1 /* Keyring handling 2 * 3 * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved. 4 * Written by David Howells (dhowells@redhat.com) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/sched.h> 15 #include <linux/slab.h> 16 #include <linux/security.h> 17 #include <linux/seq_file.h> 18 #include <linux/err.h> 19 #include <keys/keyring-type.h> 20 #include <keys/user-type.h> 21 #include <linux/assoc_array_priv.h> 22 #include <linux/uaccess.h> 23 #include "internal.h" 24 25 /* 26 * When plumbing the depths of the key tree, this sets a hard limit 27 * set on how deep we're willing to go. 28 */ 29 #define KEYRING_SEARCH_MAX_DEPTH 6 30 31 /* 32 * We keep all named keyrings in a hash to speed looking them up. 33 */ 34 #define KEYRING_NAME_HASH_SIZE (1 << 5) 35 36 /* 37 * We mark pointers we pass to the associative array with bit 1 set if 38 * they're keyrings and clear otherwise. 39 */ 40 #define KEYRING_PTR_SUBTYPE 0x2UL 41 42 static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x) 43 { 44 return (unsigned long)x & KEYRING_PTR_SUBTYPE; 45 } 46 static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x) 47 { 48 void *object = assoc_array_ptr_to_leaf(x); 49 return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE); 50 } 51 static inline void *keyring_key_to_ptr(struct key *key) 52 { 53 if (key->type == &key_type_keyring) 54 return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE); 55 return key; 56 } 57 58 static struct list_head keyring_name_hash[KEYRING_NAME_HASH_SIZE]; 59 static DEFINE_RWLOCK(keyring_name_lock); 60 61 static inline unsigned keyring_hash(const char *desc) 62 { 63 unsigned bucket = 0; 64 65 for (; *desc; desc++) 66 bucket += (unsigned char)*desc; 67 68 return bucket & (KEYRING_NAME_HASH_SIZE - 1); 69 } 70 71 /* 72 * The keyring key type definition. Keyrings are simply keys of this type and 73 * can be treated as ordinary keys in addition to having their own special 74 * operations. 75 */ 76 static int keyring_preparse(struct key_preparsed_payload *prep); 77 static void keyring_free_preparse(struct key_preparsed_payload *prep); 78 static int keyring_instantiate(struct key *keyring, 79 struct key_preparsed_payload *prep); 80 static void keyring_revoke(struct key *keyring); 81 static void keyring_destroy(struct key *keyring); 82 static void keyring_describe(const struct key *keyring, struct seq_file *m); 83 static long keyring_read(const struct key *keyring, 84 char __user *buffer, size_t buflen); 85 86 struct key_type key_type_keyring = { 87 .name = "keyring", 88 .def_datalen = 0, 89 .preparse = keyring_preparse, 90 .free_preparse = keyring_free_preparse, 91 .instantiate = keyring_instantiate, 92 .revoke = keyring_revoke, 93 .destroy = keyring_destroy, 94 .describe = keyring_describe, 95 .read = keyring_read, 96 }; 97 EXPORT_SYMBOL(key_type_keyring); 98 99 /* 100 * Semaphore to serialise link/link calls to prevent two link calls in parallel 101 * introducing a cycle. 102 */ 103 static DECLARE_RWSEM(keyring_serialise_link_sem); 104 105 /* 106 * Publish the name of a keyring so that it can be found by name (if it has 107 * one). 108 */ 109 static void keyring_publish_name(struct key *keyring) 110 { 111 int bucket; 112 113 if (keyring->description) { 114 bucket = keyring_hash(keyring->description); 115 116 write_lock(&keyring_name_lock); 117 118 if (!keyring_name_hash[bucket].next) 119 INIT_LIST_HEAD(&keyring_name_hash[bucket]); 120 121 list_add_tail(&keyring->type_data.link, 122 &keyring_name_hash[bucket]); 123 124 write_unlock(&keyring_name_lock); 125 } 126 } 127 128 /* 129 * Preparse a keyring payload 130 */ 131 static int keyring_preparse(struct key_preparsed_payload *prep) 132 { 133 return prep->datalen != 0 ? -EINVAL : 0; 134 } 135 136 /* 137 * Free a preparse of a user defined key payload 138 */ 139 static void keyring_free_preparse(struct key_preparsed_payload *prep) 140 { 141 } 142 143 /* 144 * Initialise a keyring. 145 * 146 * Returns 0 on success, -EINVAL if given any data. 147 */ 148 static int keyring_instantiate(struct key *keyring, 149 struct key_preparsed_payload *prep) 150 { 151 assoc_array_init(&keyring->keys); 152 /* make the keyring available by name if it has one */ 153 keyring_publish_name(keyring); 154 return 0; 155 } 156 157 /* 158 * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit. Ideally we'd 159 * fold the carry back too, but that requires inline asm. 160 */ 161 static u64 mult_64x32_and_fold(u64 x, u32 y) 162 { 163 u64 hi = (u64)(u32)(x >> 32) * y; 164 u64 lo = (u64)(u32)(x) * y; 165 return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32); 166 } 167 168 /* 169 * Hash a key type and description. 