1 /* Keyring handling 2 * 3 * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved. 4 * Written by David Howells (dhowells@redhat.com) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/sched.h> 15 #include <linux/slab.h> 16 #include <linux/security.h> 17 #include <linux/seq_file.h> 18 #include <linux/err.h> 19 #include <keys/keyring-type.h> 20 #include <keys/user-type.h> 21 #include <linux/assoc_array_priv.h> 22 #include <linux/uaccess.h> 23 #include "internal.h" 24 25 /* 26 * When plumbing the depths of the key tree, this sets a hard limit 27 * set on how deep we're willing to go. 28 */ 29 #define KEYRING_SEARCH_MAX_DEPTH 6 30 31 /* 32 * We keep all named keyrings in a hash to speed looking them up. 33 */ 34 #define KEYRING_NAME_HASH_SIZE (1 << 5) 35 36 /* 37 * We mark pointers we pass to the associative array with bit 1 set if 38 * they're keyrings and clear otherwise. 39 */ 40 #define KEYRING_PTR_SUBTYPE 0x2UL 41 42 static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x) 43 { 44 return (unsigned long)x & KEYRING_PTR_SUBTYPE; 45 } 46 static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x) 47 { 48 void *object = assoc_array_ptr_to_leaf(x); 49 return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE); 50 } 51 static inline void *keyring_key_to_ptr(struct key *key) 52 { 53 if (key->type == &key_type_keyring) 54 return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE); 55 return key; 56 } 57 58 static struct list_head keyring_name_hash[KEYRING_NAME_HASH_SIZE]; 59 static DEFINE_RWLOCK(keyring_name_lock); 60 61 static inline unsigned keyring_hash(const char *desc) 62 { 63 unsigned bucket = 0; 64 65 for (; *desc; desc++) 66 bucket += (unsigned char)*desc; 67 68 return bucket & (KEYRING_NAME_HASH_SIZE - 1); 69 } 70 71 /* 72 * The keyring key type definition. Keyrings are simply keys of this type and 73 * can be treated as ordinary keys in addition to having their own special 74 * operations. 75 */ 76 static int keyring_preparse(struct key_preparsed_payload *prep); 77 static void keyring_free_preparse(struct key_preparsed_payload *prep); 78 static int keyring_instantiate(struct key *keyring, 79 struct key_preparsed_payload *prep); 80 static void keyring_revoke(struct key *keyring); 81 static void keyring_destroy(struct key *keyring); 82 static void keyring_describe(const struct key *keyring, struct seq_file *m); 83 static long keyring_read(const struct key *keyring, 84 char __user *buffer, size_t buflen); 85 86 struct key_type key_type_keyring = { 87 .name = "keyring", 88 .def_datalen = 0, 89 .preparse = keyring_preparse, 90 .free_preparse = keyring_free_preparse, 91 .instantiate = keyring_instantiate, 92 .revoke = keyring_revoke, 93 .destroy = keyring_destroy, 94 .describe = keyring_describe, 95 .read = keyring_read, 96 }; 97 EXPORT_SYMBOL(key_type_keyring); 98 99 /* 100 * Semaphore to serialise link/link calls to prevent two link calls in parallel 101 * introducing a cycle. 102 */ 103 static DECLARE_RWSEM(keyring_serialise_link_sem); 104 105 /* 106 * Publish the name of a keyring so that it can be found by name (if it has 107 * one). 108 */ 109 static void keyring_publish_name(struct key *keyring) 110 { 111 int bucket; 112 113 if (keyring->description) { 114 bucket = keyring_hash(keyring->description); 115 116 write_lock(&keyring_name_lock); 117 118 if (!keyring_name_hash[bucket].next) 119 INIT_LIST_HEAD(&keyring_name_hash[bucket]); 120 121 list_add_tail(&keyring->name_link, 122 &keyring_name_hash[bucket]); 123 124 write_unlock(&keyring_name_lock); 125 } 126 } 127 128 /* 129 * Preparse a keyring payload 130 */ 131 static int keyring_preparse(struct key_preparsed_payload *prep) 132 { 133 return prep->datalen != 0 ? -EINVAL : 0; 134 } 135 136 /* 137 * Free a preparse of a user defined key payload 138 */ 139 static void keyring_free_preparse(struct key_preparsed_payload *prep) 140 { 141 } 142 143 /* 144 * Initialise a keyring. 145 * 146 * Returns 0 on success, -EINVAL if given any data. 147 */ 148 static int keyring_instantiate(struct key *keyring, 149 struct key_preparsed_payload *prep) 150 { 151 assoc_array_init(&keyring->keys); 152 /* make the keyring available by name if it has one */ 153 keyring_publish_name(keyring); 154 return 0; 155 } 156 157 /* 158 * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit. Ideally we'd 159 * fold the carry back too, but that requires inline asm. 160 */ 161 static u64 mult_64x32_and_fold(u64 x, u32 y) 162 { 163 u64 hi = (u64)(u32)(x >> 32) * y; 164 u64 lo = (u64)(u32)(x) * y; 165 return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32); 166 } 167 168 /* 169 * Hash a key type and description. 170 */ 171 static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key) 172 { 173 const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP; 174 const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK; 175 const char *description = index_key->description; 176 unsigned long hash, type; 177 u32 piece; 178 u64 acc; 179 int n, desc_len = index_key->desc_len; 180 181 type = (unsigned long)index_key->type; 182 183 acc = mult_64x32_and_fold(type, desc_len + 13); 184 acc = mult_64x32_and_fold(acc, 9207); 185 for (;;) { 186 n = desc_len; 187 if (n <= 0) 188 break; 189 if (n > 4) 190 n = 4; 191 piece = 0; 192 memcpy(&piece, description, n); 193 description += n; 194 desc_len -= n; 195 acc = mult_64x32_and_fold(acc, piece); 196 acc = mult_64x32_and_fold(acc, 9207); 197 } 198 199 /* Fold the hash down to 32 bits if need be. */ 200 hash = acc; 201 if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32) 202 hash ^= acc >> 32; 203 204 /* Squidge all the keyrings into a separate part of the tree to 205 * ordinary keys by making sure the lowest level segment in the hash is 206 * zero for keyrings and non-zero otherwise. 