xref: /openbmc/linux/security/keys/keyring.c (revision 2a598d0b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Keyring handling
3  *
4  * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/export.h>
9 #include <linux/init.h>
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/security.h>
13 #include <linux/seq_file.h>
14 #include <linux/err.h>
15 #include <linux/user_namespace.h>
16 #include <linux/nsproxy.h>
17 #include <keys/keyring-type.h>
18 #include <keys/user-type.h>
19 #include <linux/assoc_array_priv.h>
20 #include <linux/uaccess.h>
21 #include <net/net_namespace.h>
22 #include "internal.h"
23 
24 /*
25  * When plumbing the depths of the key tree, this sets a hard limit
26  * set on how deep we're willing to go.
27  */
28 #define KEYRING_SEARCH_MAX_DEPTH 6
29 
30 /*
31  * We mark pointers we pass to the associative array with bit 1 set if
32  * they're keyrings and clear otherwise.
33  */
34 #define KEYRING_PTR_SUBTYPE	0x2UL
35 
36 static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
37 {
38 	return (unsigned long)x & KEYRING_PTR_SUBTYPE;
39 }
40 static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
41 {
42 	void *object = assoc_array_ptr_to_leaf(x);
43 	return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
44 }
45 static inline void *keyring_key_to_ptr(struct key *key)
46 {
47 	if (key->type == &key_type_keyring)
48 		return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
49 	return key;
50 }
51 
52 static DEFINE_RWLOCK(keyring_name_lock);
53 
54 /*
55  * Clean up the bits of user_namespace that belong to us.
56  */
57 void key_free_user_ns(struct user_namespace *ns)
58 {
59 	write_lock(&keyring_name_lock);
60 	list_del_init(&ns->keyring_name_list);
61 	write_unlock(&keyring_name_lock);
62 
63 	key_put(ns->user_keyring_register);
64 #ifdef CONFIG_PERSISTENT_KEYRINGS
65 	key_put(ns->persistent_keyring_register);
66 #endif
67 }
68 
69 /*
70  * The keyring key type definition.  Keyrings are simply keys of this type and
71  * can be treated as ordinary keys in addition to having their own special
72  * operations.
73  */
74 static int keyring_preparse(struct key_preparsed_payload *prep);
75 static void keyring_free_preparse(struct key_preparsed_payload *prep);
76 static int keyring_instantiate(struct key *keyring,
77 			       struct key_preparsed_payload *prep);
78 static void keyring_revoke(struct key *keyring);
79 static void keyring_destroy(struct key *keyring);
80 static void keyring_describe(const struct key *keyring, struct seq_file *m);
81 static long keyring_read(const struct key *keyring,
82 			 char *buffer, size_t buflen);
83 
84 struct key_type key_type_keyring = {
85 	.name		= "keyring",
86 	.def_datalen	= 0,
87 	.preparse	= keyring_preparse,
88 	.free_preparse	= keyring_free_preparse,
89 	.instantiate	= keyring_instantiate,
90 	.revoke		= keyring_revoke,
91 	.destroy	= keyring_destroy,
92 	.describe	= keyring_describe,
93 	.read		= keyring_read,
94 };
95 EXPORT_SYMBOL(key_type_keyring);
96 
97 /*
98  * Semaphore to serialise link/link calls to prevent two link calls in parallel
99  * introducing a cycle.
100  */
101 static DEFINE_MUTEX(keyring_serialise_link_lock);
102 
103 /*
104  * Publish the name of a keyring so that it can be found by name (if it has
105  * one and it doesn't begin with a dot).
106  */
107 static void keyring_publish_name(struct key *keyring)
108 {
109 	struct user_namespace *ns = current_user_ns();
110 
111 	if (keyring->description &&
112 	    keyring->description[0] &&
113 	    keyring->description[0] != '.') {
114 		write_lock(&keyring_name_lock);
115 		list_add_tail(&keyring->name_link, &ns->keyring_name_list);
116 		write_unlock(&keyring_name_lock);
117 	}
118 }
119 
120 /*
121  * Preparse a keyring payload
122  */
123 static int keyring_preparse(struct key_preparsed_payload *prep)
124 {
125 	return prep->datalen != 0 ? -EINVAL : 0;
126 }
127 
128 /*
129  * Free a preparse of a user defined key payload
130  */
131 static void keyring_free_preparse(struct key_preparsed_payload *prep)
132 {
133 }
134 
135 /*
136  * Initialise a keyring.
137  *
138  * Returns 0 on success, -EINVAL if given any data.
139  */
140 static int keyring_instantiate(struct key *keyring,
141 			       struct key_preparsed_payload *prep)
142 {
143 	assoc_array_init(&keyring->keys);
144 	/* make the keyring available by name if it has one */
145 	keyring_publish_name(keyring);
146 	return 0;
147 }
148 
149 /*
150  * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit.  Ideally we'd
151  * fold the carry back too, but that requires inline asm.
152  */
153 static u64 mult_64x32_and_fold(u64 x, u32 y)
154 {
155 	u64 hi = (u64)(u32)(x >> 32) * y;
156 	u64 lo = (u64)(u32)(x) * y;
157 	return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
158 }
159 
160 /*
161  * Hash a key type and description.
162  */
163 static void hash_key_type_and_desc(struct keyring_index_key *index_key)
164 {
165 	const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
166 	const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
167 	const char *description = index_key->description;
168 	unsigned long hash, type;
169 	u32 piece;
170 	u64 acc;
171 	int n, desc_len = index_key->desc_len;
172 
173 	type = (unsigned long)index_key->type;
174 	acc = mult_64x32_and_fold(type, desc_len + 13);
175 	acc = mult_64x32_and_fold(acc, 9207);
176 	piece = (unsigned long)index_key->domain_tag;
177 	acc = mult_64x32_and_fold(acc, piece);
178 	acc = mult_64x32_and_fold(acc, 9207);
179 
180 	for (;;) {
181 		n = desc_len;
182 		if (n <= 0)
183 			break;
184 		if (n > 4)
185 			n = 4;
186 		piece = 0;
187 		memcpy(&piece, description, n);
188 		description += n;
189 		desc_len -= n;
190 		acc = mult_64x32_and_fold(acc, piece);
191 		acc = mult_64x32_and_fold(acc, 9207);
192 	}
193 
194 	/* Fold the hash down to 32 bits if need be. */
195 	hash = acc;
196 	if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
197 		hash ^= acc >> 32;
198 
199 	/* Squidge all the keyrings into a separate part of the tree to
200 	 * ordinary keys by making sure the lowest level segment in the hash is
201 	 * zero for keyrings and non-zero otherwise.
202 	 */
203 	if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
204 		hash |= (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
205 	else if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
206 		hash = (hash + (hash << level_shift)) & ~fan_mask;
207 	index_key->hash = hash;
208 }
209 
210 /*
211  * Finalise an index key to include a part of the description actually in the
212  * index key, to set the domain tag and to calculate the hash.
213  */
214 void key_set_index_key(struct keyring_index_key *index_key)
215 {
216 	static struct key_tag default_domain_tag = { .usage = REFCOUNT_INIT(1), };
217 	size_t n = min_t(size_t, index_key->desc_len, sizeof(index_key->desc));
218 
219 	memcpy(index_key->desc, index_key->description, n);
220 
221 	if (!index_key->domain_tag) {
222 		if (index_key->type->flags & KEY_TYPE_NET_DOMAIN)
223 			index_key->domain_tag = current->nsproxy->net_ns->key_domain;
224 		else
225 			index_key->domain_tag = &default_domain_tag;
226 	}
227 
228 	hash_key_type_and_desc(index_key);
229 }
230 
231 /**
232  * key_put_tag - Release a ref on a tag.
233  * @tag: The tag to release.
