xref: /openbmc/linux/security/keys/keyring.c (revision 30614cf3)
1 /* Keyring handling
2  *
3  * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/seq_file.h>
18 #include <linux/err.h>
19 #include <keys/keyring-type.h>
20 #include <keys/user-type.h>
21 #include <linux/assoc_array_priv.h>
22 #include <linux/uaccess.h>
23 #include "internal.h"
24 
25 /*
26  * When plumbing the depths of the key tree, this sets a hard limit
27  * set on how deep we're willing to go.
28  */
29 #define KEYRING_SEARCH_MAX_DEPTH 6
30 
31 /*
32  * We keep all named keyrings in a hash to speed looking them up.
33  */
34 #define KEYRING_NAME_HASH_SIZE	(1 << 5)
35 
36 /*
37  * We mark pointers we pass to the associative array with bit 1 set if
38  * they're keyrings and clear otherwise.
39  */
40 #define KEYRING_PTR_SUBTYPE	0x2UL
41 
42 static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
43 {
44 	return (unsigned long)x & KEYRING_PTR_SUBTYPE;
45 }
46 static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
47 {
48 	void *object = assoc_array_ptr_to_leaf(x);
49 	return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
50 }
51 static inline void *keyring_key_to_ptr(struct key *key)
52 {
53 	if (key->type == &key_type_keyring)
54 		return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
55 	return key;
56 }
57 
58 static struct list_head	keyring_name_hash[KEYRING_NAME_HASH_SIZE];
59 static DEFINE_RWLOCK(keyring_name_lock);
60 
61 static inline unsigned keyring_hash(const char *desc)
62 {
63 	unsigned bucket = 0;
64 
65 	for (; *desc; desc++)
66 		bucket += (unsigned char)*desc;
67 
68 	return bucket & (KEYRING_NAME_HASH_SIZE - 1);
69 }
70 
71 /*
72  * The keyring key type definition.  Keyrings are simply keys of this type and
73  * can be treated as ordinary keys in addition to having their own special
74  * operations.
75  */
76 static int keyring_preparse(struct key_preparsed_payload *prep);
77 static void keyring_free_preparse(struct key_preparsed_payload *prep);
78 static int keyring_instantiate(struct key *keyring,
79 			       struct key_preparsed_payload *prep);
80 static void keyring_revoke(struct key *keyring);
81 static void keyring_destroy(struct key *keyring);
82 static void keyring_describe(const struct key *keyring, struct seq_file *m);
83 static long keyring_read(const struct key *keyring,
84 			 char __user *buffer, size_t buflen);
85 
86 struct key_type key_type_keyring = {
87 	.name		= "keyring",
88 	.def_datalen	= 0,
89 	.preparse	= keyring_preparse,
90 	.free_preparse	= keyring_free_preparse,
91 	.instantiate	= keyring_instantiate,
92 	.revoke		= keyring_revoke,
93 	.destroy	= keyring_destroy,
94 	.describe	= keyring_describe,
95 	.read		= keyring_read,
96 };
97 EXPORT_SYMBOL(key_type_keyring);
98 
99 /*
100  * Semaphore to serialise link/link calls to prevent two link calls in parallel
101  * introducing a cycle.
102  */
103 static DECLARE_RWSEM(keyring_serialise_link_sem);
104 
105 /*
106  * Publish the name of a keyring so that it can be found by name (if it has
107  * one).
108  */
109 static void keyring_publish_name(struct key *keyring)
110 {
111 	int bucket;
112 
113 	if (keyring->description) {
114 		bucket = keyring_hash(keyring->description);
115 
116 		write_lock(&keyring_name_lock);
117 
118 		if (!keyring_name_hash[bucket].next)
119 			INIT_LIST_HEAD(&keyring_name_hash[bucket]);
120 
121 		list_add_tail(&keyring->type_data.link,
122 			      &keyring_name_hash[bucket]);
123 
124 		write_unlock(&keyring_name_lock);
125 	}
126 }
127 
128 /*
129  * Preparse a keyring payload
130  */
131 static int keyring_preparse(struct key_preparsed_payload *prep)
132 {
133 	return prep->datalen != 0 ? -EINVAL : 0;
134 }
135 
136 /*
137  * Free a preparse of a user defined key payload
138  */
139 static void keyring_free_preparse(struct key_preparsed_payload *prep)
140 {
141 }
142 
143 /*
144  * Initialise a keyring.
145  *
146  * Returns 0 on success, -EINVAL if given any data.
147  */
148 static int keyring_instantiate(struct key *keyring,
149 			       struct key_preparsed_payload *prep)
150 {
151 	assoc_array_init(&keyring->keys);
152 	/* make the keyring available by name if it has one */
153 	keyring_publish_name(keyring);
154 	return 0;
155 }
156 
157 /*
158  * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit.  Ideally we'd
159  * fold the carry back too, but that requires inline asm.
160  */
161 static u64 mult_64x32_and_fold(u64 x, u32 y)
162 {
163 	u64 hi = (u64)(u32)(x >> 32) * y;
164 	u64 lo = (u64)(u32)(x) * y;
165 	return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
166 }
167 
168 /*
169  * Hash a key type and description.
170  */
171 static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key)
172 {
173 	const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
174 	const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
175 	const char *description = index_key->description;
176 	unsigned long hash, type;
177 	u32 piece;
178 	u64 acc;
179 	int n, desc_len = index_key->desc_len;
180 
181 	type = (unsigned long)index_key->type;
182 
183 	acc = mult_64x32_and_fold(type, desc_len + 13);
184 	acc = mult_64x32_and_fold(acc, 9207);
185 	for (;;) {
186 		n = desc_len;
187 		if (n <= 0)
188 			break;
189 		if (n > 4)
190 			n = 4;
191 		piece = 0;
192 		memcpy(&piece, description, n);
193 		description += n;
194 		desc_len -= n;
195 		acc = mult_64x32_and_fold(acc, piece);
196 		acc = mult_64x32_and_fold(acc, 9207);
197 	}
198 
199 	/* Fold the hash down to 32 bits if need be. */
200 	hash = acc;
201 	if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
202 		hash ^= acc >> 32;
203 
204 	/* Squidge all the keyrings into a separate part of the tree to
205 	 * ordinary keys by making sure the lowest level segment in the hash is
206 	 * zero for keyrings and non-zero otherwise.
