;
345 	}
346 
347 same:
348 	return -1;
349 
350 differ_plus_i:
351 	level += i;
352 differ:
353 	i = level * 8 + __ffs(seg_a ^ seg_b);
354 	return i;
355 }
356 
357 /*
358  * Free an object after stripping the keyring flag off of the pointer.
359  */
360 static void keyring_free_object(void *object)
361 {
362 	key_put(keyring_ptr_to_key(object));
363 }
364 
365 /*
366  * Operations for keyring management by the index-tree routines.
367  */
368 static const struct assoc_array_ops keyring_assoc_array_ops = {
369 	.get_key_chunk		= keyring_get_key_chunk,
370 	.get_object_key_chunk	= keyring_get_object_key_chunk,
371 	.compare_object		= keyring_compare_object,
372 	.diff_objects		= keyring_diff_objects,
373 	.free_object		= keyring_free_object,
374 };
375 
376 /*
377  * Clean up a keyring when it is destroyed.  Unpublish its name if it had one
378  * and dispose of its data.
379  *
380  * The garbage collector detects the final key_put(), removes the keyring from
381  * the serial number tree and then does RCU synchronisation before coming here,
382  * so we shouldn't need to worry about code poking around here with the RCU
383  * readlock held by this time.
384  */
385 static void keyring_destroy(struct key *keyring)
386 {
387 	if (keyring->description) {
388 		write_lock(&keyring_name_lock);
389 
390 		if (keyring->name_link.next != NULL &&
391 		    !list_empty(&keyring->name_link))
392 			list_del(&keyring->name_link);
393 
394 		write_unlock(&keyring_name_lock);
395 	}
396 
397 	if (keyring->restrict_link) {
398 		struct key_restriction *keyres = keyring->restrict_link;
399 
400 		key_put(keyres->key);
401 		kfree(keyres);
402 	}
403 
404 	assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
405 }
406 
407 /*
408  * Describe a keyring for /proc.
409  */
410 static void keyring_describe(const struct key *keyring, struct seq_file *m)
411 {
412 	if (keyring->description)
413 		seq_puts(m, keyring->description);
414 	else
415 		seq_puts(m, "[anon]");
416 
417 	if (key_is_positive(keyring)) {
418 		if (keyring->keys.nr_leaves_on_tree != 0)
419 			seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
420 		else
421 			seq_puts(m, ": empty");
422 	}
423 }
424 
425 struct keyring_read_iterator_context {
426 	size_t			buflen;
427 	size_t			count;
428 	key_serial_t __user	*buffer;
429 };
430 
431 static int keyring_read_iterator(const void *object, void *data)
432 {
433 	struct keyring_read_iterator_context *ctx = data;
434 	const struct key *key = keyring_ptr_to_key(object);
435 	int ret;
436 
437 	kenter("{%s,%d},,{%zu/%zu}",
438 	       key->type->name, key->serial, ctx->count, ctx->buflen);
439 
440 	if (ctx->count >= ctx->buflen)
441 		return 1;
442 
443 	ret = put_user(key->serial, ctx->buffer);
444 	if (ret < 0)
445 		return ret;
446 	ctx->buffer++;
447 	ctx->count += sizeof(key->serial);
448 	return 0;
449 }
450 
451 /*
452  * Read a list of key IDs from the keyring's contents in binary form
453  *
454  * The keyring's semaphore is read-locked by the caller.  This prevents someone
455  * from modifying it under us - which could cause us to read key IDs multiple
456  * times.
457  */
458 static long keyring_read(const struct key *keyring,
459 			 char __user *buffer, size_t buflen)
460 {
461 	struct keyring_read_iterator_context ctx;
462 	long ret;
463 
464 	kenter("{%d},,%zu", key_serial(keyring), buflen);
465 
466 	if (buflen & (sizeof(key_serial_t) - 1))
467 		return -EINVAL;
468 
469 	/* Copy as many key IDs as fit into the buffer */
470 	if (buffer && buflen) {
471 		ctx.buffer = (key_serial_t __user *)buffer;
472 		ctx.buflen = buflen;
473 		ctx.count = 0;
474 		ret = assoc_array_iterate(&keyring->keys,
475 					  keyring_read_iterator, &ctx);
476 		if (ret < 0) {
477 			kleave(" = %ld [iterate]", ret);
478 			return ret;
479 		}
480 	}
481 
482 	/* Return the size of the buffer needed */
483 	ret = keyring->keys.nr_leaves_on_tree * sizeof(key_serial_t);
484 	if (ret <= buflen)
485 		kleave("= %ld [ok]", ret);
486 	else
487 		kleave("= %ld [buffer too small]", ret);
488 	return ret;
489 }
490 
491 /*
492  * Allocate a keyring and link into the destination keyring.
493  */
494 struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
495 			  const struct cred *cred, key_perm_t perm,
496 			  unsigned long flags,
497 			  struct key_restriction *restrict_link,
498 			  struct key *dest)
499 {
500 	struct key *keyring;
501 	int ret;
502 
503 	keyring = key_alloc(&key_type_keyring, description,
504 			    uid, gid, cred, perm, flags, restrict_link);
505 	if (!IS_ERR(keyring)) {
506 		ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
507 		if (ret < 0) {
508 			key_put(keyring);
509 			keyring = ERR_PTR(ret);
510 		}
511 	}
512 
513 	return keyring;
514 }
515 EXPORT_SYMBOL(keyring_alloc);
516 
517 /**
518  * restrict_link_reject - Give -EPERM to restrict link
519  * @keyring: The keyring being added to.