207 */ 208 if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0) 209 return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1; 210 if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0) 211 return (hash + (hash << level_shift)) & ~fan_mask; 212 return hash; 213 } 214 215 /* 216 * Build the next index key chunk. 217 * 218 * On 32-bit systems the index key is laid out as: 219 * 220 * 0 4 5 9... 221 * hash desclen typeptr desc[] 222 * 223 * On 64-bit systems: 224 * 225 * 0 8 9 17... 226 * hash desclen typeptr desc[] 227 * 228 * We return it one word-sized chunk at a time. 229 */ 230 static unsigned long keyring_get_key_chunk(const void *data, int level) 231 { 232 const struct keyring_index_key *index_key = data; 233 unsigned long chunk = 0; 234 long offset = 0; 235 int desc_len = index_key->desc_len, n = sizeof(chunk); 236 237 level /= ASSOC_ARRAY_KEY_CHUNK_SIZE; 238 switch (level) { 239 case 0: 240 return hash_key_type_and_desc(index_key); 241 case 1: 242 return ((unsigned long)index_key->type << 8) | desc_len; 243 case 2: 244 if (desc_len == 0) 245 return (u8)((unsigned long)index_key->type >> 246 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8)); 247 n--; 248 offset = 1; 249 default: 250 offset += sizeof(chunk) - 1; 251 offset += (level - 3) * sizeof(chunk); 252 if (offset >= desc_len) 253 return 0; 254 desc_len -= offset; 255 if (desc_len > n) 256 desc_len = n; 257 offset += desc_len; 258 do { 259 chunk <<= 8; 260 chunk |= ((u8*)index_key->description)[--offset]; 261 } while (--desc_len > 0); 262 263 if (level == 2) { 264 chunk <<= 8; 265 chunk |= (u8)((unsigned long)index_key->type >> 266 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8)); 267 } 268 return chunk; 269 } 270 } 271 272 static unsigned long keyring_get_object_key_chunk(const void *object, int level) 273 { 274 const struct key *key = keyring_ptr_to_key(object); 275 return keyring_get_key_chunk(&key->index_key, level); 276 } 277 278 static bool keyring_compare_object(const void *object, const void *data) 279 { 280 const struct keyring_index_key *index_key = data; 281 const struct key *key = keyring_ptr_to_key(object); 282 283 return key->index_key.type == index_key->type && 284 key->index_key.desc_len == index_key->desc_len && 285 memcmp(key->index_key.description, index_key->description, 286 index_key->desc_len) == 0; 287 } 288 289 /* 290 * Compare the index keys of a pair of objects and determine the bit position 291 * at which they differ - if they differ. 292 */ 293 static int keyring_diff_objects(const void *object, const void *data) 294 { 295 const struct key *key_a = keyring_ptr_to_key(object); 296 const struct keyring_index_key *a = &key_a->index_key; 297 const struct keyring_index_key *b = data; 298 unsigned long seg_a, seg_b; 299 int level, i; 300 301 level = 0; 302 seg_a = hash_key_type_and_desc(a); 303 seg_b = hash_key_type_and_desc(b); 304 if ((seg_a ^ seg_b) != 0) 305 goto differ; 306 307 /* The number of bits contributed by the hash is controlled by a 308 * constant in the assoc_array headers. Everything else thereafter we 309 * can deal with as being machine word-size dependent. 310 */ 311 level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8; 312 seg_a = a->desc_len; 313 seg_b = b->desc_len; 314 if ((seg_a ^ seg_b) != 0) 315 goto differ; 316 317 /* The next bit may not work on big endian */ 318 level++; 319 seg_a = (unsigned long)a->type; 320 seg_b = (unsigned long)b->type; 321 if ((seg_a ^ seg_b) != 0) 322 goto differ; 323 324 level += sizeof(unsigned long); 325 if (a->desc_len == 0) 326 goto same; 327 328 i = 0; 329 if (((unsigned long)a->description | (unsigned long)b->description) & 330 (sizeof(unsigned long) - 1)) { 331 do { 332 seg_a = *(unsigned long *)(a->description + i); 333 seg_b = *(unsigned long *)(b->description + i); 334 if ((seg_a ^ seg_b) != 0) 335 goto differ_plus_i; 336 i += sizeof(unsigned long); 337 } while (i < (a->desc_len & (sizeof(unsigned long) - 1))); 338 } 339 340 for (; i < a->desc_len; i++) { 341 seg_a = *(unsigned char *)(a->description + i); 342 seg_b = *(unsigned char *)(b->description + i); 343 if ((seg_a ^ seg_b) != 0) 344 goto differ_plus_i; 345 } 346 347 same: 348 return -1; 349 350 differ_plus_i: 351 level += i; 352 differ: 353 i = level * 8 + __ffs(seg_a ^ seg_b); 354 return i; 355 } 356 357 /* 358 * Free an object after stripping the keyring flag off of the pointer. 359 */ 360 static void keyring_free_object(void *object) 361 { 362 key_put(keyring_ptr_to_key(object)); 363 } 364 365 /* 366 * Operations for keyring management by the index-tree routines. 367 */ 368 static const struct assoc_array_ops keyring_assoc_array_ops = { 369 .get_key_chunk = keyring_get_key_chunk, 370 .get_object_key_chunk = keyring_get_object_key_chunk, 371 .compare_object = keyring_compare_object, 372 .diff_objects = keyring_diff_objects, 373 .free_object = keyring_free_object, 374 }; 375 376 /* 377 * Clean up a keyring when it is destroyed. Unpublish its name if it had one 378 * and dispose of its data. 379 * 380 * The garbage collector detects the final key_put(), removes the keyring from 381 * the serial number tree and then does RCU synchronisation before coming here, 382 * so we shouldn't need to worry about code poking around here with the RCU 383 * readlock held by this time. 384 */ 385 static void keyring_destroy(struct key *keyring) 386 { 387 if (keyring->description) { 388 write_lock(&keyring_name_lock); 389 390 if (keyring->name_link.next != NULL && 391 !list_empty(&keyring->name_link)) 392 list_del(&keyring->name_link); 393 394 write_unlock(&keyring_name_lock); 395 } 396 397 if (keyring->restrict_link) { 398 struct key_restriction *keyres = keyring->restrict_link; 399 400 key_put(keyres->key); 401 kfree(keyres); 402 } 403 404 assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops); 405 } 406 407 /* 408 * Describe a keyring for /proc. 409 */ 410 static void keyring_describe(const struct key *keyring, struct seq_file *m) 411 { 412 if (keyring->description) 413 