207 	 */
208 	if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
209 		return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
210 	if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
211 		return (hash + (hash << level_shift)) & ~fan_mask;
212 	return hash;
213 }
214 
215 /*
216  * Build the next index key chunk.
217  *
218  * On 32-bit systems the index key is laid out as:
219  *
220  *	0	4	5	9...
221  *	hash	desclen	typeptr	desc[]
222  *
223  * On 64-bit systems:
224  *
225  *	0	8	9	17...
226  *	hash	desclen	typeptr	desc[]
227  *
228  * We return it one word-sized chunk at a time.
229  */
230 static unsigned long keyring_get_key_chunk(const void *data, int level)
231 {
232 	const struct keyring_index_key *index_key = data;
233 	unsigned long chunk = 0;
234 	long offset = 0;
235 	int desc_len = index_key->desc_len, n = sizeof(chunk);
236 
237 	level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
238 	switch (level) {
239 	case 0:
240 		return hash_key_type_and_desc(index_key);
241 	case 1:
242 		return ((unsigned long)index_key->type << 8) | desc_len;
243 	case 2:
244 		if (desc_len == 0)
245 			return (u8)((unsigned long)index_key->type >>
246 				    (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
247 		n--;
248 		offset = 1;
249 	default:
250 		offset += sizeof(chunk) - 1;
251 		offset += (level - 3) * sizeof(chunk);
252 		if (offset >= desc_len)
253 			return 0;
254 		desc_len -= offset;
255 		if (desc_len > n)
256 			desc_len = n;
257 		offset += desc_len;
258 		do {
259 			chunk <<= 8;
260 			chunk |= ((u8*)index_key->description)[--offset];
261 		} while (--desc_len > 0);
262 
263 		if (level == 2) {
264 			chunk <<= 8;
265 			chunk |= (u8)((unsigned long)index_key->type >>
266 				      (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
267 		}
268 		return chunk;
269 	}
270 }
271 
272 static unsigned long keyring_get_object_key_chunk(const void *object, int level)
273 {
274 	const struct key *key = keyring_ptr_to_key(object);
275 	return keyring_get_key_chunk(&key->index_key, level);
276 }
277 
278 static bool keyring_compare_object(const void *object, const void *data)
279 {
280 	const struct keyring_index_key *index_key = data;
281 	const struct key *key = keyring_ptr_to_key(object);
282 
283 	return key->index_key.type == index_key->type &&
284 		key->index_key.desc_len == index_key->desc_len &&
285 		memcmp(key->index_key.description, index_key->description,
286 		       index_key->desc_len) == 0;
287 }
288 
289 /*
290  * Compare the index keys of a pair of objects and determine the bit position
291  * at which they differ - if they differ.
292  */
293 static int keyring_diff_objects(const void *object, const void *data)
294 {
295 	const struct key *key_a = keyring_ptr_to_key(object);
296 	const struct keyring_index_key *a = &key_a->index_key;
297 	const struct keyring_index_key *b = data;
298 	unsigned long seg_a, seg_b;
299 	int level, i;
300 
301 	level = 0;
302 	seg_a = hash_key_type_and_desc(a);
303 	seg_b = hash_key_type_and_desc(b);
304 	if ((seg_a ^ seg_b) != 0)
305 		goto differ;
306 
307 	/* The number of bits contributed by the hash is controlled by a
308 	 * constant in the assoc_array headers.  Everything else thereafter we
309 	 * can deal with as being machine word-size dependent.
310 	 */
311 	level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
312 	seg_a = a->desc_len;
313 	seg_b = b->desc_len;
314 	if ((seg_a ^ seg_b) != 0)
315 		goto differ;
316 
317 	/* The next bit may not work on big endian */
318 	level++;
319 	seg_a = (unsigned long)a->type;
320 	seg_b = (unsigned long)b->type;
321 	if ((seg_a ^ seg_b) != 0)
322 		goto differ;
323 
324 	level += sizeof(unsigned long);
325 	if (a->desc_len == 0)
326 		goto same;
327 
328 	i = 0;
329 	if (((unsigned long)a->description | (unsigned long)b->description) &
330 	    (sizeof(unsigned long) - 1)) {
331 		do {
332 			seg_a = *(unsigned long *)(a->description + i);
333 			seg_b = *(unsigned long *)(b->description + i);
334 			if ((seg_a ^ seg_b) != 0)
335 				goto differ_plus_i;
336 			i += sizeof(unsigned long);
337 		} while (i < (a->desc_len & (sizeof(unsigned long) - 1)));
338 	}
339 
340 	for (; i < a->desc_len; i++) {
341 		seg_a = *(unsigned char *)(a->description + i);
342 		seg_b = *(unsigned char *)(b->description + i);
343 		if ((seg_a ^ seg_b) != 0)
344 			goto differ_plus_i;
345 	}
346 
347 same:
348 	return -1;
349 
350 differ_plus_i:
351 	level += i;
352 differ:
353 	i = level * 8 + __ffs(seg_a ^ seg_b);
354 	return i;
355 }
356 
357 /*
358  * Free an object after stripping the keyring flag off of the pointer.
359  */
360 static void keyring_free_object(void *object)
361 {
362 	key_put(keyring_ptr_to_key(object));
363 }
364 
365 /*
366  * Operations for keyring management by the index-tree routines.