520  * @type: The type of key being added.
521  * @payload: The payload of the key intended to be added.
522  * @data: Additional data for evaluating restriction.
523  *
524  * Reject the addition of any links to a keyring.  It can be overridden by
525  * passing KEY_ALLOC_BYPASS_RESTRICTION to key_instantiate_and_link() when
526  * adding a key to a keyring.
527  *
528  * This is meant to be stored in a key_restriction structure which is passed
529  * in the restrict_link parameter to keyring_alloc().
530  */
531 int restrict_link_reject(struct key *keyring,
532 			 const struct key_type *type,
533 			 const union key_payload *payload,
534 			 struct key *restriction_key)
535 {
536 	return -EPERM;
537 }
538 
539 /*
540  * By default, we keys found by getting an exact match on their descriptions.
541  */
542 bool key_default_cmp(const struct key *key,
543 		     const struct key_match_data *match_data)
544 {
545 	return strcmp(key->description, match_data->raw_data) == 0;
546 }
547 
548 /*
549  * Iteration function to consider each key found.
550  */
551 static int keyring_search_iterator(const void *object, void *iterator_data)
552 {
553 	struct keyring_search_context *ctx = iterator_data;
554 	const struct key *key = keyring_ptr_to_key(object);
555 	unsigned long kflags = READ_ONCE(key->flags);
556 	short state = READ_ONCE(key->state);
557 
558 	kenter("{%d}", key->serial);
559 
560 	/* ignore keys not of this type */
561 	if (key->type != ctx->index_key.type) {
562 		kleave(" = 0 [!type]");
563 		return 0;
564 	}
565 
566 	/* skip invalidated, revoked and expired keys */
567 	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
568 		time64_t expiry = READ_ONCE(key->expiry);
569 
570 		if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
571 			      (1 << KEY_FLAG_REVOKED))) {
572 			ctx->result = ERR_PTR(-EKEYREVOKED);
573 			kleave(" = %d [invrev]", ctx->skipped_ret);
574 			goto skipped;
575 		}
576 
577 		if (expiry && ctx->now >= expiry) {
578 			if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED))
579 				ctx->result = ERR_PTR(-EKEYEXPIRED);
580 			kleave(" = %d [expire]", ctx->skipped_ret);
581 			goto skipped;
582 		}
583 	}
584 
585 	/* keys that don't match */
586 	if (!ctx->match_data.cmp(key, &ctx->match_data)) {
587 		kleave(" = 0 [!match]");
588 		return 0;
589 	}
590 
591 	/* key must have search permissions */
592 	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
593 	    key_task_permission(make_key_ref(key, ctx->possessed),
594 				ctx->cred, KEY_NEED_SEARCH) < 0) {
595 		ctx->result = ERR_PTR(-EACCES);
596 		kleave(" = %d [!perm]", ctx->skipped_ret);
597 		goto skipped;
598 	}
599 
600 	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
601 		/* we set a different error code if we pass a negative key */
602 		if (state < 0) {
603 			ctx->result = ERR_PTR(state);
604 			kleave(" = %d [neg]", ctx->skipped_ret);
605 			goto skipped;
606 		}
607 	}
608 
609 	/* Found */
610 	ctx->result = make_key_ref(key, ctx->possessed);
611 	kleave(" = 1 [found]");
612 	return 1;
613 
614 skipped:
615 	return ctx->skipped_ret;
616 }
617 
618 /*
619  * Search inside a keyring for a key.  We can search by walking to it
620  * directly based on its index-key or we can iterate over the entire
621  * tree looking for it, based on the match function.
622  */
623 static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
624 {
625 	if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) {
626 		const void *object;
627 
628 		object = assoc_array_find(&keyring->keys,
629 					  &keyring_assoc_array_ops,
630 					  &ctx->index_key);
631 		return object ? ctx->iterator(object, ctx) : 0;
632 	}
633 	return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
634 }
635 
636 /*
637  * Search a tree of keyrings that point to other keyrings up to the maximum
638  * depth.
639  */
640 static bool search_nested_keyrings(struct key *keyring,
641 				   struct keyring_search_context *ctx)
642 {
643 	struct {
644 		struct key *keyring;
645 		struct assoc_array_node *node;
646 		int slot;
647 	} stack[KEYRING_SEARCH_MAX_DEPTH];
648 
649 	struct assoc_array_shortcut *shortcut;
650 	struct assoc_array_node *node;
651 	struct assoc_array_ptr *ptr;
652 	struct key *key;
653 	int sp = 0, slot;
654 
655 	kenter("{%d},{%s,%s}",
656 	       keyring->serial,
657 	       ctx->index_key.type->name,
658 	       ctx->index_key.description);
659 
660 #define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK)
661 	BUG_ON((ctx->flags & STATE_CHECKS) == 0 ||
662 	       (ctx->flags & STATE_CHECKS) == STATE_CHECKS);
663 
664 	if (ctx->index_key.description)
665 		ctx->index_key.desc_len = strlen(ctx->index_key.description);
666 
667 	/* Check to see if this top-level keyring is what we are looking for
668 	 * and whether it is valid or not.