seq_puts(m, keyring->description); 414 else 415 seq_puts(m, "[anon]"); 416 417 if (key_is_instantiated(keyring)) { 418 if (keyring->keys.nr_leaves_on_tree != 0) 419 seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree); 420 else 421 seq_puts(m, ": empty"); 422 } 423 } 424 425 struct keyring_read_iterator_context { 426 size_t qty; 427 size_t count; 428 key_serial_t __user *buffer; 429 }; 430 431 static int keyring_read_iterator(const void *object, void *data) 432 { 433 struct keyring_read_iterator_context *ctx = data; 434 const struct key *key = keyring_ptr_to_key(object); 435 int ret; 436 437 kenter("{%s,%d},,{%zu/%zu}", 438 key->type->name, key->serial, ctx->count, ctx->qty); 439 440 if (ctx->count >= ctx->qty) 441 return 1; 442 443 ret = put_user(key->serial, ctx->buffer); 444 if (ret < 0) 445 return ret; 446 ctx->buffer++; 447 ctx->count += sizeof(key->serial); 448 return 0; 449 } 450 451 /* 452 * Read a list of key IDs from the keyring's contents in binary form 453 * 454 * The keyring's semaphore is read-locked by the caller. This prevents someone 455 * from modifying it under us - which could cause us to read key IDs multiple 456 * times. 457 */ 458 static long keyring_read(const struct key *keyring, 459 char __user *buffer, size_t buflen) 460 { 461 struct keyring_read_iterator_context ctx; 462 unsigned long nr_keys; 463 int ret; 464 465 kenter("{%d},,%zu", key_serial(keyring), buflen); 466 467 if (buflen & (sizeof(key_serial_t) - 1)) 468 return -EINVAL; 469 470 nr_keys = keyring->keys.nr_leaves_on_tree; 471 if (nr_keys == 0) 472 return 0; 473 474 /* Calculate how much data we could return */ 475 ctx.qty = nr_keys * sizeof(key_serial_t); 476 477 if (!buffer || !buflen) 478 return ctx.qty; 479 480 if (buflen > ctx.qty) 481 ctx.qty = buflen; 482 483 /* Copy the IDs of the subscribed keys into the buffer */ 484 ctx.buffer = (key_serial_t __user *)buffer; 485 ctx.count = 0; 486 ret = assoc_array_iterate(&keyring->keys, keyring_read_iterator, &ctx); 487 if (ret < 0) { 488 kleave(" = %d [iterate]", ret); 489 return ret; 490 } 491 492 kleave(" = %zu [ok]", ctx.count); 493 return ctx.count; 494 } 495 496 /* 497 * Allocate a keyring and link into the destination keyring. 498 */ 499 struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid, 500 const struct cred *cred, key_perm_t perm, 501 unsigned long flags, 502 struct key_restriction *restrict_link, 503 struct key *dest) 504 { 505 struct key *keyring; 506 int ret; 507 508 keyring = key_alloc(&key_type_keyring, description, 509 uid, gid, cred, perm, flags, restrict_link); 510 if (!IS_ERR(keyring)) { 511 ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL); 512 if (ret < 0) { 513 key_put(keyring); 514 keyring = ERR_PTR(ret); 515 } 516 } 517 518 return keyring; 519 } 520 EXPORT_SYMBOL(keyring_alloc); 521 522 /** 523 * restrict_link_reject - Give -EPERM to restrict link 524 * @keyring: The keyring being added to. 525 * @type: The type of key being added. 526 * @payload: The payload of the key intended to be added. 527 * @data: Additional data for evaluating restriction. 528 * 529 * Reject the addition of any links to a keyring. It can be overridden by 530 * passing KEY_ALLOC_BYPASS_RESTRICTION to key_instantiate_and_link() when 531 * adding a key to a keyring. 532 * 533 * This is meant to be stored in a key_restriction structure which is passed 534 * in the restrict_link parameter to keyring_alloc(). 535 */ 536 int restrict_link_reject(struct key *keyring, 537 const struct key_type *type, 538 const union key_payload *payload, 539 struct key *restriction_key) 540 { 541 return -EPERM; 542 } 543 544 /* 545 * By default, we keys found by getting an exact match on their descriptions. 546 */ 547 bool key_default_cmp(const struct key *key, 548 const struct key_match_data *match_data) 549 { 550 return strcmp(key->description, match_data->raw_data) == 0; 551 } 552 553 /* 554 * Iteration function to consider each key found. 555 */ 556 static int keyring_search_iterator(const void *object, void *iterator_data) 557 { 558 struct keyring_search_context *ctx = iterator_data; 559 const struct key *key = keyring_ptr_to_key(object); 560 unsigned long kflags = key->flags; 561 562 kenter("{%d}", key->serial); 563 564 /* ignore keys not of this type */ 565 if (key->type != ctx->index_key.type) { 566 kleave(" = 0 [!type]"); 567 return 0; 568 } 569 570 /* skip invalidated, revoked and expired keys */ 571 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) { 572 if (kflags & ((1 << KEY_FLAG_INVALIDATED) | 573 (1 << KEY_FLAG_REVOKED))) { 574 ctx->result = ERR_PTR(-EKEYREVOKED); 575 kleave(" = %d [invrev]", ctx->skipped_ret); 576 goto skipped; 577 } 578 579 if (key->expiry && ctx->now.tv_sec >= key->expiry) { 580 if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED)) 581 ctx->result = ERR_PTR(-EKEYEXPIRED); 582 kleave(" = %d [expire]", ctx->skipped_ret); 583 goto skipped; 584 } 585 } 586 587 /* keys that don't match */ 588 if (!ctx->match_data.cmp(key, &ctx->match_data)) { 589 kleave(" = 0 [!match]"); 590 return 0; 591 } 592 593 /* key must have search permissions */ 594 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) && 595 key_task_permission(make_key_ref(key, ctx->possessed), 596 ctx->cred, KEY_NEED_SEARCH) < 0) { 597 ctx->result = ERR_PTR(-EACCES); 598 kleave(" = %d [!perm]", ctx->skipped_ret); 599 goto skipped; 600 } 601 602 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) { 603 /* we set a different error code if we pass a negative key */ 604 if (kflags & (1 << KEY_FLAG_NEGATIVE)) { 605 smp_rmb(); 606 ctx->result = ERR_PTR(key->reject_error); 607 kleave(" = %d [neg]", ctx->skipped_ret); 608 goto skipped; 609 } 610 } 611 612 /* Found */ 613 ctx->result = make_key_ref(key, ctx->possessed); 614 kleave(" = 1 [found]"); 615 return 1; 616 617 skipped: 618 return ctx->skipped_ret; 619 } 620 621 /* 622 * Search inside a keyring for a key. We can search by walking to it 623 * directly based on its index-key or we can iterate over the entire 624 * tree looking for it, based on the match function. 