367  */
368 static const struct assoc_array_ops keyring_assoc_array_ops = {
369 	.get_key_chunk		= keyring_get_key_chunk,
370 	.get_object_key_chunk	= keyring_get_object_key_chunk,
371 	.compare_object		= keyring_compare_object,
372 	.diff_objects		= keyring_diff_objects,
373 	.free_object		= keyring_free_object,
374 };
375 
376 /*
377  * Clean up a keyring when it is destroyed.  Unpublish its name if it had one
378  * and dispose of its data.
379  *
380  * The garbage collector detects the final key_put(), removes the keyring from
381  * the serial number tree and then does RCU synchronisation before coming here,
382  * so we shouldn't need to worry about code poking around here with the RCU
383  * readlock held by this time.
384  */
385 static void keyring_destroy(struct key *keyring)
386 {
387 	if (keyring->description) {
388 		write_lock(&keyring_name_lock);
389 
390 		if (keyring->type_data.link.next != NULL &&
391 		    !list_empty(&keyring->type_data.link))
392 			list_del(&keyring->type_data.link);
393 
394 		write_unlock(&keyring_name_lock);
395 	}
396 
397 	assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
398 }
399 
400 /*
401  * Describe a keyring for /proc.
402  */
403 static void keyring_describe(const struct key *keyring, struct seq_file *m)
404 {
405 	if (keyring->description)
406 		seq_puts(m, keyring->description);
407 	else
408 		seq_puts(m, "[anon]");
409 
410 	if (key_is_instantiated(keyring)) {
411 		if (keyring->keys.nr_leaves_on_tree != 0)
412 			seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
413 		else
414 			seq_puts(m, ": empty");
415 	}
416 }
417 
418 struct keyring_read_iterator_context {
419 	size_t			qty;
420 	size_t			count;
421 	key_serial_t __user	*buffer;
422 };
423 
424 static int keyring_read_iterator(const void *object, void *data)
425 {
426 	struct keyring_read_iterator_context *ctx = data;
427 	const struct key *key = keyring_ptr_to_key(object);
428 	int ret;
429 
430 	kenter("{%s,%d},,{%zu/%zu}",
431 	       key->type->name, key->serial, ctx->count, ctx->qty);
432 
433 	if (ctx->count >= ctx->qty)
434 		return 1;
435 
436 	ret = put_user(key->serial, ctx->buffer);
437 	if (ret < 0)
438 		return ret;
439 	ctx->buffer++;
440 	ctx->count += sizeof(key->serial);
441 	return 0;
442 }
443 
444 /*
445  * Read a list of key IDs from the keyring's contents in binary form
446  *
447  * The keyring's semaphore is read-locked by the caller.  This prevents someone
448  * from modifying it under us - which could cause us to read key IDs multiple
449  * times.
450  */
451 static long keyring_read(const struct key *keyring,
452 			 char __user *buffer, size_t buflen)
453 {
454 	struct keyring_read_iterator_context ctx;
455 	unsigned long nr_keys;
456 	int ret;
457 
458 	kenter("{%d},,%zu", key_serial(keyring), buflen);
459 
460 	if (buflen & (sizeof(key_serial_t) - 1))
461 		return -EINVAL;
462 
463 	nr_keys = keyring->keys.nr_leaves_on_tree;
464 	if (nr_keys == 0)
465 		return 0;
466 
467 	/* Calculate how much data we could return */
468 	ctx.qty = nr_keys * sizeof(key_serial_t);
469 
470 	if (!buffer || !buflen)
471 		return ctx.qty;
472 
473 	if (buflen > ctx.qty)
474 		ctx.qty = buflen;
475 
476 	/* Copy the IDs of the subscribed keys into the buffer */
477 	ctx.buffer = (key_serial_t __user *)buffer;
478 	ctx.count = 0;
479 	ret = assoc_array_iterate(&keyring->keys, keyring_read_iterator, &ctx);
480 	if (ret < 0) {
481 		kleave(" = %d [iterate]", ret);
482 		return ret;
483 	}
484 
485 	kleave(" = %zu [ok]", ctx.count);
486 	return ctx.count;
487 }
488 
489 /*
490  * Allocate a keyring and link into the destination keyring.
491  */
492 struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
493 			  const struct cred *cred, key_perm_t perm,
494 			  unsigned long flags, struct key *dest)
495 {
496 	struct key *keyring;
497 	int ret;
498 
499 	keyring = key_alloc(&key_type_keyring, description,
500 			    uid, gid, cred, perm, flags);
501 	if (!IS_ERR(keyring)) {
502 		ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
503 		if (ret < 0) {
504 			key_put(keyring);
505 			keyring = ERR_PTR(ret);
506 		}
507 	}
508 
509 	return keyring;
510 }
511 EXPORT_SYMBOL(keyring_alloc);
512 
513 /*
514  * By default, we keys found by getting an exact match on their descriptions.
515  */
516 bool key_default_cmp(const struct key *key,
517 		     const struct key_match_data *match_data)
518 {
519 	return strcmp(key->description, match_data->raw_data) == 0;
520 }
521 
522 /*
523  * Iteration function to consider each key found.