669 	 */
670 	if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE ||
671 	    keyring_compare_object(keyring, &ctx->index_key)) {
672 		ctx->skipped_ret = 2;
673 		switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
674 		case 1:
675 			goto found;
676 		case 2:
677 			return false;
678 		default:
679 			break;
680 		}
681 	}
682 
683 	ctx->skipped_ret = 0;
684 
685 	/* Start processing a new keyring */
686 descend_to_keyring:
687 	kdebug("descend to %d", keyring->serial);
688 	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
689 			      (1 << KEY_FLAG_REVOKED)))
690 		goto not_this_keyring;
691 
692 	/* Search through the keys in this keyring before its searching its
693 	 * subtrees.
694 	 */
695 	if (search_keyring(keyring, ctx))
696 		goto found;
697 
698 	/* Then manually iterate through the keyrings nested in this one.
699 	 *
700 	 * Start from the root node of the index tree.  Because of the way the
701 	 * hash function has been set up, keyrings cluster on the leftmost
702 	 * branch of the root node (root slot 0) or in the root node itself.
703 	 * Non-keyrings avoid the leftmost branch of the root entirely (root
704 	 * slots 1-15).
705 	 */
706 	ptr = READ_ONCE(keyring->keys.root);
707 	if (!ptr)
708 		goto not_this_keyring;
709 
710 	if (assoc_array_ptr_is_shortcut(ptr)) {
711 		/* If the root is a shortcut, either the keyring only contains
712 		 * keyring pointers (everything clusters behind root slot 0) or
713 		 * doesn't contain any keyring pointers.
714 		 */
715 		shortcut = assoc_array_ptr_to_shortcut(ptr);
716 		smp_read_barrier_depends();
717 		if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
718 			goto not_this_keyring;
719 
720 		ptr = READ_ONCE(shortcut->next_node);
721 		node = assoc_array_ptr_to_node(ptr);
722 		goto begin_node;
723 	}
724 
725 	node = assoc_array_ptr_to_node(ptr);
726 	smp_read_barrier_depends();
727 
728 	ptr = node->slots[0];
729 	if (!assoc_array_ptr_is_meta(ptr))
730 		goto begin_node;
731 
732 descend_to_node:
733 	/* Descend to a more distal node in this keyring's content tree and go
734 	 * through that.
735 	 */
736 	kdebug("descend");
737 	if (assoc_array_ptr_is_shortcut(ptr)) {
738 		shortcut = assoc_array_ptr_to_shortcut(ptr);
739 		smp_read_barrier_depends();
740 		ptr = READ_ONCE(shortcut->next_node);
741 		BUG_ON(!assoc_array_ptr_is_node(ptr));
742 	}
743 	node = assoc_array_ptr_to_node(ptr);
744 
745 begin_node:
746 	kdebug("begin_node");
747 	smp_read_barrier_depends();
748 	slot = 0;
749 ascend_to_node:
750 	/* Go through the slots in a node */
751 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
752 		ptr = READ_ONCE(node->slots[slot]);
753 
754 		if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
755 			goto descend_to_node;
756 
757 		if (!keyring_ptr_is_keyring(ptr))
758 			continue;
759 
760 		key = keyring_ptr_to_key(ptr);
761 
762 		if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
763 			if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
764 				ctx->result = ERR_PTR(-ELOOP);
765 				return false;
766 			}
767 			goto not_this_keyring;
768 		}
769 
770 		/* Search a nested keyring */
771 		if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
772 		    key_task_permission(make_key_ref(key, ctx->possessed),
773 					ctx->cred, KEY_NEED_SEARCH) < 0)
774 			continue;
775 
776 		/* stack the current position */
777 		stack[sp].keyring = keyring;
778 		stack[sp].node = node;
779 		stack[sp].slot = slot;
780 		sp++;
781 
782 		/* begin again with the new keyring */
783 		keyring = key;
784 		goto descend_to_keyring;
785 	}
786 
787 	/* We've dealt with all the slots in the current node, so now we need
788 	 * to ascend to the parent and continue processing there.
789 	 */
790 	ptr = READ_ONCE(node->back_pointer);
791 	slot = node->parent_slot;
792 
793 	if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
794 		shortcut = assoc_array_ptr_to_shortcut(ptr);
795 		smp_read_barrier_depends();
796 		ptr = READ_ONCE(shortcut->back_pointer);
797 		slot = shortcut->parent_slot;
798 	}
799 	if (!ptr)
800 		goto not_this_keyring;
801 	node = assoc_array_ptr_to_node(ptr);
802 	smp_read_barrier_depends();
803 	slot++;
804 
805 	/* If we've ascended to the root (zero backpointer), we must have just
806 	 * finished processing the leftmost branch rather than the root slots -
807 	 * so there can't be any more keyrings for us to find.
808 	 */
809 	if (node->back_pointer) {
810 		kdebug("ascend %d", slot);
811 		goto ascend_to_node;
812 	}
813 
814 	/* The keyring we're looking at was disqualified or didn't contain a
815 	 * matching key.