234  *
235  * This releases a reference the given tag and returns true if that ref was the
236  * last one.
237  */
238 bool key_put_tag(struct key_tag *tag)
239 {
240 	if (refcount_dec_and_test(&tag->usage)) {
241 		kfree_rcu(tag, rcu);
242 		return true;
243 	}
244 
245 	return false;
246 }
247 
248 /**
249  * key_remove_domain - Kill off a key domain and gc its keys
250  * @domain_tag: The domain tag to release.
251  *
252  * This marks a domain tag as being dead and releases a ref on it.  If that
253  * wasn't the last reference, the garbage collector is poked to try and delete
254  * all keys that were in the domain.
255  */
256 void key_remove_domain(struct key_tag *domain_tag)
257 {
258 	domain_tag->removed = true;
259 	if (!key_put_tag(domain_tag))
260 		key_schedule_gc_links();
261 }
262 
263 /*
264  * Build the next index key chunk.
265  *
266  * We return it one word-sized chunk at a time.
267  */
268 static unsigned long keyring_get_key_chunk(const void *data, int level)
269 {
270 	const struct keyring_index_key *index_key = data;
271 	unsigned long chunk = 0;
272 	const u8 *d;
273 	int desc_len = index_key->desc_len, n = sizeof(chunk);
274 
275 	level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
276 	switch (level) {
277 	case 0:
278 		return index_key->hash;
279 	case 1:
280 		return index_key->x;
281 	case 2:
282 		return (unsigned long)index_key->type;
283 	case 3:
284 		return (unsigned long)index_key->domain_tag;
285 	default:
286 		level -= 4;
287 		if (desc_len <= sizeof(index_key->desc))
288 			return 0;
289 
290 		d = index_key->description + sizeof(index_key->desc);
291 		d += level * sizeof(long);
292 		desc_len -= sizeof(index_key->desc);
293 		if (desc_len > n)
294 			desc_len = n;
295 		do {
296 			chunk <<= 8;
297 			chunk |= *d++;
298 		} while (--desc_len > 0);
299 		return chunk;
300 	}
301 }
302 
303 static unsigned long keyring_get_object_key_chunk(const void *object, int level)
304 {
305 	const struct key *key = keyring_ptr_to_key(object);
306 	return keyring_get_key_chunk(&key->index_key, level);
307 }
308 
309 static bool keyring_compare_object(const void *object, const void *data)
310 {
311 	const struct keyring_index_key *index_key = data;
312 	const struct key *key = keyring_ptr_to_key(object);
313 
314 	return key->index_key.type == index_key->type &&
315 		key->index_key.domain_tag == index_key->domain_tag &&
316 		key->index_key.desc_len == index_key->desc_len &&
317 		memcmp(key->index_key.description, index_key->description,
318 		       index_key->desc_len) == 0;
319 }
320 
321 /*
322  * Compare the index keys of a pair of objects and determine the bit position
323  * at which they differ - if they differ.
324  */
325 static int keyring_diff_objects(const void *object, const void *data)
326 {
327 	const struct key *key_a = keyring_ptr_to_key(object);
328 	const struct keyring_index_key *a = &key_a->index_key;
329 	const struct keyring_index_key *b = data;
330 	unsigned long seg_a, seg_b;
331 	int level, i;
332 
333 	level = 0;
334 	seg_a = a->hash;
335 	seg_b = b->hash;
336 	if ((seg_a ^ seg_b) != 0)
337 		goto differ;
338 	level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
339 
340 	/* The number of bits contributed by the hash is controlled by a
341 	 * constant in the assoc_array headers.  Everything else thereafter we
342 	 * can deal with as being machine word-size dependent.
343 	 */
344 	seg_a = a->x;
345 	seg_b = b->x;
346 	if ((seg_a ^ seg_b) != 0)
347 		goto differ;
348 	level += sizeof(unsigned long);
349 
350 	/* The next bit may not work on big endian */
351 	seg_a = (unsigned long)a->type;
352 	seg_b = (unsigned long)b->type;
353 	if ((seg_a ^ seg_b) != 0)
354 		goto differ;
355 	level += sizeof(unsigned long);
356 
357 	seg_a = (unsigned long)a->domain_tag;
358 	seg_b = (unsigned long)b->domain_tag;
359 	if ((seg_a ^ seg_b) != 0)
360 		goto differ;
361 	level += sizeof(unsigned long);
362 
363 	i = sizeof(a->desc);
364 	if (a->desc_len <= i)
365 		goto same;
366 
367 	for (; i < a->desc_len; i++) {
368 		seg_a = *(unsigned char *)(a->description + i);
369 		seg_b = *(unsigned char *)(b->description + i);
370 		if ((seg_a ^ seg_b) != 0)
371 			goto differ_plus_i;
372 	}
373 
374 same:
375 	return -1;
376 
377 differ_plus_i:
378 	level += i;
379 differ:
380 	i = level * 8 + __ffs(seg_a ^ seg_b);
381 	return i;
382 }
383 
384 /*
385  * Free an object after stripping the keyring flag off of the pointer.
386  */
387 static void keyring_free_object(void *object)
388 {
389 	key_put(keyring_ptr_to_key(object));
390 }
391 
392 /*
393  * Operations for keyring management by the index-tree routines.
394  */
395 static const struct assoc_array_ops keyring_assoc_array_ops = {
396 	.get_key_chunk		= keyring_get_key_chunk,
397 	.get_object_key_chunk	= keyring_get_object_key_chunk,
398 	.compare_object		= keyring_compare_object,
399 	.diff_objects		= keyring_diff_objects,
400 	.free_object		= keyring_free_object,
401 };
402 
403 /*
404  * Clean up a keyring when it is destroyed.  Unpublish its name if it had one
405  * and dispose of its data.
406  *
407  * The garbage collector detects the final key_put(), removes the keyring from
408  * the serial number tree and then does RCU synchronisation before coming here,
409  * so we shouldn't need to worry about code poking around here with the RCU
410  * readlock held by this time.
411  */
412 static void keyring_destroy(struct key *keyring)
413 {
414 	if (keyring->description) {
415 		write_lock(&keyring_name_lock);
416 
417 		if (keyring->name_link.next != NULL &&
418 		    !list_empty(&keyring->name_link))
419 			list_del(&keyring->name_link);
420 
421 		write_unlock(&keyring_name_lock);
422 	}
423 
424 	if (keyring->restrict_link) {
425 		struct key_restriction *keyres = keyring->restrict_link;
426 
427 		key_put(keyres->key);
428 		kfree(keyres);
429 	}
430 
431 	assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
432 }
433 
434 /*
435  * Describe a keyring for /proc.
436  */
437 static void keyring_describe(const struct key *keyring, struct seq_file *m)
438 {
439 	if (keyring->description)
440 		seq_puts(m, keyring->description);
441 	else
442 		seq_puts(m, "[anon]");
443 
444 	if (key_is_positive(keyring)) {
445 		if (keyring->keys.nr_leaves_on_tree != 0)
446 			seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
447 		else
448 			seq_puts(m, ": empty");
449 	}
450 }
451 
452 struct keyring_read_iterator_context {
453 	size_t			buflen;
454 	size_t			count;
455 	key_serial_t		*buffer;
456 };
457 
458 static int keyring_read_iterator(const void *object, void *data)
459 {
460 	struct keyring_read_iterator_context *ctx = data;
461 	const struct key *key = keyring_ptr_to_key(object);
462 
463 	kenter("{%s,%d},,{%zu/%zu}",
464 	       key->type->name, key->serial, ctx->count, ctx->buflen);
465 
466 	if (ctx->count >= ctx->buflen)
467 		return 1;
468 
469 	*ctx->buffer++ = key->serial;
470 	ctx->count += sizeof(key->serial);
471 	return 0;
472 }
473 
474 /*
475  * Read a list of key IDs from the keyring's contents in binary form
476  *
477  * The keyring's semaphore is read-locked by the caller.  This prevents someone
478  * from modifying it under us - which could cause us to read key IDs multiple
479  * times.