524  */
525 static int keyring_search_iterator(const void *object, void *iterator_data)
526 {
527 	struct keyring_search_context *ctx = iterator_data;
528 	const struct key *key = keyring_ptr_to_key(object);
529 	unsigned long kflags = key->flags;
530 
531 	kenter("{%d}", key->serial);
532 
533 	/* ignore keys not of this type */
534 	if (key->type != ctx->index_key.type) {
535 		kleave(" = 0 [!type]");
536 		return 0;
537 	}
538 
539 	/* skip invalidated, revoked and expired keys */
540 	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
541 		if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
542 			      (1 << KEY_FLAG_REVOKED))) {
543 			ctx->result = ERR_PTR(-EKEYREVOKED);
544 			kleave(" = %d [invrev]", ctx->skipped_ret);
545 			goto skipped;
546 		}
547 
548 		if (key->expiry && ctx->now.tv_sec >= key->expiry) {
549 			ctx->result = ERR_PTR(-EKEYEXPIRED);
550 			kleave(" = %d [expire]", ctx->skipped_ret);
551 			goto skipped;
552 		}
553 	}
554 
555 	/* keys that don't match */
556 	if (!ctx->match_data.cmp(key, &ctx->match_data)) {
557 		kleave(" = 0 [!match]");
558 		return 0;
559 	}
560 
561 	/* key must have search permissions */
562 	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
563 	    key_task_permission(make_key_ref(key, ctx->possessed),
564 				ctx->cred, KEY_NEED_SEARCH) < 0) {
565 		ctx->result = ERR_PTR(-EACCES);
566 		kleave(" = %d [!perm]", ctx->skipped_ret);
567 		goto skipped;
568 	}
569 
570 	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
571 		/* we set a different error code if we pass a negative key */
572 		if (kflags & (1 << KEY_FLAG_NEGATIVE)) {
573 			smp_rmb();
574 			ctx->result = ERR_PTR(key->type_data.reject_error);
575 			kleave(" = %d [neg]", ctx->skipped_ret);
576 			goto skipped;
577 		}
578 	}
579 
580 	/* Found */
581 	ctx->result = make_key_ref(key, ctx->possessed);
582 	kleave(" = 1 [found]");
583 	return 1;
584 
585 skipped:
586 	return ctx->skipped_ret;
587 }
588 
589 /*
590  * Search inside a keyring for a key.  We can search by walking to it
591  * directly based on its index-key or we can iterate over the entire
592  * tree looking for it, based on the match function.
593  */
594 static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
595 {
596 	if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) {
597 		const void *object;
598 
599 		object = assoc_array_find(&keyring->keys,
600 					  &keyring_assoc_array_ops,
601 					  &ctx->index_key);
602 		return object ? ctx->iterator(object, ctx) : 0;
603 	}
604 	return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
605 }
606 
607 /*
608  * Search a tree of keyrings that point to other keyrings up to the maximum
609  * depth.
610  */
611 static bool search_nested_keyrings(struct key *keyring,
612 				   struct keyring_search_context *ctx)
613 {
614 	struct {
615 		struct key *keyring;
616 		struct assoc_array_node *node;
617 		int slot;
618 	} stack[KEYRING_SEARCH_MAX_DEPTH];
619 
620 	struct assoc_array_shortcut *shortcut;
621 	struct assoc_array_node *node;
622 	struct assoc_array_ptr *ptr;
623 	struct key *key;
624 	int sp = 0, slot;
625 
626 	kenter("{%d},{%s,%s}",
627 	       keyring->serial,
628 	       ctx->index_key.type->name,
629 	       ctx->index_key.description);
630 
631 	if (ctx->index_key.description)
632 		ctx->index_key.desc_len = strlen(ctx->index_key.description);
633 
634 	/* Check to see if this top-level keyring is what we are looking for
635 	 * and whether it is valid or not.
636 	 */
637 	if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE ||
638 	    keyring_compare_object(keyring, &ctx->index_key)) {
639 		ctx->skipped_ret = 2;
640 		ctx->flags |= KEYRING_SEARCH_DO_STATE_CHECK;
641 		switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
642 		case 1:
643 			goto found;
644 		case 2:
645 			return false;
646 		default:
647 			break;
648 		}
649 	}
650 
651 	ctx->skipped_ret = 0;
652 	if (ctx->flags & KEYRING_SEARCH_NO_STATE_CHECK)
653 		ctx->flags &= ~KEYRING_SEARCH_DO_STATE_CHECK;
654 
655 	/* Start processing a new keyring */
656 descend_to_keyring:
657 	kdebug("descend to %d", keyring->serial);
658 	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
659 			      (1 << KEY_FLAG_REVOKED)))
660 		goto not_this_keyring;
661 
662 	/* Search through the keys in this keyring before its searching its
663 	 * subtrees.
664 	 */
665 	if (search_keyring(keyring, ctx))
666 		goto found;
667 
668 	/* Then manually iterate through the keyrings nested in this one.
669 	 *
670 	 * Start from the root node of the index tree.  Because of the way the
671 	 * hash function has been set up, keyrings cluster on the leftmost
672 	 * branch of the root node (root slot 0) or in the root node itself.
673 	 * Non-keyrings avoid the leftmost branch of the root entirely (root
674 	 * slots 1-15).
675 	 */
676 	ptr = ACCESS_ONCE(keyring->keys.root);
677 	if (!ptr)
678 		goto not_this_keyring;
679 
680 	if (assoc_array_ptr_is_shortcut(ptr)) {
681 		/* If the root is a shortcut, either the keyring only contains
682 		 * keyring pointers (everything clusters behind root slot 0) or
683 		 * doesn't contain any keyring pointers.
684 		 */
685 		shortcut = assoc_array_ptr_to_shortcut(ptr);
686 		smp_read_barrier_depends();
687 		if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
688 			goto not_this_keyring;
689 
690 		ptr = ACCESS_ONCE(shortcut->next_node);
691 		node = assoc_array_ptr_to_node(ptr);
692 		goto begin_node;
693 	}
694 
695 	node = assoc_array_ptr_to_node(ptr);
696 	smp_read_barrier_depends();
697 
698 	ptr = node->slots[0];
699 	if (!assoc_array_ptr_is_meta(ptr))
700 		goto begin_node;
701 
702 descend_to_node:
703 	/* Descend to a more distal node in this keyring's content tree and go
704 	 * through that.
