1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* Userspace key control operations 3 * 4 * Copyright (C) 2004-5 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 8 #include <linux/init.h> 9 #include <linux/sched.h> 10 #include <linux/sched/task.h> 11 #include <linux/slab.h> 12 #include <linux/syscalls.h> 13 #include <linux/key.h> 14 #include <linux/keyctl.h> 15 #include <linux/fs.h> 16 #include <linux/capability.h> 17 #include <linux/cred.h> 18 #include <linux/string.h> 19 #include <linux/err.h> 20 #include <linux/vmalloc.h> 21 #include <linux/security.h> 22 #include <linux/uio.h> 23 #include <linux/uaccess.h> 24 #include <keys/request_key_auth-type.h> 25 #include "internal.h" 26 27 #define KEY_MAX_DESC_SIZE 4096 28 29 static const unsigned char keyrings_capabilities[2] = { 30 [0] = (KEYCTL_CAPS0_CAPABILITIES | 31 (IS_ENABLED(CONFIG_PERSISTENT_KEYRINGS) ? KEYCTL_CAPS0_PERSISTENT_KEYRINGS : 0) | 32 (IS_ENABLED(CONFIG_KEY_DH_OPERATIONS) ? KEYCTL_CAPS0_DIFFIE_HELLMAN : 0) | 33 (IS_ENABLED(CONFIG_ASYMMETRIC_KEY_TYPE) ? KEYCTL_CAPS0_PUBLIC_KEY : 0) | 34 (IS_ENABLED(CONFIG_BIG_KEYS) ? KEYCTL_CAPS0_BIG_KEY : 0) | 35 KEYCTL_CAPS0_INVALIDATE | 36 KEYCTL_CAPS0_RESTRICT_KEYRING | 37 KEYCTL_CAPS0_MOVE 38 ), 39 [1] = (KEYCTL_CAPS1_NS_KEYRING_NAME | 40 KEYCTL_CAPS1_NS_KEY_TAG), 41 }; 42 43 static int key_get_type_from_user(char *type, 44 const char __user *_type, 45 unsigned len) 46 { 47 int ret; 48 49 ret = strncpy_from_user(type, _type, len); 50 if (ret < 0) 51 return ret; 52 if (ret == 0 || ret >= len) 53 return -EINVAL; 54 if (type[0] == '.') 55 return -EPERM; 56 type[len - 1] = '\0'; 57 return 0; 58 } 59 60 /* 61 * Extract the description of a new key from userspace and either add it as a 62 * new key to the specified keyring or update a matching key in that keyring. 63 * 64 * If the description is NULL or an empty string, the key type is asked to 65 * generate one from the payload. 66 * 67 * The keyring must be writable so that we can attach the key to it. 68 * 69 * If successful, the new key's serial number is returned, otherwise an error 70 * code is returned. 71 */ 72 SYSCALL_DEFINE5(add_key, const char __user *, _type, 73 const char __user *, _description, 74 const void __user *, _payload, 75 size_t, plen, 76 key_serial_t, ringid) 77 { 78 key_ref_t keyring_ref, key_ref; 79 char type[32], *description; 80 void *payload; 81 long ret; 82 83 ret = -EINVAL; 84 if (plen > 1024 * 1024 - 1) 85 goto error; 86 87 /* draw all the data into kernel space */ 88 ret = key_get_type_from_user(type, _type, sizeof(type)); 89 if (ret < 0) 90 goto error; 91 92 description = NULL; 93 if (_description) { 94 description = strndup_user(_description, KEY_MAX_DESC_SIZE); 95 if (IS_ERR(description)) { 96 ret = PTR_ERR(description); 97 goto error; 98 } 99 if (!*description) { 100 kfree(description); 101 description = NULL; 102 } else if ((description[0] == '.') && 103 (strncmp(type, "keyring", 7) == 0)) { 104 ret = -EPERM; 105 goto error2; 106 } 107 } 108 109 /* pull the payload in if one was supplied */ 110 payload = NULL; 111 112 if (plen) { 113 ret = -ENOMEM; 114 payload = kvmalloc(plen, GFP_KERNEL); 115 if (!payload) 116 goto error2; 117 118 ret = -EFAULT; 119 if (copy_from_user(payload, _payload, plen) != 0) 120 goto error3; 121 } 122 123 /* find the target keyring (which must be writable) */ 124 keyring_ref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE); 