170 */ 171 static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key) 172 { 173 const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP; 174 const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK; 175 const char *description = index_key->description; 176 unsigned long hash, type; 177 u32 piece; 178 u64 acc; 179 int n, desc_len = index_key->desc_len; 180 181 type = (unsigned long)index_key->type; 182 183 acc = mult_64x32_and_fold(type, desc_len + 13); 184 acc = mult_64x32_and_fold(acc, 9207); 185 for (;;) { 186 n = desc_len; 187 if (n <= 0) 188 break; 189 if (n > 4) 190 n = 4; 191 piece = 0; 192 memcpy(&piece, description, n); 193 description += n; 194 desc_len -= n; 195 acc = mult_64x32_and_fold(acc, piece); 196 acc = mult_64x32_and_fold(acc, 9207); 197 } 198 199 /* Fold the hash down to 32 bits if need be. */ 200 hash = acc; 201 if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32) 202 hash ^= acc >> 32; 203 204 /* Squidge all the keyrings into a separate part of the tree to 205 * ordinary keys by making sure the lowest level segment in the hash is 206 * zero for keyrings and non-zero otherwise. 207 */ 208 if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0) 209 return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1; 210 if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0) 211 return (hash + (hash << level_shift)) & ~fan_mask; 212 return hash; 213 } 214 215 /* 216 * Build the next index key chunk. 217 * 218 * On 32-bit systems the index key is laid out as: 219 * 220 * 0 4 5 9... 221 * hash desclen typeptr desc[] 222 * 223 * On 64-bit systems: 224 * 225 * 0 8 9 17... 226 * hash desclen typeptr desc[] 227 * 228 * We return it one word-sized chunk at a time. 229 */ 230 static unsigned long keyring_get_key_chunk(const void *data, int level) 231 { 232 const struct keyring_index_key *index_key = data; 233 unsigned long chunk = 0; 234 long offset = 0; 235 int desc_len = index_key->desc_len, n = sizeof(chunk); 236 237 level /= ASSOC_ARRAY_KEY_CHUNK_SIZE; 238 switch (level) { 239 case 0: 240 return hash_key_type_and_desc(index_key); 241 case 1: 242 return ((unsigned long)index_key->type << 8) | desc_len; 243 case 2: 244 if (desc_len == 0) 245 return (u8)((unsigned long)index_key->type >> 246 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8)); 247 n--; 248 offset = 1; 249 default: 250 offset += sizeof(chunk) - 1; 251 offset += (level - 3) * sizeof(chunk); 252 if (offset >= desc_len) 253 return 0; 254 desc_len -= offset; 255 if (desc_len > n) 256 desc_len = n; 257 offset += desc_len; 258 do { 259 chunk <<= 8; 260 chunk |= ((u8*)index_key->description)[--offset]; 261 } while (--desc_len > 0); 262 263 if (level == 2) { 264 chunk <<= 8; 265 chunk |= (u8)((unsigned long)index_key->type >> 266 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8)); 267 } 268 return chunk; 269 } 270 } 271 272 static unsigned long keyring_get_object_key_chunk(const void *object, int level) 273 { 274 const struct key *key = keyring_ptr_to_key(object); 275 return keyring_get_key_chunk(&key->index_key, level); 276 } 277 278 static bool keyring_compare_object(const void *object, const void *data) 279 { 280 const struct keyring_index_key *index_key = data; 281 const struct key *key = keyring_ptr_to_key(object); 282 283 return key->index_key.type == index_key->type && 284 key->index_key.desc_len == index_key->desc_len && 285 memcmp(key->index_key.description, index_key->description, 286 index_key->desc_len) == 0; 287 } 288 289 /* 290 * Compare the index keys of a pair of objects and determine the bit position 291 * at which they differ - if they differ. 292 */ 293 static int keyring_diff_objects(const void *object, const void *data) 294 { 295 const struct key *key_a = keyring_ptr_to_key(object); 296 const struct keyring_index_key *a = &key_a->index_key; 297 const struct keyring_index_key *b = data; 298 unsigned long seg_a, seg_b; 299 int level, i; 300 301 level = 0; 302 seg_a = hash_key_type_and_desc(a); 303 seg_b = hash_key_type_and_desc(b); 304 if ((seg_a ^ seg_b) != 0) 305 goto differ; 306 307 /* The number of bits contributed by the hash is controlled by a 308 * constant in the assoc_array headers. Everything else thereafter we 309 * can deal with as being machine word-size dependent. 310 */ 311 level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8; 312 seg_a = a->desc_len; 313 seg_b = b->desc_len; 314 if ((seg_a ^ seg_b) != 0) 315 goto differ; 316 317 /* The next bit may not work on big endian */ 318 level++; 319 seg_a = (unsigned long)a->type; 320 seg_b = (unsigned long)b->type; 321 if ((seg_a ^ seg_b) != 0) 322 goto differ; 323 324 level += sizeof(unsigned long); 325 if (a->desc_len == 0) 326 goto same; 327 328 i = 0; 329 if (((unsigned long)a->description | (unsigned long)b->description) & 330 (sizeof(unsigned long) - 1)) { 331 do { 332 seg_a = *(unsigned long *)(a->description + i); 333 seg_b = *(unsigned long *)(b->description + i); 334 if ((seg_a ^ seg_b) != 0) 335 goto differ_plus_i; 336 i += sizeof(unsigned long); 337 } while (i < (a->desc_len & (sizeof(unsigned long) - 1))); 338 } 339 340 for (; i < a->desc_len; i++) { 341 seg_a = *(unsigned char *)(a->description + i); 342 seg_b = *(unsigned char *)(b->description + i); 343 if ((seg_a ^ seg_b) != 0) 344 goto differ_plus_i; 345 } 346 347 same: 348 return -1; 349 350 differ_plus_i: 351 level += i; 352 differ: 353 i = level * 8 + __ffs(seg_a ^ seg_b); 354 return i; 355 } 356 357 /* 358 * Free an object after stripping the keyring flag off of the pointer. 359 */ 360 static void keyring_free_object(void *object) 361 { 362 key_put(keyring_ptr_to_key(object)); 363 } 364 365 /* 366 * Operations for keyring management by the index-tree routines. 