705 	 */
706 	kdebug("descend");
707 	if (assoc_array_ptr_is_shortcut(ptr)) {
708 		shortcut = assoc_array_ptr_to_shortcut(ptr);
709 		smp_read_barrier_depends();
710 		ptr = ACCESS_ONCE(shortcut->next_node);
711 		BUG_ON(!assoc_array_ptr_is_node(ptr));
712 	}
713 	node = assoc_array_ptr_to_node(ptr);
714 
715 begin_node:
716 	kdebug("begin_node");
717 	smp_read_barrier_depends();
718 	slot = 0;
719 ascend_to_node:
720 	/* Go through the slots in a node */
721 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
722 		ptr = ACCESS_ONCE(node->slots[slot]);
723 
724 		if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
725 			goto descend_to_node;
726 
727 		if (!keyring_ptr_is_keyring(ptr))
728 			continue;
729 
730 		key = keyring_ptr_to_key(ptr);
731 
732 		if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
733 			if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
734 				ctx->result = ERR_PTR(-ELOOP);
735 				return false;
736 			}
737 			goto not_this_keyring;
738 		}
739 
740 		/* Search a nested keyring */
741 		if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
742 		    key_task_permission(make_key_ref(key, ctx->possessed),
743 					ctx->cred, KEY_NEED_SEARCH) < 0)
744 			continue;
745 
746 		/* stack the current position */
747 		stack[sp].keyring = keyring;
748 		stack[sp].node = node;
749 		stack[sp].slot = slot;
750 		sp++;
751 
752 		/* begin again with the new keyring */
753 		keyring = key;
754 		goto descend_to_keyring;
755 	}
756 
757 	/* We've dealt with all the slots in the current node, so now we need
758 	 * to ascend to the parent and continue processing there.
759 	 */
760 	ptr = ACCESS_ONCE(node->back_pointer);
761 	slot = node->parent_slot;
762 
763 	if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
764 		shortcut = assoc_array_ptr_to_shortcut(ptr);
765 		smp_read_barrier_depends();
766 		ptr = ACCESS_ONCE(shortcut->back_pointer);
767 		slot = shortcut->parent_slot;
768 	}
769 	if (!ptr)
770 		goto not_this_keyring;
771 	node = assoc_array_ptr_to_node(ptr);
772 	smp_read_barrier_depends();
773 	slot++;
774 
775 	/* If we've ascended to the root (zero backpointer), we must have just
776 	 * finished processing the leftmost branch rather than the root slots -
777 	 * so there can't be any more keyrings for us to find.
778 	 */
779 	if (node->back_pointer) {
780 		kdebug("ascend %d", slot);
781 		goto ascend_to_node;
782 	}
783 
784 	/* The keyring we're looking at was disqualified or didn't contain a
785 	 * matching key.
786 	 */
787 not_this_keyring:
788 	kdebug("not_this_keyring %d", sp);
789 	if (sp <= 0) {
790 		kleave(" = false");
791 		return false;
792 	}
793 
794 	/* Resume the processing of a keyring higher up in the tree */
795 	sp--;
796 	keyring = stack[sp].keyring;
797 	node = stack[sp].node;
798 	slot = stack[sp].slot + 1;
799 	kdebug("ascend to %d [%d]", keyring->serial, slot);
800 	goto ascend_to_node;
801 
802 	/* We found a viable match */
803 found:
804 	key = key_ref_to_ptr(ctx->result);
805 	key_check(key);
806 	if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
807 		key->last_used_at = ctx->now.tv_sec;
808 		keyring->last_used_at = ctx->now.tv_sec;
809 		while (sp > 0)
810 			stack[--sp].keyring->last_used_at = ctx->now.tv_sec;
811 	}
812 	kleave(" = true");
813 	return true;
814 }
815 
816 /**
817  * keyring_search_aux - Search a keyring tree for a key matching some criteria
818  * @keyring_ref: A pointer to the keyring with possession indicator.
819  * @ctx: The keyring search context.
820  *
821  * Search the supplied keyring tree for a key that matches the criteria given.
822  * The root keyring and any linked keyrings must grant Search permission to the
823  * caller to be searchable and keys can only be found if they too grant Search
824  * to the caller. The possession flag on the root keyring pointer controls use
825  * of the possessor bits in permissions checking of the entire tree.  In
826  * addition, the LSM gets to forbid keyring searches and key matches.
827  *
828  * The search is performed as a breadth-then-depth search up to the prescribed
829  * limit (KEYRING_SEARCH_MAX_DEPTH).
830  *
831  * Keys are matched to the type provided and are then filtered by the match
832  * function, which is given the description to use in any way it sees fit.  The
833  * match function may use any attributes of a key that it wishes to to
834  * determine the match.  Normally the match function from the key type would be
835  * used.
836  *
837  * RCU can be used to prevent the keyring key lists from disappearing without
838  * the need to take lots of locks.
839  *
840  * Returns a pointer to the found key and increments the key usage count if
841  * successful; -EAGAIN if no matching keys were found, or if expired or revoked
842  * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
843  * specified keyring wasn't a keyring.
844  *
845  * In the case of a successful return, the possession attribute from
846  * @keyring_ref is propagated to the returned key reference.
847  */
848 key_ref_t keyring_search_aux(key_ref_t keyring_ref,
849 			     struct keyring_search_context *ctx)
850 {
851 	struct key *keyring;
852 	long err;
853 
854 	ctx->iterator = keyring_search_iterator;
855 	ctx->possessed = is_key_possessed(keyring_ref);
856 	ctx->result = ERR_PTR(-EAGAIN);
857 
858 	keyring = key_ref_to_ptr(keyring_ref);
859 	key_check(keyring);
860 
861 	if (keyring->type != &key_type_keyring)
862 		return ERR_PTR(-ENOTDIR);
863 
864 	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
865 		err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH);
866 		if (err < 0)
867 			return ERR_PTR(err);
868 	}
869 
870 	rcu_read_lock();
871 	ctx->now = current_kernel_time();
872 	if (search_nested_keyrings(keyring, ctx))
873 		__key_get(key_ref_to_ptr(ctx->result));
874 	rcu_read_unlock();
875 	return ctx->result;
876 }
877 
878 /**
879  * keyring_search - Search the supplied keyring tree for a matching key
880  * @keyring: The root of the keyring tree to be searched.
881  * @type: The type of keyring we want to find.