480  */
481 static long keyring_read(const struct key *keyring,
482 			 char *buffer, size_t buflen)
483 {
484 	struct keyring_read_iterator_context ctx;
485 	long ret;
486 
487 	kenter("{%d},,%zu", key_serial(keyring), buflen);
488 
489 	if (buflen & (sizeof(key_serial_t) - 1))
490 		return -EINVAL;
491 
492 	/* Copy as many key IDs as fit into the buffer */
493 	if (buffer && buflen) {
494 		ctx.buffer = (key_serial_t *)buffer;
495 		ctx.buflen = buflen;
496 		ctx.count = 0;
497 		ret = assoc_array_iterate(&keyring->keys,
498 					  keyring_read_iterator, &ctx);
499 		if (ret < 0) {
500 			kleave(" = %ld [iterate]", ret);
501 			return ret;
502 		}
503 	}
504 
505 	/* Return the size of the buffer needed */
506 	ret = keyring->keys.nr_leaves_on_tree * sizeof(key_serial_t);
507 	if (ret <= buflen)
508 		kleave("= %ld [ok]", ret);
509 	else
510 		kleave("= %ld [buffer too small]", ret);
511 	return ret;
512 }
513 
514 /*
515  * Allocate a keyring and link into the destination keyring.
516  */
517 struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
518 			  const struct cred *cred, key_perm_t perm,
519 			  unsigned long flags,
520 			  struct key_restriction *restrict_link,
521 			  struct key *dest)
522 {
523 	struct key *keyring;
524 	int ret;
525 
526 	keyring = key_alloc(&key_type_keyring, description,
527 			    uid, gid, cred, perm, flags, restrict_link);
528 	if (!IS_ERR(keyring)) {
529 		ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
530 		if (ret < 0) {
531 			key_put(keyring);
532 			keyring = ERR_PTR(ret);
533 		}
534 	}
535 
536 	return keyring;
537 }
538 EXPORT_SYMBOL(keyring_alloc);
539 
540 /**
541  * restrict_link_reject - Give -EPERM to restrict link
542  * @keyring: The keyring being added to.
543  * @type: The type of key being added.
544  * @payload: The payload of the key intended to be added.
545  * @restriction_key: Keys providing additional data for evaluating restriction.
546  *
547  * Reject the addition of any links to a keyring.  It can be overridden by
548  * passing KEY_ALLOC_BYPASS_RESTRICTION to key_instantiate_and_link() when
549  * adding a key to a keyring.
550  *
551  * This is meant to be stored in a key_restriction structure which is passed
552  * in the restrict_link parameter to keyring_alloc().
553  */
554 int restrict_link_reject(struct key *keyring,
555 			 const struct key_type *type,
556 			 const union key_payload *payload,
557 			 struct key *restriction_key)
558 {
559 	return -EPERM;
560 }
561 
562 /*
563  * By default, we keys found by getting an exact match on their descriptions.
564  */
565 bool key_default_cmp(const struct key *key,
566 		     const struct key_match_data *match_data)
567 {
568 	return strcmp(key->description, match_data->raw_data) == 0;
569 }
570 
571 /*
572  * Iteration function to consider each key found.
573  */
574 static int keyring_search_iterator(const void *object, void *iterator_data)
575 {
576 	struct keyring_search_context *ctx = iterator_data;
577 	const struct key *key = keyring_ptr_to_key(object);
578 	unsigned long kflags = READ_ONCE(key->flags);
579 	short state = READ_ONCE(key->state);
580 
581 	kenter("{%d}", key->serial);
582 
583 	/* ignore keys not of this type */
584 	if (key->type != ctx->index_key.type) {
585 		kleave(" = 0 [!type]");
586 		return 0;
587 	}
588 
589 	/* skip invalidated, revoked and expired keys */
590 	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
591 		time64_t expiry = READ_ONCE(key->expiry);
592 
593 		if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
594 			      (1 << KEY_FLAG_REVOKED))) {
595 			ctx->result = ERR_PTR(-EKEYREVOKED);
596 			kleave(" = %d [invrev]", ctx->skipped_ret);
597 			goto skipped;
598 		}
599 
600 		if (expiry && ctx->now >= expiry) {
601 			if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED))
602 				ctx->result = ERR_PTR(-EKEYEXPIRED);
603 			kleave(" = %d [expire]", ctx->skipped_ret);
604 			goto skipped;
605 		}
606 	}
607 
608 	/* keys that don't match */
609 	if (!ctx->match_data.cmp(key, &ctx->match_data)) {
610 		kleave(" = 0 [!match]");
611 		return 0;
612 	}
613 
614 	/* key must have search permissions */
615 	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
616 	    key_task_permission(make_key_ref(key, ctx->possessed),
617 				ctx->cred, KEY_NEED_SEARCH) < 0) {
618 		ctx->result = ERR_PTR(-EACCES);
619 		kleave(" = %d [!perm]", ctx->skipped_ret);
620 		goto skipped;
621 	}
622 
623 	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
624 		/* we set a different error code if we pass a negative key */
625 		if (state < 0) {
626 			ctx->result = ERR_PTR(state);
627 			kleave(" = %d [neg]", ctx->skipped_ret);
628 			goto skipped;
629 		}
630 	}
631 
632 	/* Found */
633 	ctx->result = make_key_ref(key, ctx->possessed);
634 	kleave(" = 1 [found]");
635 	return 1;
636 
637 skipped:
638 	return ctx->skipped_ret;
639 }
640 
641 /*
642  * Search inside a keyring for a key.  We can search by walking to it
643  * directly based on its index-key or we can iterate over the entire
644  * tree looking for it, based on the match function.
645  */
646 static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
647 {
648 	if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) {
649 		const void *object;
650 
651 		object = assoc_array_find(&keyring->keys,
652 					  &keyring_assoc_array_ops,
653 					  &ctx->index_key);
654 		return object ? ctx->iterator(object, ctx) : 0;
655 	}
656 	return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
657 }
658 
659 /*
660  * Search a tree of keyrings that point to other keyrings up to the maximum
661  * depth.
662  */
663 static bool search_nested_keyrings(struct key *keyring,
664 				   struct keyring_search_context *ctx)
665 {
666 	struct {
667 		struct key *keyring;
668 		struct assoc_array_node *node;
669 		int slot;
670 	} stack[KEYRING_SEARCH_MAX_DEPTH];
671 
672 	struct assoc_array_shortcut *shortcut;
673 	struct assoc_array_node *node;
674 	struct assoc_array_ptr *ptr;
675 	struct key *key;
676 	int sp = 0, slot;
677 
678 	kenter("{%d},{%s,%s}",
679 	       keyring->serial,
680 	       ctx->index_key.type->name,
681 	       ctx->index_key.description);
682 
683 #define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK)
684 	BUG_ON((ctx->flags & STATE_CHECKS) == 0 ||
685 	       (ctx->flags & STATE_CHECKS) == STATE_CHECKS);
686 
687 	if (ctx->index_key.description)
688 		key_set_index_key(&ctx->index_key);
689 
690 	/* Check to see if this top-level keyring is what we are looking for
691 	 * and whether it is valid or not.
692 	 */
693 	if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE ||
694 	    keyring_compare_object(keyring, &ctx->index_key)) {
695 		ctx->skipped_ret = 2;
696 		switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
697 		case 1:
698 			goto found;
699 		case 2:
700 			return false;
701 		default:
702 			break;
703 		}
704 	}
705 
706 	ctx->skipped_ret = 0;
707 
708 	/* Start processing a new keyring */
709 descend_to_keyring:
710 	kdebug("descend to %d", keyring->serial);
711 	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
712 			      (1 << KEY_FLAG_REVOKED)))
713 		goto not_this_keyring;
714 
715 	/* Search through the keys in this keyring before its searching its
716 	 * subtrees.