816 	 */
817 not_this_keyring:
818 	kdebug("not_this_keyring %d", sp);
819 	if (sp <= 0) {
820 		kleave(" = false");
821 		return false;
822 	}
823 
824 	/* Resume the processing of a keyring higher up in the tree */
825 	sp--;
826 	keyring = stack[sp].keyring;
827 	node = stack[sp].node;
828 	slot = stack[sp].slot + 1;
829 	kdebug("ascend to %d [%d]", keyring->serial, slot);
830 	goto ascend_to_node;
831 
832 	/* We found a viable match */
833 found:
834 	key = key_ref_to_ptr(ctx->result);
835 	key_check(key);
836 	if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
837 		key->last_used_at = ctx->now;
838 		keyring->last_used_at = ctx->now;
839 		while (sp > 0)
840 			stack[--sp].keyring->last_used_at = ctx->now;
841 	}
842 	kleave(" = true");
843 	return true;
844 }
845 
846 /**
847  * keyring_search_aux - Search a keyring tree for a key matching some criteria
848  * @keyring_ref: A pointer to the keyring with possession indicator.
849  * @ctx: The keyring search context.
850  *
851  * Search the supplied keyring tree for a key that matches the criteria given.
852  * The root keyring and any linked keyrings must grant Search permission to the
853  * caller to be searchable and keys can only be found if they too grant Search
854  * to the caller. The possession flag on the root keyring pointer controls use
855  * of the possessor bits in permissions checking of the entire tree.  In
856  * addition, the LSM gets to forbid keyring searches and key matches.
857  *
858  * The search is performed as a breadth-then-depth search up to the prescribed
859  * limit (KEYRING_SEARCH_MAX_DEPTH).
860  *
861  * Keys are matched to the type provided and are then filtered by the match
862  * function, which is given the description to use in any way it sees fit.  The
863  * match function may use any attributes of a key that it wishes to to
864  * determine the match.  Normally the match function from the key type would be
865  * used.
866  *
867  * RCU can be used to prevent the keyring key lists from disappearing without
868  * the need to take lots of locks.
869  *
870  * Returns a pointer to the found key and increments the key usage count if
871  * successful; -EAGAIN if no matching keys were found, or if expired or revoked
872  * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
873  * specified keyring wasn't a keyring.
874  *
875  * In the case of a successful return, the possession attribute from
876  * @keyring_ref is propagated to the returned key reference.
877  */
878 key_ref_t keyring_search_aux(key_ref_t keyring_ref,
879 			     struct keyring_search_context *ctx)
880 {
881 	struct key *keyring;
882 	long err;
883 
884 	ctx->iterator = keyring_search_iterator;
885 	ctx->possessed = is_key_possessed(keyring_ref);
886 	ctx->result = ERR_PTR(-EAGAIN);
887 
888 	keyring = key_ref_to_ptr(keyring_ref);
889 	key_check(keyring);
890 
891 	if (keyring->type != &key_type_keyring)
892 		return ERR_PTR(-ENOTDIR);
893 
894 	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
895 		err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH);
896 		if (err < 0)
897 			return ERR_PTR(err);
898 	}
899 
900 	rcu_read_lock();
901 	ctx->now = ktime_get_real_seconds();
902 	if (search_nested_keyrings(keyring, ctx))
903 		__key_get(key_ref_to_ptr(ctx->result));
904 	rcu_read_unlock();
905 	return ctx->result;
906 }
907 
908 /**
909  * keyring_search - Search the supplied keyring tree for a matching key
910  * @keyring: The root of the keyring tree to be searched.
911  * @type: The type of keyring we want to find.
912  * @description: The name of the keyring we want to find.
913  *
914  * As keyring_search_aux() above, but using the current task's credentials and
915  * type's default matching function and preferred search method.
916  */
917 key_ref_t keyring_search(key_ref_t keyring,
918 			 struct key_type *type,
919 			 const char *description)
920 {
921 	struct keyring_search_context ctx = {
922 		.index_key.type		= type,
923 		.index_key.description	= description,
924 		.cred			= current_cred(),
925 		.match_data.cmp		= key_default_cmp,
926 		.match_data.raw_data	= description,
927 		.match_data.lookup_type	= KEYRING_SEARCH_LOOKUP_DIRECT,
928 		.flags			= KEYRING_SEARCH_DO_STATE_CHECK,
929 	};
930 	key_ref_t key;
931 	int ret;
932 
933 	if (type->match_preparse) {
934 		ret = type->match_preparse(&ctx.match_data);
935 		if (ret < 0)
936 			return ERR_PTR(ret);
937 	}
938 
939 	key = keyring_search_aux(keyring, &ctx);
940 
941 	if (type->match_free)
942 		type->match_free(&ctx.match_data);
943 	return key;
944 }
945 EXPORT_SYMBOL(keyring_search);
946 
947 static struct key_restriction *keyring_restriction_alloc(
948 	key_restrict_link_func_t check)
949 {
950 	struct key_restriction *keyres =
951 		kzalloc(sizeof(struct key_restriction), GFP_KERNEL);
952 
953 	if (!keyres)
954 		return ERR_PTR(-ENOMEM);
955 
956 	keyres->check = check;
957 
958 	return keyres;
959 }
960 
961 /*
962  * Semaphore to serialise restriction setup to prevent reference count
963  * cycles through restriction key pointers.
964  */
965 static DECLARE_RWSEM(keyring_serialise_restrict_sem);
966 
967 /*
968  * Check for restriction cycles that would prevent keyring garbage collection.
969  * keyring_serialise_restrict_sem must be held.