367 */ 368 static const struct assoc_array_ops keyring_assoc_array_ops = { 369 .get_key_chunk = keyring_get_key_chunk, 370 .get_object_key_chunk = keyring_get_object_key_chunk, 371 .compare_object = keyring_compare_object, 372 .diff_objects = keyring_diff_objects, 373 .free_object = keyring_free_object, 374 }; 375 376 /* 377 * Clean up a keyring when it is destroyed. Unpublish its name if it had one 378 * and dispose of its data. 379 * 380 * The garbage collector detects the final key_put(), removes the keyring from 381 * the serial number tree and then does RCU synchronisation before coming here, 382 * so we shouldn't need to worry about code poking around here with the RCU 383 * readlock held by this time. 384 */ 385 static void keyring_destroy(struct key *keyring) 386 { 387 if (keyring->description) { 388 write_lock(&keyring_name_lock); 389 390 if (keyring->type_data.link.next != NULL && 391 !list_empty(&keyring->type_data.link)) 392 list_del(&keyring->type_data.link); 393 394 write_unlock(&keyring_name_lock); 395 } 396 397 assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops); 398 } 399 400 /* 401 * Describe a keyring for /proc. 402 */ 403 static void keyring_describe(const struct key *keyring, struct seq_file *m) 404 { 405 if (keyring->description) 406 seq_puts(m, keyring->description); 407 else 408 seq_puts(m, "[anon]"); 409 410 if (key_is_instantiated(keyring)) { 411 if (keyring->keys.nr_leaves_on_tree != 0) 412 seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree); 413 else 414 seq_puts(m, ": empty"); 415 } 416 } 417 418 struct keyring_read_iterator_context { 419 size_t qty; 420 size_t count; 421 key_serial_t __user *buffer; 422 }; 423 424 static int keyring_read_iterator(const void *object, void *data) 425 { 426 struct keyring_read_iterator_context *ctx = data; 427 const struct key *key = keyring_ptr_to_key(object); 428 int ret; 429 430 kenter("{%s,%d},,{%zu/%zu}", 431 key->type->name, key->serial, ctx->count, ctx->qty); 432 433 if (ctx->count >= ctx->qty) 434 return 1; 435 436 ret = put_user(key->serial, ctx->buffer); 437 if (ret < 0) 438 return ret; 439 ctx->buffer++; 440 ctx->count += sizeof(key->serial); 441 return 0; 442 } 443 444 /* 445 * Read a list of key IDs from the keyring's contents in binary form 446 * 447 * The keyring's semaphore is read-locked by the caller. This prevents someone 448 * from modifying it under us - which could cause us to read key IDs multiple 449 * times. 450 */ 451 static long keyring_read(const struct key *keyring, 452 char __user *buffer, size_t buflen) 453 { 454 struct keyring_read_iterator_context ctx; 455 unsigned long nr_keys; 456 int ret; 457 458 kenter("{%d},,%zu", key_serial(keyring), buflen); 459 460 if (buflen & (sizeof(key_serial_t) - 1)) 461 return -EINVAL; 462 463 nr_keys = keyring->keys.nr_leaves_on_tree; 464 if (nr_keys == 0) 465 return 0; 466 467 /* Calculate how much data we could return */ 468 ctx.qty = nr_keys * sizeof(key_serial_t); 469 470 if (!buffer || !buflen) 471 return ctx.qty; 472 473 if (buflen > ctx.qty) 474 ctx.qty = buflen; 475 476 /* Copy the IDs of the subscribed keys into the buffer */ 477 ctx.buffer = (key_serial_t __user *)buffer; 478 ctx.count = 0; 479 ret = assoc_array_iterate(&keyring->keys, keyring_read_iterator, &ctx); 480 if (ret < 0) { 481 kleave(" = %d [iterate]", ret); 482 return ret; 483 } 484 485 kleave(" = %zu [ok]", ctx.count); 486 return ctx.count; 487 } 488 489 /* 490 * Allocate a keyring and link into the destination keyring. 491 */ 492 struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid, 493 const struct cred *cred, key_perm_t perm, 494 unsigned long flags, struct key *dest) 495 { 496 struct key *keyring; 497 int ret; 498 499 keyring = key_alloc(&key_type_keyring, description, 500 uid, gid, cred, perm, flags); 501 if (!IS_ERR(keyring)) { 502 ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL); 503 if (ret < 0) { 504 key_put(keyring); 505 keyring = ERR_PTR(ret); 506 } 507 } 508 509 return keyring; 510 } 511 EXPORT_SYMBOL(keyring_alloc); 512 513 /* 514 * By default, we keys found by getting an exact match on their descriptions. 515 */ 516 bool key_default_cmp(const struct key *key, 517 const struct key_match_data *match_data) 518 { 519 return strcmp(key->description, match_data->raw_data) == 0; 520 } 521 522 /* 523 * Iteration function to consider each key found. 