125 if (IS_ERR(keyring_ref)) { 126 ret = PTR_ERR(keyring_ref); 127 goto error3; 128 } 129 130 /* create or update the requested key and add it to the target 131 * keyring */ 132 key_ref = key_create_or_update(keyring_ref, type, description, 133 payload, plen, KEY_PERM_UNDEF, 134 KEY_ALLOC_IN_QUOTA); 135 if (!IS_ERR(key_ref)) { 136 ret = key_ref_to_ptr(key_ref)->serial; 137 key_ref_put(key_ref); 138 } 139 else { 140 ret = PTR_ERR(key_ref); 141 } 142 143 key_ref_put(keyring_ref); 144 error3: 145 if (payload) { 146 memzero_explicit(payload, plen); 147 kvfree(payload); 148 } 149 error2: 150 kfree(description); 151 error: 152 return ret; 153 } 154 155 /* 156 * Search the process keyrings and keyring trees linked from those for a 157 * matching key. Keyrings must have appropriate Search permission to be 158 * searched. 159 * 160 * If a key is found, it will be attached to the destination keyring if there's 161 * one specified and the serial number of the key will be returned. 162 * 163 * If no key is found, /sbin/request-key will be invoked if _callout_info is 164 * non-NULL in an attempt to create a key. The _callout_info string will be 165 * passed to /sbin/request-key to aid with completing the request. If the 166 * _callout_info string is "" then it will be changed to "-". 167 */ 168 SYSCALL_DEFINE4(request_key, const char __user *, _type, 169 const char __user *, _description, 170 const char __user *, _callout_info, 171 key_serial_t, destringid) 172 { 173 struct key_type *ktype; 174 struct key *key; 175 key_ref_t dest_ref; 176 size_t callout_len; 177 char type[32], *description, *callout_info; 178 long ret; 179 180 /* pull the type into kernel space */ 181 ret = key_get_type_from_user(type, _type, sizeof(type)); 182 if (ret < 0) 183 goto error; 184 185 /* pull the description into kernel space */ 186 description = strndup_user(_description, KEY_MAX_DESC_SIZE); 187 if (IS_ERR(description)) { 188 ret = PTR_ERR(description); 189 goto error; 190 } 191 192 /* pull the callout info into kernel space */ 193 callout_info = NULL; 194 callout_len = 0; 195 if (_callout_info) { 196 callout_info = strndup_user(_callout_info, PAGE_SIZE); 197 if (IS_ERR(callout_info)) { 198 ret = PTR_ERR(callout_info); 199 goto error2; 200 } 201 callout_len = strlen(callout_info); 202 } 203 204 /* get the destination keyring if specified */ 205 dest_ref = NULL; 206 if (destringid) { 207 dest_ref = lookup_user_key(destringid, KEY_LOOKUP_CREATE, 208 KEY_NEED_WRITE); 209 if (IS_ERR(dest_ref)) { 210 ret = PTR_ERR(dest_ref); 211 goto error3; 212 } 213 } 214 215 /* find the key type */ 216 ktype = key_type_lookup(type); 217 if (IS_ERR(ktype)) { 218 ret = PTR_ERR(ktype); 219 goto error4; 220 } 221 222 /* do the search */ 223 key = request_key_and_link(ktype, description, NULL, callout_info, 224 callout_len, NULL, key_ref_to_ptr(dest_ref), 225 KEY_ALLOC_IN_QUOTA); 226 if (IS_ERR(key)) { 227 ret = PTR_ERR(key); 228 goto error5; 229 } 230 231 /* wait for the key to finish being constructed */ 232 ret = wait_for_key_construction(key, 1); 233 if (ret < 0) 234 goto error6; 235 236 ret = key->serial; 237 238 error6: 239 key_put(key); 240 error5: 241 key_type_put(ktype); 242 error4: 243 key_ref_put(dest_ref); 244 error3: 245 kfree(callout_info); 246 error2: 247 kfree(description); 248 error: 249 return ret; 250 } 251 252 /* 253 * Get the ID of the specified process keyring. 