882  * @description: The name of the keyring we want to find.
883  *
884  * As keyring_search_aux() above, but using the current task's credentials and
885  * type's default matching function and preferred search method.
886  */
887 key_ref_t keyring_search(key_ref_t keyring,
888 			 struct key_type *type,
889 			 const char *description)
890 {
891 	struct keyring_search_context ctx = {
892 		.index_key.type		= type,
893 		.index_key.description	= description,
894 		.cred			= current_cred(),
895 		.match_data.cmp		= key_default_cmp,
896 		.match_data.raw_data	= description,
897 		.match_data.lookup_type	= KEYRING_SEARCH_LOOKUP_DIRECT,
898 		.flags			= KEYRING_SEARCH_DO_STATE_CHECK,
899 	};
900 	key_ref_t key;
901 	int ret;
902 
903 	if (type->match_preparse) {
904 		ret = type->match_preparse(&ctx.match_data);
905 		if (ret < 0)
906 			return ERR_PTR(ret);
907 	}
908 
909 	key = keyring_search_aux(keyring, &ctx);
910 
911 	if (type->match_free)
912 		type->match_free(&ctx.match_data);
913 	return key;
914 }
915 EXPORT_SYMBOL(keyring_search);
916 
917 /*
918  * Search the given keyring for a key that might be updated.
919  *
920  * The caller must guarantee that the keyring is a keyring and that the
921  * permission is granted to modify the keyring as no check is made here.  The
922  * caller must also hold a lock on the keyring semaphore.
923  *
924  * Returns a pointer to the found key with usage count incremented if
925  * successful and returns NULL if not found.  Revoked and invalidated keys are
926  * skipped over.
927  *
928  * If successful, the possession indicator is propagated from the keyring ref
929  * to the returned key reference.
930  */
931 key_ref_t find_key_to_update(key_ref_t keyring_ref,
932 			     const struct keyring_index_key *index_key)
933 {
934 	struct key *keyring, *key;
935 	const void *object;
936 
937 	keyring = key_ref_to_ptr(keyring_ref);
938 
939 	kenter("{%d},{%s,%s}",
940 	       keyring->serial, index_key->type->name, index_key->description);
941 
942 	object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
943 				  index_key);
944 
945 	if (object)
946 		goto found;
947 
948 	kleave(" = NULL");
949 	return NULL;
950 
951 found:
952 	key = keyring_ptr_to_key(object);
953 	if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
954 			  (1 << KEY_FLAG_REVOKED))) {
955 		kleave(" = NULL [x]");
956 		return NULL;
957 	}
958 	__key_get(key);
959 	kleave(" = {%d}", key->serial);
960 	return make_key_ref(key, is_key_possessed(keyring_ref));
961 }
962 
963 /*
964  * Find a keyring with the specified name.
965  *
966  * All named keyrings in the current user namespace are searched, provided they
967  * grant Search permission directly to the caller (unless this check is
968  * skipped).  Keyrings whose usage points have reached zero or who have been
969  * revoked are skipped.
970  *
971  * Returns a pointer to the keyring with the keyring's refcount having being
972  * incremented on success.  -ENOKEY is returned if a key could not be found.
973  */
974 struct key *find_keyring_by_name(const char *name, bool skip_perm_check)
975 {
976 	struct key *keyring;
977 	int bucket;
978 
979 	if (!name)
980 		return ERR_PTR(-EINVAL);
981 
982 	bucket = keyring_hash(name);
983 
984 	read_lock(&keyring_name_lock);
985 
986 	if (keyring_name_hash[bucket].next) {
987 		/* search this hash bucket for a keyring with a matching name
988 		 * that's readable and that hasn't been revoked */
989 		list_for_each_entry(keyring,
990 				    &keyring_name_hash[bucket],
991 				    type_data.link
992 				    ) {
993 			if (!kuid_has_mapping(current_user_ns(), keyring->user->uid))
994 				continue;
995 
996 			if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
997 				continue;
998 
999 			if (strcmp(keyring->description, name) != 0)
1000 				continue;
1001 
1002 			if (!skip_perm_check &&
1003 			    key_permission(make_key_ref(keyring, 0),
1004 					   KEY_NEED_SEARCH) < 0)
1005 				continue;
1006 
1007 			/* we've got a match but we might end up racing with
1008 			 * key_cleanup() if the keyring is currently 'dead'
1009 			 * (ie. it has a zero usage count) */
1010 			if (!atomic_inc_not_zero(&keyring->usage))
1011 				continue;
1012 			keyring->last_used_at = current_kernel_time().tv_sec;
1013 			goto out;
1014 		}
1015 	}
1016 
1017 	keyring = ERR_PTR(-ENOKEY);
1018 out:
1019 	read_unlock(&keyring_name_lock);
1020 	return keyring;
1021 }
1022 
1023 static int keyring_detect_cycle_iterator(const void *object,
1024 					 void *iterator_data)
1025 {
1026 	struct keyring_search_context *ctx = iterator_data;
1027 	const struct key *key = keyring_ptr_to_key(object);
1028 
1029 	kenter("{%d}", key->serial);
1030 
1031 	/* We might get a keyring with matching index-key that is nonetheless a
1032 	 * different keyring. */
1033 	if (key != ctx->match_data.raw_data)
1034 		return 0;
1035 
1036 	ctx->result = ERR_PTR(-EDEADLK);
1037 	return 1;
1038 }
1039 
1040 /*
1041  * See if a cycle will will be created by inserting acyclic tree B in acyclic
1042  * tree A at the topmost level (ie: as a direct child of A).
1043  *
1044  * Since we are adding B to A at the top level, checking for cycles should just
1045  * be a matter of seeing if node A is somewhere in tree B.