625 */ 626 static int search_keyring(struct key *keyring, struct keyring_search_context *ctx) 627 { 628 if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) { 629 const void *object; 630 631 object = assoc_array_find(&keyring->keys, 632 &keyring_assoc_array_ops, 633 &ctx->index_key); 634 return object ? ctx->iterator(object, ctx) : 0; 635 } 636 return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx); 637 } 638 639 /* 640 * Search a tree of keyrings that point to other keyrings up to the maximum 641 * depth. 642 */ 643 static bool search_nested_keyrings(struct key *keyring, 644 struct keyring_search_context *ctx) 645 { 646 struct { 647 struct key *keyring; 648 struct assoc_array_node *node; 649 int slot; 650 } stack[KEYRING_SEARCH_MAX_DEPTH]; 651 652 struct assoc_array_shortcut *shortcut; 653 struct assoc_array_node *node; 654 struct assoc_array_ptr *ptr; 655 struct key *key; 656 int sp = 0, slot; 657 658 kenter("{%d},{%s,%s}", 659 keyring->serial, 660 ctx->index_key.type->name, 661 ctx->index_key.description); 662 663 #define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK) 664 BUG_ON((ctx->flags & STATE_CHECKS) == 0 || 665 (ctx->flags & STATE_CHECKS) == STATE_CHECKS); 666 667 if (ctx->index_key.description) 668 ctx->index_key.desc_len = strlen(ctx->index_key.description); 669 670 /* Check to see if this top-level keyring is what we are looking for 671 * and whether it is valid or not. 672 */ 673 if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE || 674 keyring_compare_object(keyring, &ctx->index_key)) { 675 ctx->skipped_ret = 2; 676 switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) { 677 case 1: 678 goto found; 679 case 2: 680 return false; 681 default: 682 break; 683 } 684 } 685 686 ctx->skipped_ret = 0; 687 688 /* Start processing a new keyring */ 689 descend_to_keyring: 690 kdebug("descend to %d", keyring->serial); 691 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) | 692 (1 << KEY_FLAG_REVOKED))) 693 goto not_this_keyring; 694 695 /* Search through the keys in this keyring before its searching its 696 * subtrees. 697 */ 698 if (search_keyring(keyring, ctx)) 699 goto found; 700 701 /* Then manually iterate through the keyrings nested in this one. 702 * 703 * Start from the root node of the index tree. Because of the way the 704 * hash function has been set up, keyrings cluster on the leftmost 705 * branch of the root node (root slot 0) or in the root node itself. 706 * Non-keyrings avoid the leftmost branch of the root entirely (root 707 * slots 1-15). 708 */ 709 ptr = ACCESS_ONCE(keyring->keys.root); 710 if (!ptr) 711 goto not_this_keyring; 712 713 if (assoc_array_ptr_is_shortcut(ptr)) { 714 /* If the root is a shortcut, either the keyring only contains 715 * keyring pointers (everything clusters behind root slot 0) or 716 * doesn't contain any keyring pointers. 717 */ 718 shortcut = assoc_array_ptr_to_shortcut(ptr); 719 smp_read_barrier_depends(); 720 if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0) 721 goto not_this_keyring; 722 723 ptr = ACCESS_ONCE(shortcut->next_node); 724 node = assoc_array_ptr_to_node(ptr); 725 goto begin_node; 726 } 727 728 node = assoc_array_ptr_to_node(ptr); 729 smp_read_barrier_depends(); 730 731 ptr = node->slots[0]; 732 if (!assoc_array_ptr_is_meta(ptr)) 733 goto begin_node; 734 735 descend_to_node: 736 /* Descend to a more distal node in this keyring's content tree and go 737 * through that. 738 */ 739 kdebug("descend"); 740 if (assoc_array_ptr_is_shortcut(ptr)) { 741 shortcut = assoc_array_ptr_to_shortcut(ptr); 742 smp_read_barrier_depends(); 743 ptr = ACCESS_ONCE(shortcut->next_node); 744 BUG_ON(!assoc_array_ptr_is_node(ptr)); 745 } 746 node = assoc_array_ptr_to_node(ptr); 747 748 begin_node: 749 kdebug("begin_node"); 750 smp_read_barrier_depends(); 751 slot = 0; 752 ascend_to_node: 753 /* Go through the slots in a node */ 754 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) { 755 ptr = ACCESS_ONCE(node->slots[slot]); 756 757 if (assoc_array_ptr_is_meta(ptr) && node->back_pointer) 758 goto descend_to_node; 759 760 if (!keyring_ptr_is_keyring(ptr)) 761 continue; 762 763 key = keyring_ptr_to_key(ptr); 764 765 if (sp >= KEYRING_SEARCH_MAX_DEPTH) { 766 if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) { 767 ctx->result = ERR_PTR(-ELOOP); 768 return false; 769 } 770 goto not_this_keyring; 771 } 772 773 /* Search a nested keyring */ 774 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) && 775 key_task_permission(make_key_ref(key, ctx->possessed), 776 ctx->cred, KEY_NEED_SEARCH) < 0) 777 continue; 778 779 /* stack the current position */ 780 stack[sp].keyring = keyring; 781 stack[sp].node = node; 782 stack[sp].slot = slot; 783 sp++; 784 785 /* begin again with the new keyring */ 786 keyring = key; 787 goto descend_to_keyring; 788 } 789 790 /* We've dealt with all the slots in the current node, so now we need 791 * to ascend to the parent and continue processing there. 