254 * 255 * The requested keyring must have search permission to be found. 256 * 257 * If successful, the ID of the requested keyring will be returned. 258 */ 259 long keyctl_get_keyring_ID(key_serial_t id, int create) 260 { 261 key_ref_t key_ref; 262 unsigned long lflags; 263 long ret; 264 265 lflags = create ? KEY_LOOKUP_CREATE : 0; 266 key_ref = lookup_user_key(id, lflags, KEY_NEED_SEARCH); 267 if (IS_ERR(key_ref)) { 268 ret = PTR_ERR(key_ref); 269 goto error; 270 } 271 272 ret = key_ref_to_ptr(key_ref)->serial; 273 key_ref_put(key_ref); 274 error: 275 return ret; 276 } 277 278 /* 279 * Join a (named) session keyring. 280 * 281 * Create and join an anonymous session keyring or join a named session 282 * keyring, creating it if necessary. A named session keyring must have Search 283 * permission for it to be joined. Session keyrings without this permit will 284 * be skipped over. It is not permitted for userspace to create or join 285 * keyrings whose name begin with a dot. 286 * 287 * If successful, the ID of the joined session keyring will be returned. 288 */ 289 long keyctl_join_session_keyring(const char __user *_name) 290 { 291 char *name; 292 long ret; 293 294 /* fetch the name from userspace */ 295 name = NULL; 296 if (_name) { 297 name = strndup_user(_name, KEY_MAX_DESC_SIZE); 298 if (IS_ERR(name)) { 299 ret = PTR_ERR(name); 300 goto error; 301 } 302 303 ret = -EPERM; 304 if (name[0] == '.') 305 goto error_name; 306 } 307 308 /* join the session */ 309 ret = join_session_keyring(name); 310 error_name: 311 kfree(name); 312 error: 313 return ret; 314 } 315 316 /* 317 * Update a key's data payload from the given data. 318 * 319 * The key must grant the caller Write permission and the key type must support 320 * updating for this to work. A negative key can be positively instantiated 321 * with this call. 322 * 323 * If successful, 0 will be returned. If the key type does not support 324 * updating, then -EOPNOTSUPP will be returned. 325 */ 326 long keyctl_update_key(key_serial_t id, 327 const void __user *_payload, 328 size_t plen) 329 { 330 key_ref_t key_ref; 331 void *payload; 332 long ret; 333 334 ret = -EINVAL; 335 if (plen > PAGE_SIZE) 336 goto error; 337 338 /* pull the payload in if one was supplied */ 339 payload = NULL; 340 if (plen) { 341 ret = -ENOMEM; 342 payload = kvmalloc(plen, GFP_KERNEL); 343 if (!payload) 344 goto error; 345 346 ret = -EFAULT; 347 if (copy_from_user(payload, _payload, plen) != 0) 348 goto error2; 349 } 350 351 /* find the target key (which must be writable) */ 352 key_ref = lookup_user_key(id, 0, KEY_NEED_WRITE); 353 if (IS_ERR(key_ref)) { 354 ret = PTR_ERR(key_ref); 355 goto error2; 356 } 357 358 /* update the key */ 359 ret = key_update(key_ref, payload, plen); 360 361 key_ref_put(key_ref); 362 error2: 363 __kvzfree(payload, plen); 364 error: 365 return ret; 366 } 367 368 /* 369 * Revoke a key. 370 * 371 * The key must be grant the caller Write or Setattr permission for this to 372 * work. The key type should give up its quota claim when revoked. The key 373 * and any links to the key will be automatically garbage collected after a 374 * certain amount of time (/proc/sys/kernel/keys/gc_delay). 375 * 376 * Keys with KEY_FLAG_KEEP set should not be revoked. 377 * 378 * If successful, 0 is returned. 