524 */ 525 static int keyring_search_iterator(const void *object, void *iterator_data) 526 { 527 struct keyring_search_context *ctx = iterator_data; 528 const struct key *key = keyring_ptr_to_key(object); 529 unsigned long kflags = key->flags; 530 531 kenter("{%d}", key->serial); 532 533 /* ignore keys not of this type */ 534 if (key->type != ctx->index_key.type) { 535 kleave(" = 0 [!type]"); 536 return 0; 537 } 538 539 /* skip invalidated, revoked and expired keys */ 540 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) { 541 if (kflags & ((1 << KEY_FLAG_INVALIDATED) | 542 (1 << KEY_FLAG_REVOKED))) { 543 ctx->result = ERR_PTR(-EKEYREVOKED); 544 kleave(" = %d [invrev]", ctx->skipped_ret); 545 goto skipped; 546 } 547 548 if (key->expiry && ctx->now.tv_sec >= key->expiry) { 549 ctx->result = ERR_PTR(-EKEYEXPIRED); 550 kleave(" = %d [expire]", ctx->skipped_ret); 551 goto skipped; 552 } 553 } 554 555 /* keys that don't match */ 556 if (!ctx->match_data.cmp(key, &ctx->match_data)) { 557 kleave(" = 0 [!match]"); 558 return 0; 559 } 560 561 /* key must have search permissions */ 562 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) && 563 key_task_permission(make_key_ref(key, ctx->possessed), 564 ctx->cred, KEY_NEED_SEARCH) < 0) { 565 ctx->result = ERR_PTR(-EACCES); 566 kleave(" = %d [!perm]", ctx->skipped_ret); 567 goto skipped; 568 } 569 570 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) { 571 /* we set a different error code if we pass a negative key */ 572 if (kflags & (1 << KEY_FLAG_NEGATIVE)) { 573 smp_rmb(); 574 ctx->result = ERR_PTR(key->type_data.reject_error); 575 kleave(" = %d [neg]", ctx->skipped_ret); 576 goto skipped; 577 } 578 } 579 580 /* Found */ 581 ctx->result = make_key_ref(key, ctx->possessed); 582 kleave(" = 1 [found]"); 583 return 1; 584 585 skipped: 586 return ctx->skipped_ret; 587 } 588 589 /* 590 * Search inside a keyring for a key. We can search by walking to it 591 * directly based on its index-key or we can iterate over the entire 592 * tree looking for it, based on the match function. 593 */ 594 static int search_keyring(struct key *keyring, struct keyring_search_context *ctx) 595 { 596 if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) { 597 const void *object; 598 599 object = assoc_array_find(&keyring->keys, 600 &keyring_assoc_array_ops, 601 &ctx->index_key); 602 return object ? ctx->iterator(object, ctx) : 0; 603 } 604 return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx); 605 } 606 607 /* 608 * Search a tree of keyrings that point to other keyrings up to the maximum 609 * depth. 610 */ 611 static bool search_nested_keyrings(struct key *keyring, 612 struct keyring_search_context *ctx) 613 { 614 struct { 615 struct key *keyring; 616 struct assoc_array_node *node; 617 int slot; 618 } stack[KEYRING_SEARCH_MAX_DEPTH]; 619 620 struct assoc_array_shortcut *shortcut; 621 struct assoc_array_node *node; 622 struct assoc_array_ptr *ptr; 623 struct key *key; 624 int sp = 0, slot; 625 626 kenter("{%d},{%s,%s}", 627 keyring->serial, 628 ctx->index_key.type->name, 629 ctx->index_key.description); 630 631 if (ctx->index_key.description) 632 ctx->index_key.desc_len = strlen(ctx->index_key.description); 633 634 /* Check to see if this top-level keyring is what we are looking for 635 * and whether it is valid or not. 636 */ 637 if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE || 638 keyring_compare_object(keyring, &ctx->index_key)) { 639 ctx->skipped_ret = 2; 640 ctx->flags |= KEYRING_SEARCH_DO_STATE_CHECK; 641 switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) { 642 case 1: 643 goto found; 644 case 2: 645 return false; 646 default: 647 break; 648 } 649 } 650 651 ctx->skipped_ret = 0; 652 if (ctx->flags & KEYRING_SEARCH_NO_STATE_CHECK) 653 ctx->flags &= ~KEYRING_SEARCH_DO_STATE_CHECK; 654 655 /* Start processing a new keyring */ 656 descend_to_keyring: 657 kdebug("descend to %d", keyring->serial); 658 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) | 659 (1 << KEY_FLAG_REVOKED))) 660 goto not_this_keyring; 661 662 /* Search through the keys in this keyring before its searching its 663 * subtrees. 664 */ 665 if (search_keyring(keyring, ctx)) 666 goto found; 667 668 /* Then manually iterate through the keyrings nested in this one. 669 * 670 * Start from the root node of the index tree. Because of the way the 671 * hash function has been set up, keyrings cluster on the leftmost 672 * branch of the root node (root slot 0) or in the root node itself. 673 * Non-keyrings avoid the leftmost branch of the root entirely (root 674 * slots 1-15). 675 */ 676 ptr = ACCESS_ONCE(keyring->keys.root); 677 if (!ptr) 678 goto not_this_keyring; 679 680 if (assoc_array_ptr_is_shortcut(ptr)) { 681 /* If the root is a shortcut, either the keyring only contains 682 * keyring pointers (everything clusters behind root slot 0) or 683 * doesn't contain any keyring pointers. 684 */ 685 shortcut = assoc_array_ptr_to_shortcut(ptr); 686 smp_read_barrier_depends(); 687 if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0) 688 goto not_this_keyring; 689 690 ptr = ACCESS_ONCE(shortcut->next_node); 691 node = assoc_array_ptr_to_node(ptr); 692 goto begin_node; 693 } 694 695 node = assoc_array_ptr_to_node(ptr); 696 smp_read_barrier_depends(); 697 698 ptr = node->slots[0]; 699 if (!assoc_array_ptr_is_meta(ptr)) 700 goto begin_node; 701 702 descend_to_node: 703 /* Descend to a more distal node in this keyring's content tree and go 704 * through that. 705 */ 706 kdebug("descend"); 707 if (assoc_array_ptr_is_shortcut(ptr)) { 708 shortcut = assoc_array_ptr_to_shortcut(ptr); 709 smp_read_barrier_depends(); 710 ptr = ACCESS_ONCE(shortcut->next_node); 711 BUG_ON(!assoc_array_ptr_is_node(ptr)); 712 } 713 node = assoc_array_ptr_to_node(ptr); 714 715 begin_node: 716 kdebug("begin_node"); 717 smp_read_barrier_depends(); 718 slot = 0; 719 ascend_to_node: 720 /* Go through the slots in a node */ 721 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) { 722 ptr = ACCESS_ONCE(node->slots[slot]); 723 724 if (assoc_array_ptr_is_meta(ptr) && node->back_pointer) 725 goto descend_to_node; 726 727 if (!keyring_ptr_is_keyring(ptr)) 728 continue; 729 730 key = keyring_ptr_to_key(ptr); 731 732 if (sp >= KEYRING_SEARCH_MAX_DEPTH) { 733 if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) { 734 ctx->result = ERR_PTR(-ELOOP); 735 return false; 736 } 737 goto not_this_keyring; 738 } 739 740 /* Search a nested keyring */ 741 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) && 742 key_task_permission(make_key_ref(key, ctx->possessed), 743 ctx->cred, KEY_NEED_SEARCH) < 0) 744 continue; 745 746 /* stack the current position */ 747 stack[sp].keyring = keyring; 748 stack[sp].node = node; 749 stack[sp].slot = slot; 750 sp++; 751 752 /* begin again with the new keyring */ 753 keyring = key; 754 goto descend_to_keyring; 755 } 756 757 /* We've dealt with all the slots in the current node, so now we need 758 * to ascend to the parent and continue processing there. 759 */ 760 ptr = ACCESS_ONCE(node->back_pointer); 761 slot = node->parent_slot; 762 763 if (ptr && assoc_array_ptr_is_shortcut(ptr)) { 764 shortcut = assoc_array_ptr_to_shortcut(ptr); 765 smp_read_barrier_depends(); 766 ptr = ACCESS_ONCE(shortcut->back_pointer); 767 slot = shortcut->parent_slot; 768 } 769 if (!ptr) 770 goto not_this_keyring; 771 node = assoc_array_ptr_to_node(ptr); 772 smp_read_barrier_depends(); 773 slot++; 774 775 /* If we've ascended to the root (zero backpointer), we must have just 776 * finished processing the leftmost branch rather than the root slots - 777 * so there can't be any more keyrings for us to find. 778 */ 779 if (node->back_pointer) { 780 kdebug("ascend %d", slot); 781 goto ascend_to_node; 782 } 783 784 /* The keyring we're looking at was disqualified or didn't contain a 785 * matching key. 786 */ 787 not_this_keyring: 788 kdebug("not_this_keyring %d", sp); 789 if (sp <= 0) { 790 kleave(" = false"); 791 return false; 792 } 793 794 /* Resume the processing of a keyring higher up in the tree */ 795 sp--; 796 keyring = stack[sp].keyring; 797 node = stack[sp].node; 798 slot = stack[sp].slot + 1; 799 kdebug("ascend to %d [%d]", keyring->serial, slot); 800 goto ascend_to_node; 801 802 /* We found a viable match */ 803 found: 804 key = key_ref_to_ptr(ctx->result); 805 key_check(key); 806 if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) { 807 key->last_used_at = ctx->now.tv_sec; 808 keyring->last_used_at = ctx->now.tv_sec; 809 while (sp > 0) 810 stack[--sp].keyring->last_used_at = ctx->now.tv_sec; 811 } 812 kleave(" = true"); 813 return true; 814 } 815 816 /** 817 * keyring_search_aux - Search a keyring tree for a key matching some criteria 818 * @keyring_ref: A pointer to the keyring with possession indicator. 819 * @ctx: The keyring search context. 820 * 821 * Search the supplied keyring tree for a key that matches the criteria given. 822 * The root keyring and any linked keyrings must grant Search permission to the 823 * caller to be searchable and keys can only be found if they too grant Search 824 * to the caller. The possession flag on the root keyring pointer controls use 825 * of the possessor bits in permissions checking of the entire tree. In 826 * addition, the LSM gets to forbid keyring searches and key matches. 827 * 828 * The search is performed as a breadth-then-depth search up to the prescribed 829 * limit (KEYRING_SEARCH_MAX_DEPTH). 830 * 831 * Keys are matched to the type provided and are then filtered by the match 832 * function, which is given the description to use in any way it sees fit. The 833 * match function may use any attributes of a key that it wishes to to 834 * determine the match. Normally the match function from the key type would be 835 * used. 836 * 837 * RCU can be used to prevent the keyring key lists from disappearing without 838 * the need to take lots of locks. 839 * 840 * Returns a pointer to the found key and increments the key usage count if 841 * successful; -EAGAIN if no matching keys were found, or if expired or revoked 842 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the 843 * specified keyring wasn't a keyring. 844 * 845 * In the case of a successful return, the possession attribute from 846 * @keyring_ref is propagated to the returned key reference. 847 */ 848 key_ref_t keyring_search_aux(key_ref_t keyring_ref, 849 struct keyring_search_context *ctx) 850 { 851 struct key *keyring; 852 long err; 853 854 ctx->iterator = keyring_search_iterator; 855 ctx->possessed = is_key_possessed(keyring_ref); 856 ctx->result = ERR_PTR(-EAGAIN); 857 858 keyring = key_ref_to_ptr(keyring_ref); 859 key_check(keyring); 860 861 if (keyring->type != &key_type_keyring) 862 return ERR_PTR(-ENOTDIR); 863 864 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) { 865 err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH); 866 if (err < 0) 867 return ERR_PTR(err); 868 } 869 870 rcu_read_lock(); 871 ctx->now = current_kernel_time(); 872 if (search_nested_keyrings(keyring, ctx)) 873 __key_get(key_ref_to_ptr(ctx->result)); 874 rcu_read_unlock(); 875 return ctx->result; 876 } 877 878 /** 879 * keyring_search - Search the supplied keyring tree for a matching key 880 * @keyring: The root of the keyring tree to be searched. 