792 */ 793 ptr = ACCESS_ONCE(node->back_pointer); 794 slot = node->parent_slot; 795 796 if (ptr && assoc_array_ptr_is_shortcut(ptr)) { 797 shortcut = assoc_array_ptr_to_shortcut(ptr); 798 smp_read_barrier_depends(); 799 ptr = ACCESS_ONCE(shortcut->back_pointer); 800 slot = shortcut->parent_slot; 801 } 802 if (!ptr) 803 goto not_this_keyring; 804 node = assoc_array_ptr_to_node(ptr); 805 smp_read_barrier_depends(); 806 slot++; 807 808 /* If we've ascended to the root (zero backpointer), we must have just 809 * finished processing the leftmost branch rather than the root slots - 810 * so there can't be any more keyrings for us to find. 811 */ 812 if (node->back_pointer) { 813 kdebug("ascend %d", slot); 814 goto ascend_to_node; 815 } 816 817 /* The keyring we're looking at was disqualified or didn't contain a 818 * matching key. 819 */ 820 not_this_keyring: 821 kdebug("not_this_keyring %d", sp); 822 if (sp <= 0) { 823 kleave(" = false"); 824 return false; 825 } 826 827 /* Resume the processing of a keyring higher up in the tree */ 828 sp--; 829 keyring = stack[sp].keyring; 830 node = stack[sp].node; 831 slot = stack[sp].slot + 1; 832 kdebug("ascend to %d [%d]", keyring->serial, slot); 833 goto ascend_to_node; 834 835 /* We found a viable match */ 836 found: 837 key = key_ref_to_ptr(ctx->result); 838 key_check(key); 839 if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) { 840 key->last_used_at = ctx->now.tv_sec; 841 keyring->last_used_at = ctx->now.tv_sec; 842 while (sp > 0) 843 stack[--sp].keyring->last_used_at = ctx->now.tv_sec; 844 } 845 kleave(" = true"); 846 return true; 847 } 848 849 /** 850 * keyring_search_aux - Search a keyring tree for a key matching some criteria 851 * @keyring_ref: A pointer to the keyring with possession indicator. 852 * @ctx: The keyring search context. 853 * 854 * Search the supplied keyring tree for a key that matches the criteria given. 855 * The root keyring and any linked keyrings must grant Search permission to the 856 * caller to be searchable and keys can only be found if they too grant Search 857 * to the caller. The possession flag on the root keyring pointer controls use 858 * of the possessor bits in permissions checking of the entire tree. In 859 * addition, the LSM gets to forbid keyring searches and key matches. 860 * 861 * The search is performed as a breadth-then-depth search up to the prescribed 862 * limit (KEYRING_SEARCH_MAX_DEPTH). 863 * 864 * Keys are matched to the type provided and are then filtered by the match 865 * function, which is given the description to use in any way it sees fit. The 866 * match function may use any attributes of a key that it wishes to to 867 * determine the match. Normally the match function from the key type would be 868 * used. 869 * 870 * RCU can be used to prevent the keyring key lists from disappearing without 871 * the need to take lots of locks. 872 * 873 * Returns a pointer to the found key and increments the key usage count if 874 * successful; -EAGAIN if no matching keys were found, or if expired or revoked 875 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the 876 * specified keyring wasn't a keyring. 877 * 878 * In the case of a successful return, the possession attribute from 879 * @keyring_ref is propagated to the returned key reference. 880 */ 881 key_ref_t keyring_search_aux(key_ref_t keyring_ref, 882 struct keyring_search_context *ctx) 883 { 884 struct key *keyring; 885 long err; 886 887 ctx->iterator = keyring_search_iterator; 888 ctx->possessed = is_key_possessed(keyring_ref); 889 ctx->result = ERR_PTR(-EAGAIN); 890 891 keyring = key_ref_to_ptr(keyring_ref); 892 key_check(keyring); 893 894 if (keyring->type != &key_type_keyring) 895 return ERR_PTR(-ENOTDIR); 896 897 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) { 898 err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH); 899 if (err < 0) 900 return ERR_PTR(err); 901 } 902 903 rcu_read_lock(); 904 ctx->now = current_kernel_time(); 905 if (search_nested_keyrings(keyring, ctx)) 906 __key_get(key_ref_to_ptr(ctx->result)); 907 rcu_read_unlock(); 908 return ctx->result; 909 } 910 911 /** 912 * keyring_search - Search the supplied keyring tree for a matching key 913 * @keyring: The root of the keyring tree to be searched. 914 * @type: The type of keyring we want to find. 915 * @description: The name of the keyring we want to find. 916 * 917 * As keyring_search_aux() above, but using the current task's credentials and 918 * type's default matching function and preferred search method. 919 */ 920 key_ref_t keyring_search(key_ref_t keyring, 921 struct key_type *type, 922 const char *description) 923 { 924 struct keyring_search_context ctx = { 925 .index_key.type = type, 926 .index_key.description = description, 927 .cred = current_cred(), 928 .match_data.cmp = key_default_cmp, 929 .match_data.raw_data = description, 930 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT, 931 .flags = KEYRING_SEARCH_DO_STATE_CHECK, 932 }; 933 key_ref_t key; 934 int ret; 935 936 if (type->match_preparse) { 937 ret = type->match_preparse(&ctx.match_data); 938 if (ret < 0) 939 return ERR_PTR(ret); 940 } 941 942 key = keyring_search_aux(keyring, &ctx); 943 944 if (type->match_free) 945 type->match_free(&ctx.match_data); 946 return key; 947 } 948 EXPORT_SYMBOL(keyring_search); 949 950 static struct key_restriction *keyring_restriction_alloc( 951 key_restrict_link_func_t check) 952 { 953 struct key_restriction *keyres = 954 kzalloc(sizeof(struct key_restriction), GFP_KERNEL); 955 956 if (!keyres) 957 return ERR_PTR(-ENOMEM); 958 959 keyres->check = check; 960 961 return keyres; 962 } 963 964 /* 965 * Semaphore to serialise restriction setup to prevent reference count 966 * cycles through restriction key pointers. 967 */ 968 static DECLARE_RWSEM(keyring_serialise_restrict_sem); 969 970 /* 971 * Check for restriction cycles that would prevent keyring garbage collection. 