970  */
971 static bool keyring_detect_restriction_cycle(const struct key *dest_keyring,
972 					     struct key_restriction *keyres)
973 {
974 	while (keyres && keyres->key &&
975 	       keyres->key->type == &key_type_keyring) {
976 		if (keyres->key == dest_keyring)
977 			return true;
978 
979 		keyres = keyres->key->restrict_link;
980 	}
981 
982 	return false;
983 }
984 
985 /**
986  * keyring_restrict - Look up and apply a restriction to a keyring
987  *
988  * @keyring: The keyring to be restricted
989  * @restriction: The restriction options to apply to the keyring
990  */
991 int keyring_restrict(key_ref_t keyring_ref, const char *type,
992 		     const char *restriction)
993 {
994 	struct key *keyring;
995 	struct key_type *restrict_type = NULL;
996 	struct key_restriction *restrict_link;
997 	int ret = 0;
998 
999 	keyring = key_ref_to_ptr(keyring_ref);
1000 	key_check(keyring);
1001 
1002 	if (keyring->type != &key_type_keyring)
1003 		return -ENOTDIR;
1004 
1005 	if (!type) {
1006 		restrict_link = keyring_restriction_alloc(restrict_link_reject);
1007 	} else {
1008 		restrict_type = key_type_lookup(type);
1009 
1010 		if (IS_ERR(restrict_type))
1011 			return PTR_ERR(restrict_type);
1012 
1013 		if (!restrict_type->lookup_restriction) {
1014 			ret = -ENOENT;
1015 			goto error;
1016 		}
1017 
1018 		restrict_link = restrict_type->lookup_restriction(restriction);
1019 	}
1020 
1021 	if (IS_ERR(restrict_link)) {
1022 		ret = PTR_ERR(restrict_link);
1023 		goto error;
1024 	}
1025 
1026 	down_write(&keyring->sem);
1027 	down_write(&keyring_serialise_restrict_sem);
1028 
1029 	if (keyring->restrict_link)
1030 		ret = -EEXIST;
1031 	else if (keyring_detect_restriction_cycle(keyring, restrict_link))
1032 		ret = -EDEADLK;
1033 	else
1034 		keyring->restrict_link = restrict_link;
1035 
1036 	up_write(&keyring_serialise_restrict_sem);
1037 	up_write(&keyring->sem);
1038 
1039 	if (ret < 0) {
1040 		key_put(restrict_link->key);
1041 		kfree(restrict_link);
1042 	}
1043 
1044 error:
1045 	if (restrict_type)
1046 		key_type_put(restrict_type);
1047 
1048 	return ret;
1049 }
1050 EXPORT_SYMBOL(keyring_restrict);
1051 
1052 /*
1053  * Search the given keyring for a key that might be updated.
1054  *
1055  * The caller must guarantee that the keyring is a keyring and that the
1056  * permission is granted to modify the keyring as no check is made here.  The
1057  * caller must also hold a lock on the keyring semaphore.
1058  *
1059  * Returns a pointer to the found key with usage count incremented if
1060  * successful and returns NULL if not found.  Revoked and invalidated keys are
1061  * skipped over.
1062  *
1063  * If successful, the possession indicator is propagated from the keyring ref
1064  * to the returned key reference.
1065  */
1066 key_ref_t find_key_to_update(key_ref_t keyring_ref,
1067 			     const struct keyring_index_key *index_key)
1068 {
1069 	struct key *keyring, *key;
1070 	const void *object;
1071 
1072 	keyring = key_ref_to_ptr(keyring_ref);
1073 
1074 	kenter("{%d},{%s,%s}",
1075 	       keyring->serial, index_key->type->name, index_key->description);
1076 
1077 	object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
1078 				  index_key);
1079 
1080 	if (object)
1081 		goto found;
1082 
1083 	kleave(" = NULL");
1084 	return NULL;
1085 
1086 found:
1087 	key = keyring_ptr_to_key(object);
1088 	if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
1089 			  (1 << KEY_FLAG_REVOKED))) {
1090 		kleave(" = NULL [x]");
1091 		return NULL;
1092 	}
1093 	__key_get(key);
1094 	kleave(" = {%d}", key->serial);
1095 	return make_key_ref(key, is_key_possessed(keyring_ref));
1096 }
1097 
1098 /*
1099  * Find a keyring with the specified name.
1100  *
1101  * Only keyrings that have nonzero refcount, are not revoked, and are owned by a
1102  * user in the current user namespace are considered.  If @uid_keyring is %true,
1103  * the keyring additionally must have been allocated as a user or user session
1104  * keyring; otherwise, it must grant Search permission directly to the caller.
1105  *
1106  * Returns a pointer to the keyring with the keyring's refcount having being
1107  * incremented on success.  -ENOKEY is returned if a key could not be found.