717 	 */
718 	if (search_keyring(keyring, ctx))
719 		goto found;
720 
721 	/* Then manually iterate through the keyrings nested in this one.
722 	 *
723 	 * Start from the root node of the index tree.  Because of the way the
724 	 * hash function has been set up, keyrings cluster on the leftmost
725 	 * branch of the root node (root slot 0) or in the root node itself.
726 	 * Non-keyrings avoid the leftmost branch of the root entirely (root
727 	 * slots 1-15).
728 	 */
729 	if (!(ctx->flags & KEYRING_SEARCH_RECURSE))
730 		goto not_this_keyring;
731 
732 	ptr = READ_ONCE(keyring->keys.root);
733 	if (!ptr)
734 		goto not_this_keyring;
735 
736 	if (assoc_array_ptr_is_shortcut(ptr)) {
737 		/* If the root is a shortcut, either the keyring only contains
738 		 * keyring pointers (everything clusters behind root slot 0) or
739 		 * doesn't contain any keyring pointers.
740 		 */
741 		shortcut = assoc_array_ptr_to_shortcut(ptr);
742 		if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
743 			goto not_this_keyring;
744 
745 		ptr = READ_ONCE(shortcut->next_node);
746 		node = assoc_array_ptr_to_node(ptr);
747 		goto begin_node;
748 	}
749 
750 	node = assoc_array_ptr_to_node(ptr);
751 	ptr = node->slots[0];
752 	if (!assoc_array_ptr_is_meta(ptr))
753 		goto begin_node;
754 
755 descend_to_node:
756 	/* Descend to a more distal node in this keyring's content tree and go
757 	 * through that.
758 	 */
759 	kdebug("descend");
760 	if (assoc_array_ptr_is_shortcut(ptr)) {
761 		shortcut = assoc_array_ptr_to_shortcut(ptr);
762 		ptr = READ_ONCE(shortcut->next_node);
763 		BUG_ON(!assoc_array_ptr_is_node(ptr));
764 	}
765 	node = assoc_array_ptr_to_node(ptr);
766 
767 begin_node:
768 	kdebug("begin_node");
769 	slot = 0;
770 ascend_to_node:
771 	/* Go through the slots in a node */
772 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
773 		ptr = READ_ONCE(node->slots[slot]);
774 
775 		if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
776 			goto descend_to_node;
777 
778 		if (!keyring_ptr_is_keyring(ptr))
779 			continue;
780 
781 		key = keyring_ptr_to_key(ptr);
782 
783 		if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
784 			if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
785 				ctx->result = ERR_PTR(-ELOOP);
786 				return false;
787 			}
788 			goto not_this_keyring;
789 		}
790 
791 		/* Search a nested keyring */
792 		if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
793 		    key_task_permission(make_key_ref(key, ctx->possessed),
794 					ctx->cred, KEY_NEED_SEARCH) < 0)
795 			continue;
796 
797 		/* stack the current position */
798 		stack[sp].keyring = keyring;
799 		stack[sp].node = node;
800 		stack[sp].slot = slot;
801 		sp++;
802 
803 		/* begin again with the new keyring */
804 		keyring = key;
805 		goto descend_to_keyring;
806 	}
807 
808 	/* We've dealt with all the slots in the current node, so now we need
809 	 * to ascend to the parent and continue processing there.
810 	 */
811 	ptr = READ_ONCE(node->back_pointer);
812 	slot = node->parent_slot;
813 
814 	if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
815 		shortcut = assoc_array_ptr_to_shortcut(ptr);
816 		ptr = READ_ONCE(shortcut->back_pointer);
817 		slot = shortcut->parent_slot;
818 	}
819 	if (!ptr)
820 		goto not_this_keyring;
821 	node = assoc_array_ptr_to_node(ptr);
822 	slot++;
823 
824 	/* If we've ascended to the root (zero backpointer), we must have just
825 	 * finished processing the leftmost branch rather than the root slots -
826 	 * so there can't be any more keyrings for us to find.
827 	 */
828 	if (node->back_pointer) {
829 		kdebug("ascend %d", slot);
830 		goto ascend_to_node;
831 	}
832 
833 	/* The keyring we're looking at was disqualified or didn't contain a
834 	 * matching key.
835 	 */
836 not_this_keyring:
837 	kdebug("not_this_keyring %d", sp);
838 	if (sp <= 0) {
839 		kleave(" = false");
840 		return false;
841 	}
842 
843 	/* Resume the processing of a keyring higher up in the tree */
844 	sp--;
845 	keyring = stack[sp].keyring;
846 	node = stack[sp].node;
847 	slot = stack[sp].slot + 1;
848 	kdebug("ascend to %d [%d]", keyring->serial, slot);
849 	goto ascend_to_node;
850 
851 	/* We found a viable match */
852 found:
853 	key = key_ref_to_ptr(ctx->result);
854 	key_check(key);
855 	if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
856 		key->last_used_at = ctx->now;
857 		keyring->last_used_at = ctx->now;
858 		while (sp > 0)
859 			stack[--sp].keyring->last_used_at = ctx->now;
860 	}
861 	kleave(" = true");
862 	return true;
863 }
864 
865 /**
866  * keyring_search_rcu - Search a keyring tree for a matching key under RCU
867  * @keyring_ref: A pointer to the keyring with possession indicator.
868  * @ctx: The keyring search context.
869  *
870  * Search the supplied keyring tree for a key that matches the criteria given.
871  * The root keyring and any linked keyrings must grant Search permission to the
872  * caller to be searchable and keys can only be found if they too grant Search
873  * to the caller. The possession flag on the root keyring pointer controls use
874  * of the possessor bits in permissions checking of the entire tree.  In
875  * addition, the LSM gets to forbid keyring searches and key matches.
876  *
877  * The search is performed as a breadth-then-depth search up to the prescribed
878  * limit (KEYRING_SEARCH_MAX_DEPTH).  The caller must hold the RCU read lock to
879  * prevent keyrings from being destroyed or rearranged whilst they are being
880  * searched.
881  *
882  * Keys are matched to the type provided and are then filtered by the match
883  * function, which is given the description to use in any way it sees fit.  The
884  * match function may use any attributes of a key that it wishes to
885  * determine the match.  Normally the match function from the key type would be
886  * used.
887  *
888  * RCU can be used to prevent the keyring key lists from disappearing without
889  * the need to take lots of locks.
890  *
891  * Returns a pointer to the found key and increments the key usage count if
892  * successful; -EAGAIN if no matching keys were found, or if expired or revoked
893  * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
894  * specified keyring wasn't a keyring.
895  *
896  * In the case of a successful return, the possession attribute from
897  * @keyring_ref is propagated to the returned key reference.
898  */
899 key_ref_t keyring_search_rcu(key_ref_t keyring_ref,
900 			     struct keyring_search_context *ctx)
901 {
902 	struct key *keyring;
903 	long err;
904 
905 	ctx->iterator = keyring_search_iterator;
906 	ctx->possessed = is_key_possessed(keyring_ref);
907 	ctx->result = ERR_PTR(-EAGAIN);
908 
909 	keyring = key_ref_to_ptr(keyring_ref);
910 	key_check(keyring);
911 
912 	if (keyring->type != &key_type_keyring)
913 		return ERR_PTR(-ENOTDIR);
914 
915 	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
916 		err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH);
917 		if (err < 0)
918 			return ERR_PTR(err);
919 	}
920 
921 	ctx->now = ktime_get_real_seconds();
922 	if (search_nested_keyrings(keyring, ctx))
923 		__key_get(key_ref_to_ptr(ctx->result));
924 	return ctx->result;
925 }
926 
927 /**
928  * keyring_search - Search the supplied keyring tree for a matching key
929  * @keyring: The root of the keyring tree to be searched.