972 * keyring_serialise_restrict_sem must be held. 973 */ 974 static bool keyring_detect_restriction_cycle(const struct key *dest_keyring, 975 struct key_restriction *keyres) 976 { 977 while (keyres && keyres->key && 978 keyres->key->type == &key_type_keyring) { 979 if (keyres->key == dest_keyring) 980 return true; 981 982 keyres = keyres->key->restrict_link; 983 } 984 985 return false; 986 } 987 988 /** 989 * keyring_restrict - Look up and apply a restriction to a keyring 990 * 991 * @keyring: The keyring to be restricted 992 * @restriction: The restriction options to apply to the keyring 993 */ 994 int keyring_restrict(key_ref_t keyring_ref, const char *type, 995 const char *restriction) 996 { 997 struct key *keyring; 998 struct key_type *restrict_type = NULL; 999 struct key_restriction *restrict_link; 1000 int ret = 0; 1001 1002 keyring = key_ref_to_ptr(keyring_ref); 1003 key_check(keyring); 1004 1005 if (keyring->type != &key_type_keyring) 1006 return -ENOTDIR; 1007 1008 if (!type) { 1009 restrict_link = keyring_restriction_alloc(restrict_link_reject); 1010 } else { 1011 restrict_type = key_type_lookup(type); 1012 1013 if (IS_ERR(restrict_type)) 1014 return PTR_ERR(restrict_type); 1015 1016 if (!restrict_type->lookup_restriction) { 1017 ret = -ENOENT; 1018 goto error; 1019 } 1020 1021 restrict_link = restrict_type->lookup_restriction(restriction); 1022 } 1023 1024 if (IS_ERR(restrict_link)) { 1025 ret = PTR_ERR(restrict_link); 1026 goto error; 1027 } 1028 1029 down_write(&keyring->sem); 1030 down_write(&keyring_serialise_restrict_sem); 1031 1032 if (keyring->restrict_link) 1033 ret = -EEXIST; 1034 else if (keyring_detect_restriction_cycle(keyring, restrict_link)) 1035 ret = -EDEADLK; 1036 else 1037 keyring->restrict_link = restrict_link; 1038 1039 up_write(&keyring_serialise_restrict_sem); 1040 up_write(&keyring->sem); 1041 1042 if (ret < 0) { 1043 key_put(restrict_link->key); 1044 kfree(restrict_link); 1045 } 1046 1047 error: 1048 if (restrict_type) 1049 key_type_put(restrict_type); 1050 1051 return ret; 1052 } 1053 EXPORT_SYMBOL(keyring_restrict); 1054 1055 /* 1056 * Search the given keyring for a key that might be updated. 1057 * 1058 * The caller must guarantee that the keyring is a keyring and that the 1059 * permission is granted to modify the keyring as no check is made here. The 1060 * caller must also hold a lock on the keyring semaphore. 1061 * 1062 * Returns a pointer to the found key with usage count incremented if 1063 * successful and returns NULL if not found. Revoked and invalidated keys are 1064 * skipped over. 1065 * 1066 * If successful, the possession indicator is propagated from the keyring ref 1067 * to the returned key reference. 1068 */ 1069 key_ref_t find_key_to_update(key_ref_t keyring_ref, 1070 const struct keyring_index_key *index_key) 1071 { 1072 struct key *keyring, *key; 1073 const void *object; 1074 1075 keyring = key_ref_to_ptr(keyring_ref); 1076 1077 kenter("{%d},{%s,%s}", 1078 keyring->serial, index_key->type->name, index_key->description); 1079 1080 object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops, 1081 index_key); 1082 1083 if (object) 1084 goto found; 1085 1086 kleave(" = NULL"); 1087 return NULL; 1088 1089 found: 1090 key = keyring_ptr_to_key(object); 1091 if (key->flags & ((1 << KEY_FLAG_INVALIDATED) | 1092 (1 << KEY_FLAG_REVOKED))) { 1093 kleave(" = NULL [x]"); 1094 return NULL; 1095 } 1096 __key_get(key); 1097 kleave(" = {%d}", key->serial); 1098 return make_key_ref(key, is_key_possessed(keyring_ref)); 1099 } 1100 1101 /* 1102 * Find a keyring with the specified name. 1103 * 1104 * All named keyrings in the current user namespace are searched, provided they 1105 * grant Search permission directly to the caller (unless this check is 1106 * skipped). Keyrings whose usage points have reached zero or who have been 1107 * revoked are skipped. 1108 * 1109 * Returns a pointer to the keyring with the keyring's refcount having being 1110 * incremented on success. -ENOKEY is returned if a key could not be found. 1111 */ 1112 struct key *find_keyring_by_name(const char *name, bool skip_perm_check) 1113 { 1114 struct key *keyring; 1115 int bucket; 1116 1117 if (!name) 1118 return ERR_PTR(-EINVAL); 1119 1120 bucket = keyring_hash(name); 1121 1122 read_lock(&keyring_name_lock); 1123 1124 if (keyring_name_hash[bucket].next) { 1125 /* search this hash bucket for a keyring with a matching name 1126 * that's readable and that hasn't been revoked */ 1127 list_for_each_entry(keyring, 1128 &keyring_name_hash[bucket], 1129 name_link 1130 ) { 1131 if (!kuid_has_mapping(current_user_ns(), keyring->user->uid)) 1132 continue; 1133 1134 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags)) 1135 continue; 1136 1137 if (strcmp(keyring->description, name) != 0) 1138 continue; 1139 1140 if (!skip_perm_check && 1141 key_permission(make_key_ref(keyring, 0), 1142 KEY_NEED_SEARCH) < 0) 1143 continue; 1144 1145 /* we've got a match but we might end up racing with 1146 * key_cleanup() if the keyring is currently 'dead' 1147 * (ie. it has a zero usage count) */ 1148 if (!refcount_inc_not_zero(&keyring->usage)) 1149 continue; 1150 keyring->last_used_at = current_kernel_time().tv_sec; 1151 goto out; 1152 } 1153 } 1154 1155 keyring = ERR_PTR(-ENOKEY); 1156 out: 1157 read_unlock(&keyring_name_lock); 1158 return keyring; 1159 } 1160 1161 static int keyring_detect_cycle_iterator(const void *object, 1162 void *iterator_data) 1163 { 1164 struct keyring_search_context *ctx = iterator_data; 1165 const struct key *key = keyring_ptr_to_key(object); 1166 1167 kenter("{%d}", key->serial); 1168 1169 /* We might get a keyring with matching index-key that is nonetheless a 1170 * different keyring. */ 1171 if (key != ctx->match_data.raw_data) 1172 return 0; 1173 1174 ctx->result = ERR_PTR(-EDEADLK); 1175 return 1; 1176 } 1177 1178 /* 1179 * See if a cycle will will be created by inserting acyclic tree B in acyclic 1180 * tree A at the topmost level (ie: as a direct child of A). 1181 * 1182 * Since we are adding B to A at the top level, checking for cycles should just 1183 * be a matter of seeing if node A is somewhere in tree B. 1184 */ 1185 static int keyring_detect_cycle(struct key *A, struct key *B) 1186 { 1187 struct keyring_search_context ctx = { 1188 .index_key = A->index_key, 1189 .match_data.raw_data = A, 1190 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT, 1191 .iterator = keyring_detect_cycle_iterator, 1192 .flags = (KEYRING_SEARCH_NO_STATE_CHECK | 1193 KEYRING_SEARCH_NO_UPDATE_TIME | 1194 KEYRING_SEARCH_NO_CHECK_PERM | 1195 KEYRING_SEARCH_DETECT_TOO_DEEP), 1196 }; 1197 1198 rcu_read_lock(); 1199 search_nested_keyrings(B, &ctx); 1200 rcu_read_unlock(); 1201 return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result); 1202 } 1203 1204 /* 1205 * Preallocate memory so that a key can be linked into to a keyring. 