379 */ 380 long keyctl_revoke_key(key_serial_t id) 381 { 382 key_ref_t key_ref; 383 struct key *key; 384 long ret; 385 386 key_ref = lookup_user_key(id, 0, KEY_NEED_WRITE); 387 if (IS_ERR(key_ref)) { 388 ret = PTR_ERR(key_ref); 389 if (ret != -EACCES) 390 goto error; 391 key_ref = lookup_user_key(id, 0, KEY_NEED_SETATTR); 392 if (IS_ERR(key_ref)) { 393 ret = PTR_ERR(key_ref); 394 goto error; 395 } 396 } 397 398 key = key_ref_to_ptr(key_ref); 399 ret = 0; 400 if (test_bit(KEY_FLAG_KEEP, &key->flags)) 401 ret = -EPERM; 402 else 403 key_revoke(key); 404 405 key_ref_put(key_ref); 406 error: 407 return ret; 408 } 409 410 /* 411 * Invalidate a key. 412 * 413 * The key must be grant the caller Invalidate permission for this to work. 414 * The key and any links to the key will be automatically garbage collected 415 * immediately. 416 * 417 * Keys with KEY_FLAG_KEEP set should not be invalidated. 418 * 419 * If successful, 0 is returned. 420 */ 421 long keyctl_invalidate_key(key_serial_t id) 422 { 423 key_ref_t key_ref; 424 struct key *key; 425 long ret; 426 427 kenter("%d", id); 428 429 key_ref = lookup_user_key(id, 0, KEY_NEED_SEARCH); 430 if (IS_ERR(key_ref)) { 431 ret = PTR_ERR(key_ref); 432 433 /* Root is permitted to invalidate certain special keys */ 434 if (capable(CAP_SYS_ADMIN)) { 435 key_ref = lookup_user_key(id, 0, 0); 436 if (IS_ERR(key_ref)) 437 goto error; 438 if (test_bit(KEY_FLAG_ROOT_CAN_INVAL, 439 &key_ref_to_ptr(key_ref)->flags)) 440 goto invalidate; 441 goto error_put; 442 } 443 444 goto error; 445 } 446 447 invalidate: 448 key = key_ref_to_ptr(key_ref); 449 ret = 0; 450 if (test_bit(KEY_FLAG_KEEP, &key->flags)) 451 ret = -EPERM; 452 else 453 key_invalidate(key); 454 error_put: 455 key_ref_put(key_ref); 456 error: 457 kleave(" = %ld", ret); 458 return ret; 459 } 460 461 /* 462 * Clear the specified keyring, creating an empty process keyring if one of the 463 * special keyring IDs is used. 464 * 465 * The keyring must grant the caller Write permission and not have 466 * KEY_FLAG_KEEP set for this to work. If successful, 0 will be returned. 467 */ 468 long keyctl_keyring_clear(key_serial_t ringid) 469 { 470 key_ref_t keyring_ref; 471 struct key *keyring; 472 long ret; 473 474 keyring_ref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE); 475 if (IS_ERR(keyring_ref)) { 476 ret = PTR_ERR(keyring_ref); 477 478 /* Root is permitted to invalidate certain special keyrings */ 479 if (capable(CAP_SYS_ADMIN)) { 480 keyring_ref = lookup_user_key(ringid, 0, 0); 481 if (IS_ERR(keyring_ref)) 482 goto error; 483 if (test_bit(KEY_FLAG_ROOT_CAN_CLEAR, 484 &key_ref_to_ptr(keyring_ref)->flags)) 485 goto clear; 486 goto error_put; 487 } 488 489 goto error; 490 } 491 492 clear: 493 keyring = key_ref_to_ptr(keyring_ref); 494 if (test_bit(KEY_FLAG_KEEP, &keyring->flags)) 495 ret = -EPERM; 496 else 497 ret = keyring_clear(keyring); 498 error_put: 499 key_ref_put(keyring_ref); 500 error: 501 return ret; 502 } 503 504 /* 505 * Create a link from a keyring to a key if there's no matching key in the 506 * keyring, otherwise replace the link to the matching key with a link to the 507 * new key. 508 * 509 * The key must grant the caller Link permission and the the keyring must grant 510 * the caller Write permission. Furthermore, if an additional link is created, 511 * the keyring's quota will be extended. 512 * 513 * If successful, 0 will be returned. 