881 * @type: The type of keyring we want to find. 882 * @description: The name of the keyring we want to find. 883 * 884 * As keyring_search_aux() above, but using the current task's credentials and 885 * type's default matching function and preferred search method. 886 */ 887 key_ref_t keyring_search(key_ref_t keyring, 888 struct key_type *type, 889 const char *description) 890 { 891 struct keyring_search_context ctx = { 892 .index_key.type = type, 893 .index_key.description = description, 894 .cred = current_cred(), 895 .match_data.cmp = key_default_cmp, 896 .match_data.raw_data = description, 897 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT, 898 .flags = KEYRING_SEARCH_DO_STATE_CHECK, 899 }; 900 key_ref_t key; 901 int ret; 902 903 if (type->match_preparse) { 904 ret = type->match_preparse(&ctx.match_data); 905 if (ret < 0) 906 return ERR_PTR(ret); 907 } 908 909 key = keyring_search_aux(keyring, &ctx); 910 911 if (type->match_free) 912 type->match_free(&ctx.match_data); 913 return key; 914 } 915 EXPORT_SYMBOL(keyring_search); 916 917 /* 918 * Search the given keyring for a key that might be updated. 919 * 920 * The caller must guarantee that the keyring is a keyring and that the 921 * permission is granted to modify the keyring as no check is made here. The 922 * caller must also hold a lock on the keyring semaphore. 923 * 924 * Returns a pointer to the found key with usage count incremented if 925 * successful and returns NULL if not found. Revoked and invalidated keys are 926 * skipped over. 927 * 928 * If successful, the possession indicator is propagated from the keyring ref 929 * to the returned key reference. 930 */ 931 key_ref_t find_key_to_update(key_ref_t keyring_ref, 932 const struct keyring_index_key *index_key) 933 { 934 struct key *keyring, *key; 935 const void *object; 936 937 keyring = key_ref_to_ptr(keyring_ref); 938 939 kenter("{%d},{%s,%s}", 940 keyring->serial, index_key->type->name, index_key->description); 941 942 object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops, 943 index_key); 944 945 if (object) 946 goto found; 947 948 kleave(" = NULL"); 949 return NULL; 950 951 found: 952 key = keyring_ptr_to_key(object); 953 if (key->flags & ((1 << KEY_FLAG_INVALIDATED) | 954 (1 << KEY_FLAG_REVOKED))) { 955 kleave(" = NULL [x]"); 956 return NULL; 957 } 958 __key_get(key); 959 kleave(" = {%d}", key->serial); 960 return make_key_ref(key, is_key_possessed(keyring_ref)); 961 } 962 963 /* 964 * Find a keyring with the specified name. 965 * 966 * All named keyrings in the current user namespace are searched, provided they 967 * grant Search permission directly to the caller (unless this check is 968 * skipped). Keyrings whose usage points have reached zero or who have been 969 * revoked are skipped. 970 * 971 * Returns a pointer to the keyring with the keyring's refcount having being 972 * incremented on success. -ENOKEY is returned if a key could not be found. 973 */ 974 struct key *find_keyring_by_name(const char *name, bool skip_perm_check) 975 { 976 struct key *keyring; 977 int bucket; 978 979 if (!name) 980 return ERR_PTR(-EINVAL); 981 982 bucket = keyring_hash(name); 983 984 read_lock(&keyring_name_lock); 985 986 if (keyring_name_hash[bucket].next) { 987 /* search this hash bucket for a keyring with a matching name 988 * that's readable and that hasn't been revoked */ 989 list_for_each_entry(keyring, 990 &keyring_name_hash[bucket], 991 type_data.link 992 ) { 993 if (!kuid_has_mapping(current_user_ns(), keyring->user->uid)) 994 continue; 995 996 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags)) 997 continue; 998 999 if (strcmp(keyring->description, name) != 0) 1000 continue; 1001 1002 if (!skip_perm_check && 1003 key_permission(make_key_ref(keyring, 0), 1004 KEY_NEED_SEARCH) < 0) 1005 continue; 1006 1007 /* we've got a match but we might end up racing with 1008 * key_cleanup() if the keyring is currently 'dead' 1009 * (ie. it has a zero usage count) */ 1010 if (!atomic_inc_not_zero(&keyring->usage)) 1011 continue; 1012 keyring->last_used_at = current_kernel_time().tv_sec; 1013 goto out; 1014 } 1015 } 1016 1017 keyring = ERR_PTR(-ENOKEY); 1018 out: 1019 read_unlock(&keyring_name_lock); 1020 return keyring; 1021 } 1022 1023 static int keyring_detect_cycle_iterator(const void *object, 1024 void *iterator_data) 1025 { 1026 struct keyring_search_context *ctx = iterator_data; 1027 const struct key *key = keyring_ptr_to_key(object); 1028 1029 kenter("{%d}", key->serial); 1030 1031 /* We might get a keyring with matching index-key that is nonetheless a 1032 * different keyring. */ 1033 if (key != ctx->match_data.raw_data) 1034 return 0; 1035 1036 ctx->result = ERR_PTR(-EDEADLK); 1037 return 1; 1038 } 1039 1040 /* 1041 * See if a cycle will will be created by inserting acyclic tree B in acyclic 1042 * tree A at the topmost level (ie: as a direct child of A). 