1206 */ 1207 int __key_link_begin(struct key *keyring, 1208 const struct keyring_index_key *index_key, 1209 struct assoc_array_edit **_edit) 1210 __acquires(&keyring->sem) 1211 __acquires(&keyring_serialise_link_sem) 1212 { 1213 struct assoc_array_edit *edit; 1214 int ret; 1215 1216 kenter("%d,%s,%s,", 1217 keyring->serial, index_key->type->name, index_key->description); 1218 1219 BUG_ON(index_key->desc_len == 0); 1220 1221 if (keyring->type != &key_type_keyring) 1222 return -ENOTDIR; 1223 1224 down_write(&keyring->sem); 1225 1226 ret = -EKEYREVOKED; 1227 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags)) 1228 goto error_krsem; 1229 1230 /* serialise link/link calls to prevent parallel calls causing a cycle 1231 * when linking two keyring in opposite orders */ 1232 if (index_key->type == &key_type_keyring) 1233 down_write(&keyring_serialise_link_sem); 1234 1235 /* Create an edit script that will insert/replace the key in the 1236 * keyring tree. 1237 */ 1238 edit = assoc_array_insert(&keyring->keys, 1239 &keyring_assoc_array_ops, 1240 index_key, 1241 NULL); 1242 if (IS_ERR(edit)) { 1243 ret = PTR_ERR(edit); 1244 goto error_sem; 1245 } 1246 1247 /* If we're not replacing a link in-place then we're going to need some 1248 * extra quota. 1249 */ 1250 if (!edit->dead_leaf) { 1251 ret = key_payload_reserve(keyring, 1252 keyring->datalen + KEYQUOTA_LINK_BYTES); 1253 if (ret < 0) 1254 goto error_cancel; 1255 } 1256 1257 *_edit = edit; 1258 kleave(" = 0"); 1259 return 0; 1260 1261 error_cancel: 1262 assoc_array_cancel_edit(edit); 1263 error_sem: 1264 if (index_key->type == &key_type_keyring) 1265 up_write(&keyring_serialise_link_sem); 1266 error_krsem: 1267 up_write(&keyring->sem); 1268 kleave(" = %d", ret); 1269 return ret; 1270 } 1271 1272 /* 1273 * Check already instantiated keys aren't going to be a problem. 1274 * 1275 * The caller must have called __key_link_begin(). Don't need to call this for 1276 * keys that were created since __key_link_begin() was called. 1277 */ 1278 int __key_link_check_live_key(struct key *keyring, struct key *key) 1279 { 1280 if (key->type == &key_type_keyring) 1281 /* check that we aren't going to create a cycle by linking one 1282 * keyring to another */ 1283 return keyring_detect_cycle(keyring, key); 1284 return 0; 1285 } 1286 1287 /* 1288 * Link a key into to a keyring. 1289 * 1290 * Must be called with __key_link_begin() having being called. Discards any 1291 * already extant link to matching key if there is one, so that each keyring 1292 * holds at most one link to any given key of a particular type+description 1293 * combination. 1294 */ 1295 void __key_link(struct key *key, struct assoc_array_edit **_edit) 1296 { 1297 __key_get(key); 1298 assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key)); 1299 assoc_array_apply_edit(*_edit); 1300 *_edit = NULL; 1301 } 1302 1303 /* 1304 * Finish linking a key into to a keyring. 1305 * 1306 * Must be called with __key_link_begin() having being called. 1307 */ 1308 void __key_link_end(struct key *keyring, 1309 const struct keyring_index_key *index_key, 1310 struct assoc_array_edit *edit) 1311 __releases(&keyring->sem) 1312 __releases(&keyring_serialise_link_sem) 1313 { 1314 BUG_ON(index_key->type == NULL); 1315 kenter("%d,%s,", keyring->serial, index_key->type->name); 1316 1317 if (index_key->type == &key_type_keyring) 1318 up_write(&keyring_serialise_link_sem); 1319 1320 if (edit) { 1321 if (!edit->dead_leaf) { 1322 key_payload_reserve(keyring, 1323 keyring->datalen - KEYQUOTA_LINK_BYTES); 1324 } 1325 assoc_array_cancel_edit(edit); 1326 } 1327 up_write(&keyring->sem); 1328 } 1329 1330 /* 1331 * Check addition of keys to restricted keyrings. 1332 */ 1333 static int __key_link_check_restriction(struct key *keyring, struct key *key) 1334 { 1335 if (!keyring->restrict_link || !keyring->restrict_link->check) 1336 return 0; 1337 return keyring->restrict_link->check(keyring, key->type, &key->payload, 1338 keyring->restrict_link->key); 1339 } 1340 1341 /** 1342 * key_link - Link a key to a keyring 1343 * @keyring: The keyring to make the link in. 1344 * @key: The key to link to. 1345 * 1346 * Make a link in a keyring to a key, such that the keyring holds a reference 1347 * on that key and the key can potentially be found by searching that keyring. 1348 * 1349 * This function will write-lock the keyring's semaphore and will consume some 1350 * of the user's key data quota to hold the link. 1351 * 1352 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, 1353 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is 1354 * full, -EDQUOT if there is insufficient key data quota remaining to add 1355 * another link or -ENOMEM if there's insufficient memory. 1356 * 1357 * It is assumed that the caller has checked that it is permitted for a link to 1358 * be made (the keyring should have Write permission and the key Link 1359 * permission). 1360 */ 1361 int key_link(struct key *keyring, struct key *key) 1362 { 1363 struct assoc_array_edit *edit; 1364 int ret; 1365 1366 kenter("{%d,%d}", keyring->serial, refcount_read(&keyring->usage)); 1367 1368 key_check(keyring); 1369 key_check(key); 1370 1371 ret = __key_link_begin(keyring, &key->index_key, &edit); 1372 if (ret == 0) { 1373 kdebug("begun {%d,%d}", keyring->serial, refcount_read(&keyring->usage)); 1374 ret = __key_link_check_restriction(keyring, key); 1375 if (ret == 0) 1376 ret = __key_link_check_live_key(keyring, key); 1377 if (ret == 0) 1378 __key_link(key, &edit); 1379 __key_link_end(keyring, &key->index_key, edit); 1380 } 1381 1382 kleave(" = %d {%d,%d}", ret, keyring->serial, refcount_read(&keyring->usage)); 1383 return ret; 1384 } 1385 EXPORT_SYMBOL(key_link); 1386 1387 /** 1388 * key_unlink - Unlink the first link to a key from a keyring. 