930  * @type: The type of keyring we want to find.
931  * @description: The name of the keyring we want to find.
932  * @recurse: True to search the children of @keyring also
933  *
934  * As keyring_search_rcu() above, but using the current task's credentials and
935  * type's default matching function and preferred search method.
936  */
937 key_ref_t keyring_search(key_ref_t keyring,
938 			 struct key_type *type,
939 			 const char *description,
940 			 bool recurse)
941 {
942 	struct keyring_search_context ctx = {
943 		.index_key.type		= type,
944 		.index_key.description	= description,
945 		.index_key.desc_len	= strlen(description),
946 		.cred			= current_cred(),
947 		.match_data.cmp		= key_default_cmp,
948 		.match_data.raw_data	= description,
949 		.match_data.lookup_type	= KEYRING_SEARCH_LOOKUP_DIRECT,
950 		.flags			= KEYRING_SEARCH_DO_STATE_CHECK,
951 	};
952 	key_ref_t key;
953 	int ret;
954 
955 	if (recurse)
956 		ctx.flags |= KEYRING_SEARCH_RECURSE;
957 	if (type->match_preparse) {
958 		ret = type->match_preparse(&ctx.match_data);
959 		if (ret < 0)
960 			return ERR_PTR(ret);
961 	}
962 
963 	rcu_read_lock();
964 	key = keyring_search_rcu(keyring, &ctx);
965 	rcu_read_unlock();
966 
967 	if (type->match_free)
968 		type->match_free(&ctx.match_data);
969 	return key;
970 }
971 EXPORT_SYMBOL(keyring_search);
972 
973 static struct key_restriction *keyring_restriction_alloc(
974 	key_restrict_link_func_t check)
975 {
976 	struct key_restriction *keyres =
977 		kzalloc(sizeof(struct key_restriction), GFP_KERNEL);
978 
979 	if (!keyres)
980 		return ERR_PTR(-ENOMEM);
981 
982 	keyres->check = check;
983 
984 	return keyres;
985 }
986 
987 /*
988  * Semaphore to serialise restriction setup to prevent reference count
989  * cycles through restriction key pointers.
990  */
991 static DECLARE_RWSEM(keyring_serialise_restrict_sem);
992 
993 /*
994  * Check for restriction cycles that would prevent keyring garbage collection.
995  * keyring_serialise_restrict_sem must be held.
996  */
997 static bool keyring_detect_restriction_cycle(const struct key *dest_keyring,
998 					     struct key_restriction *keyres)
999 {
1000 	while (keyres && keyres->key &&
1001 	       keyres->key->type == &key_type_keyring) {
1002 		if (keyres->key == dest_keyring)
1003 			return true;
1004 
1005 		keyres = keyres->key->restrict_link;
1006 	}
1007 
1008 	return false;
1009 }
1010 
1011 /**
1012  * keyring_restrict - Look up and apply a restriction to a keyring
1013  * @keyring_ref: The keyring to be restricted
1014  * @type: The key type that will provide the restriction checker.
1015  * @restriction: The restriction options to apply to the keyring
1016  *
1017  * Look up a keyring and apply a restriction to it.  The restriction is managed
1018  * by the specific key type, but can be configured by the options specified in
1019  * the restriction string.
1020  */
1021 int keyring_restrict(key_ref_t keyring_ref, const char *type,
1022 		     const char *restriction)
1023 {
1024 	struct key *keyring;
1025 	struct key_type *restrict_type = NULL;
1026 	struct key_restriction *restrict_link;
1027 	int ret = 0;
1028 
1029 	keyring = key_ref_to_ptr(keyring_ref);
1030 	key_check(keyring);
1031 
1032 	if (keyring->type != &key_type_keyring)
1033 		return -ENOTDIR;
1034 
1035 	if (!type) {
1036 		restrict_link = keyring_restriction_alloc(restrict_link_reject);
1037 	} else {
1038 		restrict_type = key_type_lookup(type);
1039 
1040 		if (IS_ERR(restrict_type))
1041 			return PTR_ERR(restrict_type);
1042 
1043 		if (!restrict_type->lookup_restriction) {
1044 			ret = -ENOENT;
1045 			goto error;
1046 		}
1047 
1048 		restrict_link = restrict_type->lookup_restriction(restriction);
1049 	}
1050 
1051 	if (IS_ERR(restrict_link)) {
1052 		ret = PTR_ERR(restrict_link);
1053 		goto error;
1054 	}
1055 
1056 	down_write(&keyring->sem);
1057 	down_write(&keyring_serialise_restrict_sem);
1058 
1059 	if (keyring->restrict_link) {
1060 		ret = -EEXIST;
1061 	} else if (keyring_detect_restriction_cycle(keyring, restrict_link)) {
1062 		ret = -EDEADLK;
1063 	} else {
1064 		keyring->restrict_link = restrict_link;
1065 		notify_key(keyring, NOTIFY_KEY_SETATTR, 0);
1066 	}
1067 
1068 	up_write(&keyring_serialise_restrict_sem);
1069 	up_write(&keyring->sem);
1070 
1071 	if (ret < 0) {
1072 		key_put(restrict_link->key);
1073 		kfree(restrict_link);
1074 	}
1075 
1076 error:
1077 	if (restrict_type)
1078 		key_type_put(restrict_type);
1079 
1080 	return ret;
1081 }
1082 EXPORT_SYMBOL(keyring_restrict);
1083 
1084 /*
1085  * Search the given keyring for a key that might be updated.
1086  *
1087  * The caller must guarantee that the keyring is a keyring and that the
1088  * permission is granted to modify the keyring as no check is made here.  The
1089  * caller must also hold a lock on the keyring semaphore.
1090  *
1091  * Returns a pointer to the found key with usage count incremented if
1092  * successful and returns NULL if not found.  Revoked and invalidated keys are
1093  * skipped over.
1094  *
1095  * If successful, the possession indicator is propagated from the keyring ref
1096  * to the returned key reference.
1097  */
1098 key_ref_t find_key_to_update(key_ref_t keyring_ref,
1099 			     const struct keyring_index_key *index_key)
1100 {
1101 	struct key *keyring, *key;
1102 	const void *object;
1103 
1104 	keyring = key_ref_to_ptr(keyring_ref);
1105 
1106 	kenter("{%d},{%s,%s}",
1107 	       keyring->serial, index_key->type->name, index_key->description);
1108 
1109 	object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
1110 				  index_key);
1111 
1112 	if (object)
1113 		goto found;
1114 
1115 	kleave(" = NULL");
1116 	return NULL;
1117 
1118 found:
1119 	key = keyring_ptr_to_key(object);
1120 	if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
1121 			  (1 << KEY_FLAG_REVOKED))) {
1122 		kleave(" = NULL [x]");
1123 		return NULL;
1124 	}
1125 	__key_get(key);
1126 	kleave(" = {%d}", key->serial);
1127 	return make_key_ref(key, is_key_possessed(keyring_ref));
1128 }
1129 
1130 /*
1131  * Find a keyring with the specified name.
1132  *
1133  * Only keyrings that have nonzero refcount, are not revoked, and are owned by a
1134  * user in the current user namespace are considered.  If @uid_keyring is %true,
1135  * the keyring additionally must have been allocated as a user or user session
1136  * keyring; otherwise, it must grant Search permission directly to the caller.
1137  *
1138  * Returns a pointer to the keyring with the keyring's refcount having being
1139  * incremented on success.  -ENOKEY is returned if a key could not be found.