1043 * 1044 * Since we are adding B to A at the top level, checking for cycles should just 1045 * be a matter of seeing if node A is somewhere in tree B. 1046 */ 1047 static int keyring_detect_cycle(struct key *A, struct key *B) 1048 { 1049 struct keyring_search_context ctx = { 1050 .index_key = A->index_key, 1051 .match_data.raw_data = A, 1052 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT, 1053 .iterator = keyring_detect_cycle_iterator, 1054 .flags = (KEYRING_SEARCH_NO_STATE_CHECK | 1055 KEYRING_SEARCH_NO_UPDATE_TIME | 1056 KEYRING_SEARCH_NO_CHECK_PERM | 1057 KEYRING_SEARCH_DETECT_TOO_DEEP), 1058 }; 1059 1060 rcu_read_lock(); 1061 search_nested_keyrings(B, &ctx); 1062 rcu_read_unlock(); 1063 return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result); 1064 } 1065 1066 /* 1067 * Preallocate memory so that a key can be linked into to a keyring. 1068 */ 1069 int __key_link_begin(struct key *keyring, 1070 const struct keyring_index_key *index_key, 1071 struct assoc_array_edit **_edit) 1072 __acquires(&keyring->sem) 1073 __acquires(&keyring_serialise_link_sem) 1074 { 1075 struct assoc_array_edit *edit; 1076 int ret; 1077 1078 kenter("%d,%s,%s,", 1079 keyring->serial, index_key->type->name, index_key->description); 1080 1081 BUG_ON(index_key->desc_len == 0); 1082 1083 if (keyring->type != &key_type_keyring) 1084 return -ENOTDIR; 1085 1086 down_write(&keyring->sem); 1087 1088 ret = -EKEYREVOKED; 1089 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags)) 1090 goto error_krsem; 1091 1092 /* serialise link/link calls to prevent parallel calls causing a cycle 1093 * when linking two keyring in opposite orders */ 1094 if (index_key->type == &key_type_keyring) 1095 down_write(&keyring_serialise_link_sem); 1096 1097 /* Create an edit script that will insert/replace the key in the 1098 * keyring tree. 1099 */ 1100 edit = assoc_array_insert(&keyring->keys, 1101 &keyring_assoc_array_ops, 1102 index_key, 1103 NULL); 1104 if (IS_ERR(edit)) { 1105 ret = PTR_ERR(edit); 1106 goto error_sem; 1107 } 1108 1109 /* If we're not replacing a link in-place then we're going to need some 1110 * extra quota. 1111 */ 1112 if (!edit->dead_leaf) { 1113 ret = key_payload_reserve(keyring, 1114 keyring->datalen + KEYQUOTA_LINK_BYTES); 1115 if (ret < 0) 1116 goto error_cancel; 1117 } 1118 1119 *_edit = edit; 1120 kleave(" = 0"); 1121 return 0; 1122 1123 error_cancel: 1124 assoc_array_cancel_edit(edit); 1125 error_sem: 1126 if (index_key->type == &key_type_keyring) 1127 up_write(&keyring_serialise_link_sem); 1128 error_krsem: 1129 up_write(&keyring->sem); 1130 kleave(" = %d", ret); 1131 return ret; 1132 } 1133 1134 /* 1135 * Check already instantiated keys aren't going to be a problem. 1136 * 1137 * The caller must have called __key_link_begin(). Don't need to call this for 1138 * keys that were created since __key_link_begin() was called. 1139 */ 1140 int __key_link_check_live_key(struct key *keyring, struct key *key) 1141 { 1142 if (key->type == &key_type_keyring) 1143 /* check that we aren't going to create a cycle by linking one 1144 * keyring to another */ 1145 return keyring_detect_cycle(keyring, key); 1146 return 0; 1147 } 1148 1149 /* 1150 * Link a key into to a keyring. 1151 * 1152 * Must be called with __key_link_begin() having being called. Discards any 1153 * already extant link to matching key if there is one, so that each keyring 1154 * holds at most one link to any given key of a particular type+description 1155 * combination. 1156 */ 1157 void __key_link(struct key *key, struct assoc_array_edit **_edit) 1158 { 1159 __key_get(key); 1160 assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key)); 1161 assoc_array_apply_edit(*_edit); 1162 *_edit = NULL; 1163 } 1164 1165 /* 1166 * Finish linking a key into to a keyring. 1167 * 1168 * Must be called with __key_link_begin() having being called. 1169 */ 1170 void __key_link_end(struct key *keyring, 1171 const struct keyring_index_key *index_key, 1172 struct assoc_array_edit *edit) 1173 __releases(&keyring->sem) 1174 __releases(&keyring_serialise_link_sem) 1175 { 1176 BUG_ON(index_key->type == NULL); 1177 kenter("%d,%s,", keyring->serial, index_key->type->name); 1178 1179 if (index_key->type == &key_type_keyring) 1180 up_write(&keyring_serialise_link_sem); 1181 1182 if (edit && !edit->dead_leaf) { 1183 key_payload_reserve(keyring, 1184 keyring->datalen - KEYQUOTA_LINK_BYTES); 1185 assoc_array_cancel_edit(edit); 1186 } 1187 up_write(&keyring->sem); 1188 } 1189 1190 /** 1191 * key_link - Link a key to a keyring 1192 * @keyring: The keyring to make the link in. 1193 * @key: The key to link to. 1194 * 1195 * Make a link in a keyring to a key, such that the keyring holds a reference 1196 * on that key and the key can potentially be found by searching that keyring. 1197 * 1198 * This function will write-lock the keyring's semaphore and will consume some 1199 * of the user's key data quota to hold the link. 1200 * 1201 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, 1202 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is 1203 * full, -EDQUOT if there is insufficient key data quota remaining to add 1204 * another link or -ENOMEM if there's insufficient memory. 