1389 * @keyring: The keyring to remove the link from. 1390 * @key: The key the link is to. 1391 * 1392 * Remove a link from a keyring to a key. 1393 * 1394 * This function will write-lock the keyring's semaphore. 1395 * 1396 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if 1397 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient 1398 * memory. 1399 * 1400 * It is assumed that the caller has checked that it is permitted for a link to 1401 * be removed (the keyring should have Write permission; no permissions are 1402 * required on the key). 1403 */ 1404 int key_unlink(struct key *keyring, struct key *key) 1405 { 1406 struct assoc_array_edit *edit; 1407 int ret; 1408 1409 key_check(keyring); 1410 key_check(key); 1411 1412 if (keyring->type != &key_type_keyring) 1413 return -ENOTDIR; 1414 1415 down_write(&keyring->sem); 1416 1417 edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops, 1418 &key->index_key); 1419 if (IS_ERR(edit)) { 1420 ret = PTR_ERR(edit); 1421 goto error; 1422 } 1423 ret = -ENOENT; 1424 if (edit == NULL) 1425 goto error; 1426 1427 assoc_array_apply_edit(edit); 1428 key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES); 1429 ret = 0; 1430 1431 error: 1432 up_write(&keyring->sem); 1433 return ret; 1434 } 1435 EXPORT_SYMBOL(key_unlink); 1436 1437 /** 1438 * keyring_clear - Clear a keyring 1439 * @keyring: The keyring to clear. 1440 * 1441 * Clear the contents of the specified keyring. 1442 * 1443 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring. 1444 */ 1445 int keyring_clear(struct key *keyring) 1446 { 1447 struct assoc_array_edit *edit; 1448 int ret; 1449 1450 if (keyring->type != &key_type_keyring) 1451 return -ENOTDIR; 1452 1453 down_write(&keyring->sem); 1454 1455 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops); 1456 if (IS_ERR(edit)) { 1457 ret = PTR_ERR(edit); 1458 } else { 1459 if (edit) 1460 assoc_array_apply_edit(edit); 1461 key_payload_reserve(keyring, 0); 1462 ret = 0; 1463 } 1464 1465 up_write(&keyring->sem); 1466 return ret; 1467 } 1468 EXPORT_SYMBOL(keyring_clear); 1469 1470 /* 1471 * Dispose of the links from a revoked keyring. 1472 * 1473 * This is called with the key sem write-locked. 1474 */ 1475 static void keyring_revoke(struct key *keyring) 1476 { 1477 struct assoc_array_edit *edit; 1478 1479 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops); 1480 if (!IS_ERR(edit)) { 1481 if (edit) 1482 assoc_array_apply_edit(edit); 1483 key_payload_reserve(keyring, 0); 1484 } 1485 } 1486 1487 static bool keyring_gc_select_iterator(void *object, void *iterator_data) 1488 { 1489 struct key *key = keyring_ptr_to_key(object); 1490 time_t *limit = iterator_data; 1491 1492 if (key_is_dead(key, *limit)) 1493 return false; 1494 key_get(key); 1495 return true; 1496 } 1497 1498 static int keyring_gc_check_iterator(const void *object, void *iterator_data) 1499 { 1500 const struct key *key = keyring_ptr_to_key(object); 1501 time_t *limit = iterator_data; 1502 1503 key_check(key); 1504 return key_is_dead(key, *limit); 1505 } 1506 1507 /* 1508 * Garbage collect pointers from a keyring. 1509 * 1510 * Not called with any locks held. The keyring's key struct will not be 1511 * deallocated under us as only our caller may deallocate it. 1512 */ 1513 void keyring_gc(struct key *keyring, time_t limit) 1514 { 1515 int result; 1516 1517 kenter("%x{%s}", keyring->serial, keyring->description ?: ""); 1518 1519 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) | 1520 (1 << KEY_FLAG_REVOKED))) 1521 goto dont_gc; 1522 1523 /* scan the keyring looking for dead keys */ 1524 rcu_read_lock(); 1525 result = assoc_array_iterate(&keyring->keys, 1526 keyring_gc_check_iterator, &limit); 1527 rcu_read_unlock(); 1528 if (result == true) 1529 goto do_gc; 1530 1531 dont_gc: 1532 kleave(" [no gc]"); 1533 return; 1534 1535 do_gc: 1536 down_write(&keyring->sem); 1537 assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops, 1538 keyring_gc_select_iterator, &limit); 1539 up_write(&keyring->sem); 1540 kleave(" [gc]"); 1541 } 1542 1543 /* 1544 * Garbage collect restriction pointers from a keyring. 1545 * 1546 * Keyring restrictions are associated with a key type, and must be cleaned 1547 * up if the key type is unregistered. The restriction is altered to always 1548 * reject additional keys so a keyring cannot be opened up by unregistering 1549 * a key type. 1550 * 1551 * Not called with any keyring locks held. The keyring's key struct will not 1552 * be deallocated under us as only our caller may deallocate it. 1553 * 1554 * The caller is required to hold key_types_sem and dead_type->sem. This is 1555 * fulfilled by key_gc_keytype() holding the locks on behalf of 1556 * key_garbage_collector(), which it invokes on a workqueue. 1557 */ 1558 void keyring_restriction_gc(struct key *keyring, struct key_type *dead_type) 1559 { 1560 struct key_restriction *keyres; 1561 1562 kenter("%x{%s}", keyring->serial, keyring->description ?: ""); 1563 1564 /* 1565 * keyring->restrict_link is only assigned at key allocation time 1566 * or with the key type locked, so the only values that could be 1567 * concurrently assigned to keyring->restrict_link are for key 1568 * types other than dead_type. Given this, it's ok to check 1569 * the key type before acquiring keyring->sem. 1570 */ 1571 if (!dead_type || !keyring->restrict_link || 1572 keyring->restrict_link->keytype != dead_type) { 1573 kleave(" [no restriction gc]"); 1574 return; 1575 } 1576 1577 /* Lock the keyring to ensure that a link is not in progress */ 1578 down_write(&keyring->sem); 1579 1580 keyres = keyring->restrict_link; 1581 1582 keyres->check = restrict_link_reject; 1583 1584 key_put(keyres->key); 1585 keyres->key = NULL; 1586 keyres->keytype = NULL; 1587 1588 up_write(&keyring->sem); 1589 1590 kleave(" [restriction gc]"); 1591 } 1592