1108  */
1109 struct key *find_keyring_by_name(const char *name, bool uid_keyring)
1110 {
1111 	struct key *keyring;
1112 	int bucket;
1113 
1114 	if (!name)
1115 		return ERR_PTR(-EINVAL);
1116 
1117 	bucket = keyring_hash(name);
1118 
1119 	read_lock(&keyring_name_lock);
1120 
1121 	if (keyring_name_hash[bucket].next) {
1122 		/* search this hash bucket for a keyring with a matching name
1123 		 * that's readable and that hasn't been revoked */
1124 		list_for_each_entry(keyring,
1125 				    &keyring_name_hash[bucket],
1126 				    name_link
1127 				    ) {
1128 			if (!kuid_has_mapping(current_user_ns(), keyring->user->uid))
1129 				continue;
1130 
1131 			if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1132 				continue;
1133 
1134 			if (strcmp(keyring->description, name) != 0)
1135 				continue;
1136 
1137 			if (uid_keyring) {
1138 				if (!test_bit(KEY_FLAG_UID_KEYRING,
1139 					      &keyring->flags))
1140 					continue;
1141 			} else {
1142 				if (key_permission(make_key_ref(keyring, 0),
1143 						   KEY_NEED_SEARCH) < 0)
1144 					continue;
1145 			}
1146 
1147 			/* we've got a match but we might end up racing with
1148 			 * key_cleanup() if the keyring is currently 'dead'
1149 			 * (ie. it has a zero usage count) */
1150 			if (!refcount_inc_not_zero(&keyring->usage))
1151 				continue;
1152 			keyring->last_used_at = ktime_get_real_seconds();
1153 			goto out;
1154 		}
1155 	}
1156 
1157 	keyring = ERR_PTR(-ENOKEY);
1158 out:
1159 	read_unlock(&keyring_name_lock);
1160 	return keyring;
1161 }
1162 
1163 static int keyring_detect_cycle_iterator(const void *object,
1164 					 void *iterator_data)
1165 {
1166 	struct keyring_search_context *ctx = iterator_data;
1167 	const struct key *key = keyring_ptr_to_key(object);
1168 
1169 	kenter("{%d}", key->serial);
1170 
1171 	/* We might get a keyring with matching index-key that is nonetheless a
1172 	 * different keyring. */
1173 	if (key != ctx->match_data.raw_data)
1174 		return 0;
1175 
1176 	ctx->result = ERR_PTR(-EDEADLK);
1177 	return 1;
1178 }
1179 
1180 /*
1181  * See if a cycle will will be created by inserting acyclic tree B in acyclic
1182  * tree A at the topmost level (ie: as a direct child of A).
1183  *
1184  * Since we are adding B to A at the top level, checking for cycles should just
1185  * be a matter of seeing if node A is somewhere in tree B.
1186  */
1187 static int keyring_detect_cycle(struct key *A, struct key *B)
1188 {
1189 	struct keyring_search_context ctx = {
1190 		.index_key		= A->index_key,
1191 		.match_data.raw_data	= A,
1192 		.match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
1193 		.iterator		= keyring_detect_cycle_iterator,
1194 		.flags			= (KEYRING_SEARCH_NO_STATE_CHECK |
1195 					   KEYRING_SEARCH_NO_UPDATE_TIME |
1196 					   KEYRING_SEARCH_NO_CHECK_PERM |
1197 					   KEYRING_SEARCH_DETECT_TOO_DEEP),
1198 	};
1199 
1200 	rcu_read_lock();
1201 	search_nested_keyrings(B, &ctx);
1202 	rcu_read_unlock();
1203 	return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
1204 }
1205 
1206 /*
1207  * Preallocate memory so that a key can be linked into to a keyring.
1208  */
1209 int __key_link_begin(struct key *keyring,
1210 		     const struct keyring_index_key *index_key,
1211 		     struct assoc_array_edit **_edit)
1212 	__acquires(&keyring->sem)
1213 	__acquires(&keyring_serialise_link_sem)
1214 {
1215 	struct assoc_array_edit *edit;
1216 	int ret;
1217 
1218 	kenter("%d,%s,%s,",
1219 	       keyring->serial, index_key->type->name, index_key->description);
1220 
1221 	BUG_ON(index_key->desc_len == 0);
1222 
1223 	if (keyring->type != &key_type_keyring)
1224 		return -ENOTDIR;
1225 
1226 	down_write(&keyring->sem);
1227 
1228 	ret = -EKEYREVOKED;
1229 	if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1230 		goto error_krsem;
1231 
1232 	/* serialise link/link calls to prevent parallel calls causing a cycle
1233 	 * when linking two keyring in opposite orders */
1234 	if (index_key->type == &key_type_keyring)
1235 		down_write(&keyring_serialise_link_sem);
1236 
1237 	/* Create an edit script that will insert/replace the key in the
1238 	 * keyring tree.
1239 	 */
1240 	edit = assoc_array_insert(&keyring->keys,
1241 				  &keyring_assoc_array_ops,
1242 				  index_key,
1243 				  NULL);
1244 	if (IS_ERR(edit)) {
1245 		ret = PTR_ERR(edit);
1246 		goto error_sem;
1247 	}
1248 
1249 	/* If we're not replacing a link in-place then we're going to need some
1250 	 * extra quota.
1251 	 */
1252 	if (!edit->dead_leaf) {
1253 		ret = key_payload_reserve(keyring,
1254 					  keyring->datalen + KEYQUOTA_LINK_BYTES);
1255 		if (ret < 0)
1256 			goto error_cancel;
1257 	}
1258 
1259 	*_edit = edit;
1260 	kleave(" = 0");
1261 	return 0;
1262 
1263 error_cancel:
1264 	assoc_array_cancel_edit(edit);
1265 error_sem:
1266 	if (index_key->type == &key_type_keyring)
1267 		up_write(&keyring_serialise_link_sem);
1268 error_krsem:
1269 	up_write(&keyring->sem);
1270 	kleave(" = %d", ret);
1271 	return ret;
1272 }
1273 
1274 /*
1275  * Check already instantiated keys aren't going to be a problem.