1205 * 1206 * It is assumed that the caller has checked that it is permitted for a link to 1207 * be made (the keyring should have Write permission and the key Link 1208 * permission). 1209 */ 1210 int key_link(struct key *keyring, struct key *key) 1211 { 1212 struct assoc_array_edit *edit; 1213 int ret; 1214 1215 kenter("{%d,%d}", keyring->serial, atomic_read(&keyring->usage)); 1216 1217 key_check(keyring); 1218 key_check(key); 1219 1220 if (test_bit(KEY_FLAG_TRUSTED_ONLY, &keyring->flags) && 1221 !test_bit(KEY_FLAG_TRUSTED, &key->flags)) 1222 return -EPERM; 1223 1224 ret = __key_link_begin(keyring, &key->index_key, &edit); 1225 if (ret == 0) { 1226 kdebug("begun {%d,%d}", keyring->serial, atomic_read(&keyring->usage)); 1227 ret = __key_link_check_live_key(keyring, key); 1228 if (ret == 0) 1229 __key_link(key, &edit); 1230 __key_link_end(keyring, &key->index_key, edit); 1231 } 1232 1233 kleave(" = %d {%d,%d}", ret, keyring->serial, atomic_read(&keyring->usage)); 1234 return ret; 1235 } 1236 EXPORT_SYMBOL(key_link); 1237 1238 /** 1239 * key_unlink - Unlink the first link to a key from a keyring. 1240 * @keyring: The keyring to remove the link from. 1241 * @key: The key the link is to. 1242 * 1243 * Remove a link from a keyring to a key. 1244 * 1245 * This function will write-lock the keyring's semaphore. 1246 * 1247 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if 1248 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient 1249 * memory. 1250 * 1251 * It is assumed that the caller has checked that it is permitted for a link to 1252 * be removed (the keyring should have Write permission; no permissions are 1253 * required on the key). 1254 */ 1255 int key_unlink(struct key *keyring, struct key *key) 1256 { 1257 struct assoc_array_edit *edit; 1258 int ret; 1259 1260 key_check(keyring); 1261 key_check(key); 1262 1263 if (keyring->type != &key_type_keyring) 1264 return -ENOTDIR; 1265 1266 down_write(&keyring->sem); 1267 1268 edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops, 1269 &key->index_key); 1270 if (IS_ERR(edit)) { 1271 ret = PTR_ERR(edit); 1272 goto error; 1273 } 1274 ret = -ENOENT; 1275 if (edit == NULL) 1276 goto error; 1277 1278 assoc_array_apply_edit(edit); 1279 key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES); 1280 ret = 0; 1281 1282 error: 1283 up_write(&keyring->sem); 1284 return ret; 1285 } 1286 EXPORT_SYMBOL(key_unlink); 1287 1288 /** 1289 * keyring_clear - Clear a keyring 1290 * @keyring: The keyring to clear. 1291 * 1292 * Clear the contents of the specified keyring. 1293 * 1294 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring. 1295 */ 1296 int keyring_clear(struct key *keyring) 1297 { 1298 struct assoc_array_edit *edit; 1299 int ret; 1300 1301 if (keyring->type != &key_type_keyring) 1302 return -ENOTDIR; 1303 1304 down_write(&keyring->sem); 1305 1306 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops); 1307 if (IS_ERR(edit)) { 1308 ret = PTR_ERR(edit); 1309 } else { 1310 if (edit) 1311 assoc_array_apply_edit(edit); 1312 key_payload_reserve(keyring, 0); 1313 ret = 0; 1314 } 1315 1316 up_write(&keyring->sem); 1317 return ret; 1318 } 1319 EXPORT_SYMBOL(keyring_clear); 1320 1321 /* 1322 * Dispose of the links from a revoked keyring. 1323 * 1324 * This is called with the key sem write-locked. 1325 */ 1326 static void keyring_revoke(struct key *keyring) 1327 { 1328 struct assoc_array_edit *edit; 1329 1330 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops); 1331 if (!IS_ERR(edit)) { 1332 if (edit) 1333 assoc_array_apply_edit(edit); 1334 key_payload_reserve(keyring, 0); 1335 } 1336 } 1337 1338 static bool keyring_gc_select_iterator(void *object, void *iterator_data) 1339 { 1340 struct key *key = keyring_ptr_to_key(object); 1341 time_t *limit = iterator_data; 1342 1343 if (key_is_dead(key, *limit)) 1344 return false; 1345 key_get(key); 1346 return true; 1347 } 1348 1349 static int keyring_gc_check_iterator(const void *object, void *iterator_data) 1350 { 1351 const struct key *key = keyring_ptr_to_key(object); 1352 time_t *limit = iterator_data; 1353 1354 key_check(key); 1355 return key_is_dead(key, *limit); 1356 } 1357 1358 /* 1359 * Garbage collect pointers from a keyring. 1360 * 1361 * Not called with any locks held. The keyring's key struct will not be 1362 * deallocated under us as only our caller may deallocate it. 1363 */ 1364 void keyring_gc(struct key *keyring, time_t limit) 1365 { 1366 int result; 1367 1368 kenter("%x{%s}", keyring->serial, keyring->description ?: ""); 1369 1370 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) | 1371 (1 << KEY_FLAG_REVOKED))) 1372 goto dont_gc; 1373 1374 /* scan the keyring looking for dead keys */ 1375 rcu_read_lock(); 1376 result = assoc_array_iterate(&keyring->keys, 1377 keyring_gc_check_iterator, &limit); 1378 rcu_read_unlock(); 1379 if (result == true) 1380 goto do_gc; 1381 1382 dont_gc: 1383 kleave(" [no gc]"); 1384 return; 1385 1386 do_gc: 1387 down_write(&keyring->sem); 1388 assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops, 1389 keyring_gc_select_iterator, &limit); 1390 up_write(&keyring->sem); 1391 kleave(" [gc]"); 1392 } 1393