1140  */
1141 struct key *find_keyring_by_name(const char *name, bool uid_keyring)
1142 {
1143 	struct user_namespace *ns = current_user_ns();
1144 	struct key *keyring;
1145 
1146 	if (!name)
1147 		return ERR_PTR(-EINVAL);
1148 
1149 	read_lock(&keyring_name_lock);
1150 
1151 	/* Search this hash bucket for a keyring with a matching name that
1152 	 * grants Search permission and that hasn't been revoked
1153 	 */
1154 	list_for_each_entry(keyring, &ns->keyring_name_list, name_link) {
1155 		if (!kuid_has_mapping(ns, keyring->user->uid))
1156 			continue;
1157 
1158 		if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1159 			continue;
1160 
1161 		if (strcmp(keyring->description, name) != 0)
1162 			continue;
1163 
1164 		if (uid_keyring) {
1165 			if (!test_bit(KEY_FLAG_UID_KEYRING,
1166 				      &keyring->flags))
1167 				continue;
1168 		} else {
1169 			if (key_permission(make_key_ref(keyring, 0),
1170 					   KEY_NEED_SEARCH) < 0)
1171 				continue;
1172 		}
1173 
1174 		/* we've got a match but we might end up racing with
1175 		 * key_cleanup() if the keyring is currently 'dead'
1176 		 * (ie. it has a zero usage count) */
1177 		if (!refcount_inc_not_zero(&keyring->usage))
1178 			continue;
1179 		keyring->last_used_at = ktime_get_real_seconds();
1180 		goto out;
1181 	}
1182 
1183 	keyring = ERR_PTR(-ENOKEY);
1184 out:
1185 	read_unlock(&keyring_name_lock);
1186 	return keyring;
1187 }
1188 
1189 static int keyring_detect_cycle_iterator(const void *object,
1190 					 void *iterator_data)
1191 {
1192 	struct keyring_search_context *ctx = iterator_data;
1193 	const struct key *key = keyring_ptr_to_key(object);
1194 
1195 	kenter("{%d}", key->serial);
1196 
1197 	/* We might get a keyring with matching index-key that is nonetheless a
1198 	 * different keyring. */
1199 	if (key != ctx->match_data.raw_data)
1200 		return 0;
1201 
1202 	ctx->result = ERR_PTR(-EDEADLK);
1203 	return 1;
1204 }
1205 
1206 /*
1207  * See if a cycle will be created by inserting acyclic tree B in acyclic
1208  * tree A at the topmost level (ie: as a direct child of A).
1209  *
1210  * Since we are adding B to A at the top level, checking for cycles should just
1211  * be a matter of seeing if node A is somewhere in tree B.
1212  */
1213 static int keyring_detect_cycle(struct key *A, struct key *B)
1214 {
1215 	struct keyring_search_context ctx = {
1216 		.index_key		= A->index_key,
1217 		.match_data.raw_data	= A,
1218 		.match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
1219 		.iterator		= keyring_detect_cycle_iterator,
1220 		.flags			= (KEYRING_SEARCH_NO_STATE_CHECK |
1221 					   KEYRING_SEARCH_NO_UPDATE_TIME |
1222 					   KEYRING_SEARCH_NO_CHECK_PERM |
1223 					   KEYRING_SEARCH_DETECT_TOO_DEEP |
1224 					   KEYRING_SEARCH_RECURSE),
1225 	};
1226 
1227 	rcu_read_lock();
1228 	search_nested_keyrings(B, &ctx);
1229 	rcu_read_unlock();
1230 	return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
1231 }
1232 
1233 /*
1234  * Lock keyring for link.
1235  */
1236 int __key_link_lock(struct key *keyring,
1237 		    const struct keyring_index_key *index_key)
1238 	__acquires(&keyring->sem)
1239 	__acquires(&keyring_serialise_link_lock)
1240 {
1241 	if (keyring->type != &key_type_keyring)
1242 		return -ENOTDIR;
1243 
1244 	down_write(&keyring->sem);
1245 
1246 	/* Serialise link/link calls to prevent parallel calls causing a cycle
1247 	 * when linking two keyring in opposite orders.
1248 	 */
1249 	if (index_key->type == &key_type_keyring)
1250 		mutex_lock(&keyring_serialise_link_lock);
1251 
1252 	return 0;
1253 }
1254 
1255 /*
1256  * Lock keyrings for move (link/unlink combination).
1257  */
1258 int __key_move_lock(struct key *l_keyring, struct key *u_keyring,
1259 		    const struct keyring_index_key *index_key)
1260 	__acquires(&l_keyring->sem)
1261 	__acquires(&u_keyring->sem)
1262 	__acquires(&keyring_serialise_link_lock)
1263 {
1264 	if (l_keyring->type != &key_type_keyring ||
1265 	    u_keyring->type != &key_type_keyring)
1266 		return -ENOTDIR;
1267 
1268 	/* We have to be very careful here to take the keyring locks in the
1269 	 * right order, lest we open ourselves to deadlocking against another
1270 	 * move operation.
1271 	 */
1272 	if (l_keyring < u_keyring) {
1273 		down_write(&l_keyring->sem);
1274 		down_write_nested(&u_keyring->sem, 1);
1275 	} else {
1276 		down_write(&u_keyring->sem);
1277 		down_write_nested(&l_keyring->sem, 1);
1278 	}
1279 
1280 	/* Serialise link/link calls to prevent parallel calls causing a cycle
1281 	 * when linking two keyring in opposite orders.
1282 	 */
1283 	if (index_key->type == &key_type_keyring)
1284 		mutex_lock(&keyring_serialise_link_lock);
1285 
1286 	return 0;
1287 }
1288 
1289 /*
1290  * Preallocate memory so that a key can be linked into to a keyring.
1291  */
1292 int __key_link_begin(struct key *keyring,
1293 		     const struct keyring_index_key *index_key,
1294 		     struct assoc_array_edit **_edit)
1295 {
1296 	struct assoc_array_edit *edit;
1297 	int ret;
1298 
1299 	kenter("%d,%s,%s,",
1300 	       keyring->serial, index_key->type->name, index_key->description);
1301 
1302 	BUG_ON(index_key->desc_len == 0);
1303 	BUG_ON(*_edit != NULL);
1304 
1305 	*_edit = NULL;
1306 
1307 	ret = -EKEYREVOKED;
1308 	if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1309 		goto error;
1310 
1311 	/* Create an edit script that will insert/replace the key in the
1312 	 * keyring tree.
1313 	 */
1314 	edit = assoc_array_insert(&keyring->keys,
1315 				  &keyring_assoc_array_ops,
1316 				  index_key,
1317 				  NULL);
1318 	if (IS_ERR(edit)) {
1319 		ret = PTR_ERR(edit);
1320 		goto error;
1321 	}
1322 
1323 	/* If we're not replacing a link in-place then we're going to need some
1324 	 * extra quota.
1325 	 */
1326 	if (!edit->dead_leaf) {
1327 		ret = key_payload_reserve(keyring,
1328 					  keyring->datalen + KEYQUOTA_LINK_BYTES);
1329 		if (ret < 0)
1330 			goto error_cancel;
1331 	}
1332 
1333 	*_edit = edit;
1334 	kleave(" = 0");
1335 	return 0;
1336 
1337 error_cancel:
1338 	assoc_array_cancel_edit(edit);
1339 error:
1340 	kleave(" = %d", ret);
1341 	return ret;
1342 }
1343 
1344 /*
1345  * Check already instantiated keys aren't going to be a problem.
1346  *
1347  * The caller must have called __key_link_begin(). Don't need to call this for
1348  * keys that were created since __key_link_begin() was called.
1349  */
1350 int __key_link_check_live_key(struct key *keyring, struct key *key)
1351 {
1352 	if (key->type == &key_type_keyring)
1353 		/* check that we aren't going to create a cycle by linking one
1354 		 * keyring to another */
1355 		return keyring_detect_cycle(keyring, key);
1356 	return 0;
1357 }
1358 
1359 /*
1360  * Link a key into to a keyring.