1276  *
1277  * The caller must have called __key_link_begin(). Don't need to call this for
1278  * keys that were created since __key_link_begin() was called.
1279  */
1280 int __key_link_check_live_key(struct key *keyring, struct key *key)
1281 {
1282 	if (key->type == &key_type_keyring)
1283 		/* check that we aren't going to create a cycle by linking one
1284 		 * keyring to another */
1285 		return keyring_detect_cycle(keyring, key);
1286 	return 0;
1287 }
1288 
1289 /*
1290  * Link a key into to a keyring.
1291  *
1292  * Must be called with __key_link_begin() having being called.  Discards any
1293  * already extant link to matching key if there is one, so that each keyring
1294  * holds at most one link to any given key of a particular type+description
1295  * combination.
1296  */
1297 void __key_link(struct key *key, struct assoc_array_edit **_edit)
1298 {
1299 	__key_get(key);
1300 	assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
1301 	assoc_array_apply_edit(*_edit);
1302 	*_edit = NULL;
1303 }
1304 
1305 /*
1306  * Finish linking a key into to a keyring.
1307  *
1308  * Must be called with __key_link_begin() having being called.
1309  */
1310 void __key_link_end(struct key *keyring,
1311 		    const struct keyring_index_key *index_key,
1312 		    struct assoc_array_edit *edit)
1313 	__releases(&keyring->sem)
1314 	__releases(&keyring_serialise_link_sem)
1315 {
1316 	BUG_ON(index_key->type == NULL);
1317 	kenter("%d,%s,", keyring->serial, index_key->type->name);
1318 
1319 	if (index_key->type == &key_type_keyring)
1320 		up_write(&keyring_serialise_link_sem);
1321 
1322 	if (edit) {
1323 		if (!edit->dead_leaf) {
1324 			key_payload_reserve(keyring,
1325 				keyring->datalen - KEYQUOTA_LINK_BYTES);
1326 		}
1327 		assoc_array_cancel_edit(edit);
1328 	}
1329 	up_write(&keyring->sem);
1330 }
1331 
1332 /*
1333  * Check addition of keys to restricted keyrings.
1334  */
1335 static int __key_link_check_restriction(struct key *keyring, struct key *key)
1336 {
1337 	if (!keyring->restrict_link || !keyring->restrict_link->check)
1338 		return 0;
1339 	return keyring->restrict_link->check(keyring, key->type, &key->payload,
1340 					     keyring->restrict_link->key);
1341 }
1342 
1343 /**
1344  * key_link - Link a key to a keyring
1345  * @keyring: The keyring to make the link in.
1346  * @key: The key to link to.
1347  *
1348  * Make a link in a keyring to a key, such that the keyring holds a reference
1349  * on that key and the key can potentially be found by searching that keyring.
1350  *
1351  * This function will write-lock the keyring's semaphore and will consume some
1352  * of the user's key data quota to hold the link.
1353  *
1354  * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
1355  * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
1356  * full, -EDQUOT if there is insufficient key data quota remaining to add
1357  * another link or -ENOMEM if there's insufficient memory.
1358  *
1359  * It is assumed that the caller has checked that it is permitted for a link to
1360  * be made (the keyring should have Write permission and the key Link
1361  * permission).
1362  */
1363 int key_link(struct key *keyring, struct key *key)
1364 {
1365 	struct assoc_array_edit *edit;
1366 	int ret;
1367 
1368 	kenter("{%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1369 
1370 	key_check(keyring);
1371 	key_check(key);
1372 
1373 	ret = __key_link_begin(keyring, &key->index_key, &edit);
1374 	if (ret == 0) {
1375 		kdebug("begun {%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1376 		ret = __key_link_check_restriction(keyring, key);
1377 		if (ret == 0)
1378 			ret = __key_link_check_live_key(keyring, key);
1379 		if (ret == 0)
1380 			__key_link(key, &edit);
1381 		__key_link_end(keyring, &key->index_key, edit);
1382 	}
1383 
1384 	kleave(" = %d {%d,%d}", ret, keyring->serial, refcount_read(&keyring->usage));
1385 	return ret;
1386 }
1387 EXPORT_SYMBOL(key_link);
1388 
1389 /**
1390  * key_unlink - Unlink the first link to a key from a keyring.
1391  * @keyring: The keyring to remove the link from.
1392  * @key: The key the link is to.
1393  *
1394  * Remove a link from a keyring to a key.
1395  *
1396  * This function will write-lock the keyring's semaphore.
1397  *
1398  * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1399  * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1400  * memory.
1401  *
1402  * It is assumed that the caller has checked that it is permitted for a link to
1403  * be removed (the keyring should have Write permission; no permissions are
1404  * required on the key).
1405  */
1406 int key_unlink(struct key *keyring, struct key *key)
1407 {
1408 	struct assoc_array_edit *edit;
1409 	int ret;
1410 
1411 	key_check(keyring);
1412 	key_check(key);
1413 
1414 	if (keyring->type != &key_type_keyring)
1415 		return -ENOTDIR;
1416 
1417 	down_write(&keyring->sem);
1418 
1419 	edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
1420 				  &key->index_key);
1421 	if (IS_ERR(edit)) {
1422 		ret = PTR_ERR(edit);
1423 		goto error;
1424 	}
1425 	ret = -ENOENT;
1426 	if (edit == NULL)
1427 		goto error;
1428 
1429 	assoc_array_apply_edit(edit);
1430 	key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
1431 	ret = 0;
1432 
1433 error:
1434 	up_write(&keyring->sem);
1435 	return ret;
1436 }
1437 EXPORT_SYMBOL(key_unlink);
1438 
1439 /**
1440  * keyring_clear - Clear a keyring
1441  * @keyring: The keyring to clear.