514 */ 515 long keyctl_keyring_link(key_serial_t id, key_serial_t ringid) 516 { 517 key_ref_t keyring_ref, key_ref; 518 long ret; 519 520 keyring_ref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE); 521 if (IS_ERR(keyring_ref)) { 522 ret = PTR_ERR(keyring_ref); 523 goto error; 524 } 525 526 key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE, KEY_NEED_LINK); 527 if (IS_ERR(key_ref)) { 528 ret = PTR_ERR(key_ref); 529 goto error2; 530 } 531 532 ret = key_link(key_ref_to_ptr(keyring_ref), key_ref_to_ptr(key_ref)); 533 534 key_ref_put(key_ref); 535 error2: 536 key_ref_put(keyring_ref); 537 error: 538 return ret; 539 } 540 541 /* 542 * Unlink a key from a keyring. 543 * 544 * The keyring must grant the caller Write permission for this to work; the key 545 * itself need not grant the caller anything. If the last link to a key is 546 * removed then that key will be scheduled for destruction. 547 * 548 * Keys or keyrings with KEY_FLAG_KEEP set should not be unlinked. 549 * 550 * If successful, 0 will be returned. 551 */ 552 long keyctl_keyring_unlink(key_serial_t id, key_serial_t ringid) 553 { 554 key_ref_t keyring_ref, key_ref; 555 struct key *keyring, *key; 556 long ret; 557 558 keyring_ref = lookup_user_key(ringid, 0, KEY_NEED_WRITE); 559 if (IS_ERR(keyring_ref)) { 560 ret = PTR_ERR(keyring_ref); 561 goto error; 562 } 563 564 key_ref = lookup_user_key(id, KEY_LOOKUP_FOR_UNLINK, 0); 565 if (IS_ERR(key_ref)) { 566 ret = PTR_ERR(key_ref); 567 goto error2; 568 } 569 570 keyring = key_ref_to_ptr(keyring_ref); 571 key = key_ref_to_ptr(key_ref); 572 if (test_bit(KEY_FLAG_KEEP, &keyring->flags) && 573 test_bit(KEY_FLAG_KEEP, &key->flags)) 574 ret = -EPERM; 575 else 576 ret = key_unlink(keyring, key); 577 578 key_ref_put(key_ref); 579 error2: 580 key_ref_put(keyring_ref); 581 error: 582 return ret; 583 } 584 585 /* 586 * Move a link to a key from one keyring to another, displacing any matching 587 * key from the destination keyring. 588 * 589 * The key must grant the caller Link permission and both keyrings must grant 590 * the caller Write permission. There must also be a link in the from keyring 591 * to the key. If both keyrings are the same, nothing is done. 592 * 593 * If successful, 0 will be returned. 594 */ 595 long keyctl_keyring_move(key_serial_t id, key_serial_t from_ringid, 596 key_serial_t to_ringid, unsigned int flags) 597 { 598 key_ref_t key_ref, from_ref, to_ref; 599 long ret; 600 601 if (flags & ~KEYCTL_MOVE_EXCL) 602 return -EINVAL; 603 604 key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE, KEY_NEED_LINK); 605 if (IS_ERR(key_ref)) 606 return PTR_ERR(key_ref); 607 608 from_ref = lookup_user_key(from_ringid, 0, KEY_NEED_WRITE); 609 if (IS_ERR(from_ref)) { 610 ret = PTR_ERR(from_ref); 611 goto error2; 612 } 613 614 to_ref = lookup_user_key(to_ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE); 615 if (IS_ERR(to_ref)) { 616 ret = PTR_ERR(to_ref); 617 goto error3; 618 } 619 620 ret = key_move(key_ref_to_ptr(key_ref), key_ref_to_ptr(from_ref), 621 key_ref_to_ptr(to_ref), flags); 622 623 key_ref_put(to_ref); 624 error3: 625 key_ref_put(from_ref); 626 error2: 627 key_ref_put(key_ref); 628 return ret; 629 } 630 631 /* 632 * Return a description of a key to userspace. 