1361  *
1362  * Must be called with __key_link_begin() having being called.  Discards any
1363  * already extant link to matching key if there is one, so that each keyring
1364  * holds at most one link to any given key of a particular type+description
1365  * combination.
1366  */
1367 void __key_link(struct key *keyring, struct key *key,
1368 		struct assoc_array_edit **_edit)
1369 {
1370 	__key_get(key);
1371 	assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
1372 	assoc_array_apply_edit(*_edit);
1373 	*_edit = NULL;
1374 	notify_key(keyring, NOTIFY_KEY_LINKED, key_serial(key));
1375 }
1376 
1377 /*
1378  * Finish linking a key into to a keyring.
1379  *
1380  * Must be called with __key_link_begin() having being called.
1381  */
1382 void __key_link_end(struct key *keyring,
1383 		    const struct keyring_index_key *index_key,
1384 		    struct assoc_array_edit *edit)
1385 	__releases(&keyring->sem)
1386 	__releases(&keyring_serialise_link_lock)
1387 {
1388 	BUG_ON(index_key->type == NULL);
1389 	kenter("%d,%s,", keyring->serial, index_key->type->name);
1390 
1391 	if (edit) {
1392 		if (!edit->dead_leaf) {
1393 			key_payload_reserve(keyring,
1394 				keyring->datalen - KEYQUOTA_LINK_BYTES);
1395 		}
1396 		assoc_array_cancel_edit(edit);
1397 	}
1398 	up_write(&keyring->sem);
1399 
1400 	if (index_key->type == &key_type_keyring)
1401 		mutex_unlock(&keyring_serialise_link_lock);
1402 }
1403 
1404 /*
1405  * Check addition of keys to restricted keyrings.
1406  */
1407 static int __key_link_check_restriction(struct key *keyring, struct key *key)
1408 {
1409 	if (!keyring->restrict_link || !keyring->restrict_link->check)
1410 		return 0;
1411 	return keyring->restrict_link->check(keyring, key->type, &key->payload,
1412 					     keyring->restrict_link->key);
1413 }
1414 
1415 /**
1416  * key_link - Link a key to a keyring
1417  * @keyring: The keyring to make the link in.
1418  * @key: The key to link to.
1419  *
1420  * Make a link in a keyring to a key, such that the keyring holds a reference
1421  * on that key and the key can potentially be found by searching that keyring.
1422  *
1423  * This function will write-lock the keyring's semaphore and will consume some
1424  * of the user's key data quota to hold the link.
1425  *
1426  * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
1427  * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
1428  * full, -EDQUOT if there is insufficient key data quota remaining to add
1429  * another link or -ENOMEM if there's insufficient memory.
1430  *
1431  * It is assumed that the caller has checked that it is permitted for a link to
1432  * be made (the keyring should have Write permission and the key Link
1433  * permission).
1434  */
1435 int key_link(struct key *keyring, struct key *key)
1436 {
1437 	struct assoc_array_edit *edit = NULL;
1438 	int ret;
1439 
1440 	kenter("{%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1441 
1442 	key_check(keyring);
1443 	key_check(key);
1444 
1445 	ret = __key_link_lock(keyring, &key->index_key);
1446 	if (ret < 0)
1447 		goto error;
1448 
1449 	ret = __key_link_begin(keyring, &key->index_key, &edit);
1450 	if (ret < 0)
1451 		goto error_end;
1452 
1453 	kdebug("begun {%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1454 	ret = __key_link_check_restriction(keyring, key);
1455 	if (ret == 0)
1456 		ret = __key_link_check_live_key(keyring, key);
1457 	if (ret == 0)
1458 		__key_link(keyring, key, &edit);
1459 
1460 error_end:
1461 	__key_link_end(keyring, &key->index_key, edit);
1462 error:
1463 	kleave(" = %d {%d,%d}", ret, keyring->serial, refcount_read(&keyring->usage));
1464 	return ret;
1465 }
1466 EXPORT_SYMBOL(key_link);
1467 
1468 /*
1469  * Lock a keyring for unlink.
1470  */
1471 static int __key_unlink_lock(struct key *keyring)
1472 	__acquires(&keyring->sem)
1473 {
1474 	if (keyring->type != &key_type_keyring)
1475 		return -ENOTDIR;
1476 
1477 	down_write(&keyring->sem);
1478 	return 0;
1479 }
1480 
1481 /*
1482  * Begin the process of unlinking a key from a keyring.
1483  */
1484 static int __key_unlink_begin(struct key *keyring, struct key *key,
1485 			      struct assoc_array_edit **_edit)
1486 {
1487 	struct assoc_array_edit *edit;
1488 
1489 	BUG_ON(*_edit != NULL);
1490 
1491 	edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
1492 				  &key->index_key);
1493 	if (IS_ERR(edit))
1494 		return PTR_ERR(edit);
1495 
1496 	if (!edit)
1497 		return -ENOENT;
1498 
1499 	*_edit = edit;
1500 	return 0;
1501 }
1502 
1503 /*
1504  * Apply an unlink change.
1505  */
1506 static void __key_unlink(struct key *keyring, struct key *key,
1507 			 struct assoc_array_edit **_edit)
1508 {
1509 	assoc_array_apply_edit(*_edit);
1510 	notify_key(keyring, NOTIFY_KEY_UNLINKED, key_serial(key));
1511 	*_edit = NULL;
1512 	key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
1513 }
1514 
1515 /*
1516  * Finish unlinking a key from to a keyring.
1517  */
1518 static void __key_unlink_end(struct key *keyring,
1519 			     struct key *key,
1520 			     struct assoc_array_edit *edit)
1521 	__releases(&keyring->sem)
1522 {
1523 	if (edit)
1524 		assoc_array_cancel_edit(edit);
1525 	up_write(&keyring->sem);
1526 }
1527 
1528 /**
1529  * key_unlink - Unlink the first link to a key from a keyring.
1530  * @keyring: The keyring to remove the link from.
1531  * @key: The key the link is to.
1532  *
1533  * Remove a link from a keyring to a key.
1534  *
1535  * This function will write-lock the keyring's semaphore.
1536  *
1537  * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1538  * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1539  * memory.
1540  *
1541  * It is assumed that the caller has checked that it is permitted for a link to
1542  * be removed (the keyring should have Write permission; no permissions are
1543  * required on the key).
1544  */
1545 int key_unlink(struct key *keyring, struct key *key)
1546 {
1547 	struct assoc_array_edit *edit = NULL;
1548 	int ret;
1549 
1550 	key_check(keyring);
1551 	key_check(key);
1552 
1553 	ret = __key_unlink_lock(keyring);
1554 	if (ret < 0)
1555 		return ret;
1556 
1557 	ret = __key_unlink_begin(keyring, key, &edit);
1558 	if (ret == 0)
1559 		__key_unlink(keyring, key, &edit);
1560 	__key_unlink_end(keyring, key, edit);
1561 	return ret;
1562 }
1563 EXPORT_SYMBOL(key_unlink);
1564 
1565 /**
1566  * key_move - Move a key from one keyring to another
1567  * @key: The key to move
1568  * @from_keyring: The keyring to remove the link from.
1569  * @to_keyring: The keyring to make the link in.
1570  * @flags: Qualifying flags, such as KEYCTL_MOVE_EXCL.
1571  *
1572  * Make a link in @to_keyring to a key, such that the keyring holds a reference
1573  * on that key and the key can potentially be found by searching that keyring
1574  * whilst simultaneously removing a link to the key from @from_keyring.
1575  *
1576  * This function will write-lock both keyring's semaphores and will consume
1577  * some of the user's key data quota to hold the link on @to_keyring.