1442  *
1443  * Clear the contents of the specified keyring.
1444  *
1445  * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1446  */
1447 int keyring_clear(struct key *keyring)
1448 {
1449 	struct assoc_array_edit *edit;
1450 	int ret;
1451 
1452 	if (keyring->type != &key_type_keyring)
1453 		return -ENOTDIR;
1454 
1455 	down_write(&keyring->sem);
1456 
1457 	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1458 	if (IS_ERR(edit)) {
1459 		ret = PTR_ERR(edit);
1460 	} else {
1461 		if (edit)
1462 			assoc_array_apply_edit(edit);
1463 		key_payload_reserve(keyring, 0);
1464 		ret = 0;
1465 	}
1466 
1467 	up_write(&keyring->sem);
1468 	return ret;
1469 }
1470 EXPORT_SYMBOL(keyring_clear);
1471 
1472 /*
1473  * Dispose of the links from a revoked keyring.
1474  *
1475  * This is called with the key sem write-locked.
1476  */
1477 static void keyring_revoke(struct key *keyring)
1478 {
1479 	struct assoc_array_edit *edit;
1480 
1481 	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1482 	if (!IS_ERR(edit)) {
1483 		if (edit)
1484 			assoc_array_apply_edit(edit);
1485 		key_payload_reserve(keyring, 0);
1486 	}
1487 }
1488 
1489 static bool keyring_gc_select_iterator(void *object, void *iterator_data)
1490 {
1491 	struct key *key = keyring_ptr_to_key(object);
1492 	time64_t *limit = iterator_data;
1493 
1494 	if (key_is_dead(key, *limit))
1495 		return false;
1496 	key_get(key);
1497 	return true;
1498 }
1499 
1500 static int keyring_gc_check_iterator(const void *object, void *iterator_data)
1501 {
1502 	const struct key *key = keyring_ptr_to_key(object);
1503 	time64_t *limit = iterator_data;
1504 
1505 	key_check(key);
1506 	return key_is_dead(key, *limit);
1507 }
1508 
1509 /*
1510  * Garbage collect pointers from a keyring.
1511  *
1512  * Not called with any locks held.  The keyring's key struct will not be
1513  * deallocated under us as only our caller may deallocate it.
1514  */
1515 void keyring_gc(struct key *keyring, time64_t limit)
1516 {
1517 	int result;
1518 
1519 	kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1520 
1521 	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
1522 			      (1 << KEY_FLAG_REVOKED)))
1523 		goto dont_gc;
1524 
1525 	/* scan the keyring looking for dead keys */
1526 	rcu_read_lock();
1527 	result = assoc_array_iterate(&keyring->keys,
1528 				     keyring_gc_check_iterator, &limit);
1529 	rcu_read_unlock();
1530 	if (result == true)
1531 		goto do_gc;
1532 
1533 dont_gc:
1534 	kleave(" [no gc]");
1535 	return;
1536 
1537 do_gc:
1538 	down_write(&keyring->sem);
1539 	assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
1540 		       keyring_gc_select_iterator, &limit);
1541 	up_write(&keyring->sem);
1542 	kleave(" [gc]");
1543 }
1544 
1545 /*
1546  * Garbage collect restriction pointers from a keyring.
1547  *
1548  * Keyring restrictions are associated with a key type, and must be cleaned
1549  * up if the key type is unregistered. The restriction is altered to always
1550  * reject additional keys so a keyring cannot be opened up by unregistering
1551  * a key type.
1552  *
1553  * Not called with any keyring locks held. The keyring's key struct will not
1554  * be deallocated under us as only our caller may deallocate it.
1555  *
1556  * The caller is required to hold key_types_sem and dead_type->sem. This is
1557  * fulfilled by key_gc_keytype() holding the locks on behalf of
1558  * key_garbage_collector(), which it invokes on a workqueue.
1559  */
1560 void keyring_restriction_gc(struct key *keyring, struct key_type *dead_type)
1561 {
1562 	struct key_restriction *keyres;
1563 
1564 	kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1565 
1566 	/*
1567 	 * keyring->restrict_link is only assigned at key allocation time
1568 	 * or with the key type locked, so the only values that could be
1569 	 * concurrently assigned to keyring->restrict_link are for key
1570 	 * types other than dead_type. Given this, it's ok to check
1571 	 * the key type before acquiring keyring->sem.
1572 	 */
1573 	if (!dead_type || !keyring->restrict_link ||
1574 	    keyring->restrict_link->keytype != dead_type) {
1575 		kleave(" [no restriction gc]");
1576 		return;
1577 	}
1578 
1579 	/* Lock the keyring to ensure that a link is not in progress */
1580 	down_write(&keyring->sem);
1581 
1582 	keyres = keyring->restrict_link;
1583 
1584 	keyres->check = restrict_link_reject;
1585 
1586 	key_put(keyres->key);
1587 	keyres->key = NULL;
1588 	keyres->keytype = NULL;
1589 
1590 	up_write(&keyring->sem);
1591 
1592 	kleave(" [restriction gc]");
1593 }
1594