1046  */
1047 static int keyring_detect_cycle(struct key *A, struct key *B)
1048 {
1049 	struct keyring_search_context ctx = {
1050 		.index_key		= A->index_key,
1051 		.match_data.raw_data	= A,
1052 		.match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
1053 		.iterator		= keyring_detect_cycle_iterator,
1054 		.flags			= (KEYRING_SEARCH_NO_STATE_CHECK |
1055 					   KEYRING_SEARCH_NO_UPDATE_TIME |
1056 					   KEYRING_SEARCH_NO_CHECK_PERM |
1057 					   KEYRING_SEARCH_DETECT_TOO_DEEP),
1058 	};
1059 
1060 	rcu_read_lock();
1061 	search_nested_keyrings(B, &ctx);
1062 	rcu_read_unlock();
1063 	return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
1064 }
1065 
1066 /*
1067  * Preallocate memory so that a key can be linked into to a keyring.
1068  */
1069 int __key_link_begin(struct key *keyring,
1070 		     const struct keyring_index_key *index_key,
1071 		     struct assoc_array_edit **_edit)
1072 	__acquires(&keyring->sem)
1073 	__acquires(&keyring_serialise_link_sem)
1074 {
1075 	struct assoc_array_edit *edit;
1076 	int ret;
1077 
1078 	kenter("%d,%s,%s,",
1079 	       keyring->serial, index_key->type->name, index_key->description);
1080 
1081 	BUG_ON(index_key->desc_len == 0);
1082 
1083 	if (keyring->type != &key_type_keyring)
1084 		return -ENOTDIR;
1085 
1086 	down_write(&keyring->sem);
1087 
1088 	ret = -EKEYREVOKED;
1089 	if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1090 		goto error_krsem;
1091 
1092 	/* serialise link/link calls to prevent parallel calls causing a cycle
1093 	 * when linking two keyring in opposite orders */
1094 	if (index_key->type == &key_type_keyring)
1095 		down_write(&keyring_serialise_link_sem);
1096 
1097 	/* Create an edit script that will insert/replace the key in the
1098 	 * keyring tree.
1099 	 */
1100 	edit = assoc_array_insert(&keyring->keys,
1101 				  &keyring_assoc_array_ops,
1102 				  index_key,
1103 				  NULL);
1104 	if (IS_ERR(edit)) {
1105 		ret = PTR_ERR(edit);
1106 		goto error_sem;
1107 	}
1108 
1109 	/* If we're not replacing a link in-place then we're going to need some
1110 	 * extra quota.
1111 	 */
1112 	if (!edit->dead_leaf) {
1113 		ret = key_payload_reserve(keyring,
1114 					  keyring->datalen + KEYQUOTA_LINK_BYTES);
1115 		if (ret < 0)
1116 			goto error_cancel;
1117 	}
1118 
1119 	*_edit = edit;
1120 	kleave(" = 0");
1121 	return 0;
1122 
1123 error_cancel:
1124 	assoc_array_cancel_edit(edit);
1125 error_sem:
1126 	if (index_key->type == &key_type_keyring)
1127 		up_write(&keyring_serialise_link_sem);
1128 error_krsem:
1129 	up_write(&keyring->sem);
1130 	kleave(" = %d", ret);
1131 	return ret;
1132 }
1133 
1134 /*
1135  * Check already instantiated keys aren't going to be a problem.
1136  *
1137  * The caller must have called __key_link_begin(). Don't need to call this for
1138  * keys that were created since __key_link_begin() was called.
1139  */
1140 int __key_link_check_live_key(struct key *keyring, struct key *key)
1141 {
1142 	if (key->type == &key_type_keyring)
1143 		/* check that we aren't going to create a cycle by linking one
1144 		 * keyring to another */
1145 		return keyring_detect_cycle(keyring, key);
1146 	return 0;
1147 }
1148 
1149 /*
1150  * Link a key into to a keyring.
1151  *
1152  * Must be called with __key_link_begin() having being called.  Discards any
1153  * already extant link to matching key if there is one, so that each keyring
1154  * holds at most one link to any given key of a particular type+description
1155  * combination.
1156  */
1157 void __key_link(struct key *key, struct assoc_array_edit **_edit)
1158 {
1159 	__key_get(key);
1160 	assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
1161 	assoc_array_apply_edit(*_edit);
1162 	*_edit = NULL;
1163 }
1164 
1165 /*
1166  * Finish linking a key into to a keyring.
1167  *
1168  * Must be called with __key_link_begin() having being called.
1169  */
1170 void __key_link_end(struct key *keyring,
1171 		    const struct keyring_index_key *index_key,
1172 		    struct assoc_array_edit *edit)
1173 	__releases(&keyring->sem)
1174 	__releases(&keyring_serialise_link_sem)
1175 {
1176 	BUG_ON(index_key->type == NULL);
1177 	kenter("%d,%s,", keyring->serial, index_key->type->name);
1178 
1179 	if (index_key->type == &key_type_keyring)
1180 		up_write(&keyring_serialise_link_sem);
1181 
1182 	if (edit && !edit->dead_leaf) {
1183 		key_payload_reserve(keyring,
1184 				    keyring->datalen - KEYQUOTA_LINK_BYTES);
1185 		assoc_array_cancel_edit(edit);
1186 	}
1187 	up_write(&keyring->sem);
1188 }
1189 
1190 /**
1191  * key_link - Link a key to a keyring
1192  * @keyring: The keyring to make the link in.
1193  * @key: The key to link to.
1194  *
1195  * Make a link in a keyring to a key, such that the keyring holds a reference
1196  * on that key and the key can potentially be found by searching that keyring.
1197  *
1198  * This function will write-lock the keyring's semaphore and will consume some
1199  * of the user's key data quota to hold the link.
1200  *
1201  * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
1202  * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
1203  * full, -EDQUOT if there is insufficient key data quota remaining to add
1204  * another link or -ENOMEM if there's insufficient memory.
1205  *
1206  * It is assumed that the caller has checked that it is permitted for a link to
1207  * be made (the keyring should have Write permission and the key Link
1208  * permission).