1578  *
1579  * Returns 0 if successful, -ENOTDIR if either keyring isn't a keyring,
1580  * -EKEYREVOKED if either keyring has been revoked, -ENFILE if the second
1581  * keyring is full, -EDQUOT if there is insufficient key data quota remaining
1582  * to add another link or -ENOMEM if there's insufficient memory.  If
1583  * KEYCTL_MOVE_EXCL is set, then -EEXIST will be returned if there's already a
1584  * matching key in @to_keyring.
1585  *
1586  * It is assumed that the caller has checked that it is permitted for a link to
1587  * be made (the keyring should have Write permission and the key Link
1588  * permission).
1589  */
1590 int key_move(struct key *key,
1591 	     struct key *from_keyring,
1592 	     struct key *to_keyring,
1593 	     unsigned int flags)
1594 {
1595 	struct assoc_array_edit *from_edit = NULL, *to_edit = NULL;
1596 	int ret;
1597 
1598 	kenter("%d,%d,%d", key->serial, from_keyring->serial, to_keyring->serial);
1599 
1600 	if (from_keyring == to_keyring)
1601 		return 0;
1602 
1603 	key_check(key);
1604 	key_check(from_keyring);
1605 	key_check(to_keyring);
1606 
1607 	ret = __key_move_lock(from_keyring, to_keyring, &key->index_key);
1608 	if (ret < 0)
1609 		goto out;
1610 	ret = __key_unlink_begin(from_keyring, key, &from_edit);
1611 	if (ret < 0)
1612 		goto error;
1613 	ret = __key_link_begin(to_keyring, &key->index_key, &to_edit);
1614 	if (ret < 0)
1615 		goto error;
1616 
1617 	ret = -EEXIST;
1618 	if (to_edit->dead_leaf && (flags & KEYCTL_MOVE_EXCL))
1619 		goto error;
1620 
1621 	ret = __key_link_check_restriction(to_keyring, key);
1622 	if (ret < 0)
1623 		goto error;
1624 	ret = __key_link_check_live_key(to_keyring, key);
1625 	if (ret < 0)
1626 		goto error;
1627 
1628 	__key_unlink(from_keyring, key, &from_edit);
1629 	__key_link(to_keyring, key, &to_edit);
1630 error:
1631 	__key_link_end(to_keyring, &key->index_key, to_edit);
1632 	__key_unlink_end(from_keyring, key, from_edit);
1633 out:
1634 	kleave(" = %d", ret);
1635 	return ret;
1636 }
1637 EXPORT_SYMBOL(key_move);
1638 
1639 /**
1640  * keyring_clear - Clear a keyring
1641  * @keyring: The keyring to clear.
1642  *
1643  * Clear the contents of the specified keyring.
1644  *
1645  * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1646  */
1647 int keyring_clear(struct key *keyring)
1648 {
1649 	struct assoc_array_edit *edit;
1650 	int ret;
1651 
1652 	if (keyring->type != &key_type_keyring)
1653 		return -ENOTDIR;
1654 
1655 	down_write(&keyring->sem);
1656 
1657 	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1658 	if (IS_ERR(edit)) {
1659 		ret = PTR_ERR(edit);
1660 	} else {
1661 		if (edit)
1662 			assoc_array_apply_edit(edit);
1663 		notify_key(keyring, NOTIFY_KEY_CLEARED, 0);
1664 		key_payload_reserve(keyring, 0);
1665 		ret = 0;
1666 	}
1667 
1668 	up_write(&keyring->sem);
1669 	return ret;
1670 }
1671 EXPORT_SYMBOL(keyring_clear);
1672 
1673 /*
1674  * Dispose of the links from a revoked keyring.
1675  *
1676  * This is called with the key sem write-locked.
1677  */
1678 static void keyring_revoke(struct key *keyring)
1679 {
1680 	struct assoc_array_edit *edit;
1681 
1682 	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1683 	if (!IS_ERR(edit)) {
1684 		if (edit)
1685 			assoc_array_apply_edit(edit);
1686 		key_payload_reserve(keyring, 0);
1687 	}
1688 }
1689 
1690 static bool keyring_gc_select_iterator(void *object, void *iterator_data)
1691 {
1692 	struct key *key = keyring_ptr_to_key(object);
1693 	time64_t *limit = iterator_data;
1694 
1695 	if (key_is_dead(key, *limit))
1696 		return false;
1697 	key_get(key);
1698 	return true;
1699 }
1700 
1701 static int keyring_gc_check_iterator(const void *object, void *iterator_data)
1702 {
1703 	const struct key *key = keyring_ptr_to_key(object);
1704 	time64_t *limit = iterator_data;
1705 
1706 	key_check(key);
1707 	return key_is_dead(key, *limit);
1708 }
1709 
1710 /*
1711  * Garbage collect pointers from a keyring.
1712  *
1713  * Not called with any locks held.  The keyring's key struct will not be
1714  * deallocated under us as only our caller may deallocate it.
1715  */
1716 void keyring_gc(struct key *keyring, time64_t limit)
1717 {
1718 	int result;
1719 
1720 	kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1721 
1722 	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
1723 			      (1 << KEY_FLAG_REVOKED)))
1724 		goto dont_gc;
1725 
1726 	/* scan the keyring looking for dead keys */
1727 	rcu_read_lock();
1728 	result = assoc_array_iterate(&keyring->keys,
1729 				     keyring_gc_check_iterator, &limit);
1730 	rcu_read_unlock();
1731 	if (result == true)
1732 		goto do_gc;
1733 
1734 dont_gc:
1735 	kleave(" [no gc]");
1736 	return;
1737 
1738 do_gc:
1739 	down_write(&keyring->sem);
1740 	assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
1741 		       keyring_gc_select_iterator, &limit);
1742 	up_write(&keyring->sem);
1743 	kleave(" [gc]");
1744 }
1745 
1746 /*
1747  * Garbage collect restriction pointers from a keyring.
1748  *
1749  * Keyring restrictions are associated with a key type, and must be cleaned
1750  * up if the key type is unregistered. The restriction is altered to always
1751  * reject additional keys so a keyring cannot be opened up by unregistering
1752  * a key type.
1753  *
1754  * Not called with any keyring locks held. The keyring's key struct will not
1755  * be deallocated under us as only our caller may deallocate it.
1756  *
1757  * The caller is required to hold key_types_sem and dead_type->sem. This is
1758  * fulfilled by key_gc_keytype() holding the locks on behalf of
1759  * key_garbage_collector(), which it invokes on a workqueue.
1760  */
1761 void keyring_restriction_gc(struct key *keyring, struct key_type *dead_type)
1762 {
1763 	struct key_restriction *keyres;
1764 
1765 	kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1766 
1767 	/*
1768 	 * keyring->restrict_link is only assigned at key allocation time
1769 	 * or with the key type locked, so the only values that could be
1770 	 * concurrently assigned to keyring->restrict_link are for key
1771 	 * types other than dead_type. Given this, it's ok to check
1772 	 * the key type before acquiring keyring->sem.
1773 	 */
1774 	if (!dead_type || !keyring->restrict_link ||
1775 	    keyring->restrict_link->keytype != dead_type) {
1776 		kleave(" [no restriction gc]");
1777 		return;
1778 	}
1779 
1780 	/* Lock the keyring to ensure that a link is not in progress */
1781 	down_write(&keyring->sem);
1782 
1783 	keyres = keyring->restrict_link;
1784 
1785 	keyres->check = restrict_link_reject;
1786 
1787 	key_put(keyres->key);
1788 	keyres->key = NULL;
1789 	keyres->keytype = NULL;
1790 
1791 	up_write(&keyring->sem);
1792 
1793 	kleave(" [restriction gc]");
1794 }
1795