1209  */
1210 int key_link(struct key *keyring, struct key *key)
1211 {
1212 	struct assoc_array_edit *edit;
1213 	int ret;
1214 
1215 	kenter("{%d,%d}", keyring->serial, atomic_read(&keyring->usage));
1216 
1217 	key_check(keyring);
1218 	key_check(key);
1219 
1220 	if (test_bit(KEY_FLAG_TRUSTED_ONLY, &keyring->flags) &&
1221 	    !test_bit(KEY_FLAG_TRUSTED, &key->flags))
1222 		return -EPERM;
1223 
1224 	ret = __key_link_begin(keyring, &key->index_key, &edit);
1225 	if (ret == 0) {
1226 		kdebug("begun {%d,%d}", keyring->serial, atomic_read(&keyring->usage));
1227 		ret = __key_link_check_live_key(keyring, key);
1228 		if (ret == 0)
1229 			__key_link(key, &edit);
1230 		__key_link_end(keyring, &key->index_key, edit);
1231 	}
1232 
1233 	kleave(" = %d {%d,%d}", ret, keyring->serial, atomic_read(&keyring->usage));
1234 	return ret;
1235 }
1236 EXPORT_SYMBOL(key_link);
1237 
1238 /**
1239  * key_unlink - Unlink the first link to a key from a keyring.
1240  * @keyring: The keyring to remove the link from.
1241  * @key: The key the link is to.
1242  *
1243  * Remove a link from a keyring to a key.
1244  *
1245  * This function will write-lock the keyring's semaphore.
1246  *
1247  * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1248  * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1249  * memory.
1250  *
1251  * It is assumed that the caller has checked that it is permitted for a link to
1252  * be removed (the keyring should have Write permission; no permissions are
1253  * required on the key).
1254  */
1255 int key_unlink(struct key *keyring, struct key *key)
1256 {
1257 	struct assoc_array_edit *edit;
1258 	int ret;
1259 
1260 	key_check(keyring);
1261 	key_check(key);
1262 
1263 	if (keyring->type != &key_type_keyring)
1264 		return -ENOTDIR;
1265 
1266 	down_write(&keyring->sem);
1267 
1268 	edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
1269 				  &key->index_key);
1270 	if (IS_ERR(edit)) {
1271 		ret = PTR_ERR(edit);
1272 		goto error;
1273 	}
1274 	ret = -ENOENT;
1275 	if (edit == NULL)
1276 		goto error;
1277 
1278 	assoc_array_apply_edit(edit);
1279 	key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
1280 	ret = 0;
1281 
1282 error:
1283 	up_write(&keyring->sem);
1284 	return ret;
1285 }
1286 EXPORT_SYMBOL(key_unlink);
1287 
1288 /**
1289  * keyring_clear - Clear a keyring
1290  * @keyring: The keyring to clear.
1291  *
1292  * Clear the contents of the specified keyring.
1293  *
1294  * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1295  */
1296 int keyring_clear(struct key *keyring)
1297 {
1298 	struct assoc_array_edit *edit;
1299 	int ret;
1300 
1301 	if (keyring->type != &key_type_keyring)
1302 		return -ENOTDIR;
1303 
1304 	down_write(&keyring->sem);
1305 
1306 	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1307 	if (IS_ERR(edit)) {
1308 		ret = PTR_ERR(edit);
1309 	} else {
1310 		if (edit)
1311 			assoc_array_apply_edit(edit);
1312 		key_payload_reserve(keyring, 0);
1313 		ret = 0;
1314 	}
1315 
1316 	up_write(&keyring->sem);
1317 	return ret;
1318 }
1319 EXPORT_SYMBOL(keyring_clear);
1320 
1321 /*
1322  * Dispose of the links from a revoked keyring.
1323  *
1324  * This is called with the key sem write-locked.
1325  */
1326 static void keyring_revoke(struct key *keyring)
1327 {
1328 	struct assoc_array_edit *edit;
1329 
1330 	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1331 	if (!IS_ERR(edit)) {
1332 		if (edit)
1333 			assoc_array_apply_edit(edit);
1334 		key_payload_reserve(keyring, 0);
1335 	}
1336 }
1337 
1338 static bool keyring_gc_select_iterator(void *object, void *iterator_data)
1339 {
1340 	struct key *key = keyring_ptr_to_key(object);
1341 	time_t *limit = iterator_data;
1342 
1343 	if (key_is_dead(key, *limit))
1344 		return false;
1345 	key_get(key);
1346 	return true;
1347 }
1348 
1349 static int keyring_gc_check_iterator(const void *object, void *iterator_data)
1350 {
1351 	const struct key *key = keyring_ptr_to_key(object);
1352 	time_t *limit = iterator_data;
1353 
1354 	key_check(key);
1355 	return key_is_dead(key, *limit);
1356 }
1357 
1358 /*
1359  * Garbage collect pointers from a keyring.
1360  *
1361  * Not called with any locks held.  The keyring's key struct will not be
1362  * deallocated under us as only our caller may deallocate it.
1363  */
1364 void keyring_gc(struct key *keyring, time_t limit)
1365 {
1366 	int result;
1367 
1368 	kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1369 
1370 	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
1371 			      (1 << KEY_FLAG_REVOKED)))
1372 		goto dont_gc;
1373 
1374 	/* scan the keyring looking for dead keys */
1375 	rcu_read_lock();
1376 	result = assoc_array_iterate(&keyring->keys,
1377 				     keyring_gc_check_iterator, &limit);
1378 	rcu_read_unlock();
1379 	if (result == true)
1380 		goto do_gc;
1381 
1382 dont_gc:
1383 	kleave(" [no gc]");
1384 	return;
1385 
1386 do_gc:
1387 	down_write(&keyring->sem);
1388 	assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
1389 		       keyring_gc_select_iterator, &limit);
1390 	up_write(&keyring->sem);
1391 	kleave(" [gc]");
1392 }
1393