633 * 634 * The key must grant the caller View permission for this to work. 635 * 636 * If there's a buffer, we place up to buflen bytes of data into it formatted 637 * in the following way: 638 * 639 * type;uid;gid;perm;description<NUL> 640 * 641 * If successful, we return the amount of description available, irrespective 642 * of how much we may have copied into the buffer. 643 */ 644 long keyctl_describe_key(key_serial_t keyid, 645 char __user *buffer, 646 size_t buflen) 647 { 648 struct key *key, *instkey; 649 key_ref_t key_ref; 650 char *infobuf; 651 long ret; 652 int desclen, infolen; 653 654 key_ref = lookup_user_key(keyid, KEY_LOOKUP_PARTIAL, KEY_NEED_VIEW); 655 if (IS_ERR(key_ref)) { 656 /* viewing a key under construction is permitted if we have the 657 * authorisation token handy */ 658 if (PTR_ERR(key_ref) == -EACCES) { 659 instkey = key_get_instantiation_authkey(keyid); 660 if (!IS_ERR(instkey)) { 661 key_put(instkey); 662 key_ref = lookup_user_key(keyid, 663 KEY_LOOKUP_PARTIAL, 664 0); 665 if (!IS_ERR(key_ref)) 666 goto okay; 667 } 668 } 669 670 ret = PTR_ERR(key_ref); 671 goto error; 672 } 673 674 okay: 675 key = key_ref_to_ptr(key_ref); 676 desclen = strlen(key->description); 677 678 /* calculate how much information we're going to return */ 679 ret = -ENOMEM; 680 infobuf = kasprintf(GFP_KERNEL, 681 "%s;%d;%d;%08x;", 682 key->type->name, 683 from_kuid_munged(current_user_ns(), key->uid), 684 from_kgid_munged(current_user_ns(), key->gid), 685 key->perm); 686 if (!infobuf) 687 goto error2; 688 infolen = strlen(infobuf); 689 ret = infolen + desclen + 1; 690 691 /* consider returning the data */ 692 if (buffer && buflen >= ret) { 693 if (copy_to_user(buffer, infobuf, infolen) != 0 || 694 copy_to_user(buffer + infolen, key->description, 695 desclen + 1) != 0) 696 ret = -EFAULT; 697 } 698 699 kfree(infobuf); 700 error2: 701 key_ref_put(key_ref); 702 error: 703 return ret; 704 } 705 706 /* 707 * Search the specified keyring and any keyrings it links to for a matching 708 * key. Only keyrings that grant the caller Search permission will be searched 709 * (this includes the starting keyring). Only keys with Search permission can 710 * be found. 711 * 712 * If successful, the found key will be linked to the destination keyring if 713 * supplied and the key has Link permission, and the found key ID will be 714 * returned. 715 */ 716 long keyctl_keyring_search(key_serial_t ringid, 717 const char __user *_type, 718 const char __user *_description, 719 key_serial_t destringid) 720 { 721 struct key_type *ktype; 722 key_ref_t keyring_ref, key_ref, dest_ref; 723 char type[32], *description; 724 long ret; 725 726 /* pull the type and description into kernel space */ 727 ret = key_get_type_from_user(type, _type, sizeof(type)); 728 if (ret < 0) 729 goto error; 730 731 description = strndup_user(_description, KEY_MAX_DESC_SIZE); 732 if (IS_ERR(description)) { 733 ret = PTR_ERR(description); 734 goto error; 735 } 736 737 /* get the keyring at which to begin the search */ 738 keyring_ref = lookup_user_key(ringid, 0, KEY_NEED_SEARCH); 739 if (IS_ERR(keyring_ref)) { 740 ret = PTR_ERR(keyring_ref); 741 goto error2; 742 } 743 744 /* get the destination keyring if specified */ 745 dest_ref = NULL; 746 if (destringid) { 747 dest_ref = lookup_user_key(destringid, KEY_LOOKUP_CREATE, 748 KEY_NEED_WRITE); 749 if (IS_ERR(dest_ref)) { 750 ret = PTR_ERR(dest_ref); 751 goto error3; 752 } 753 } 754 755 /* find the key type */ 756 ktype = key_type_lookup(type); 757 if (IS_ERR(ktype)) { 758 ret = PTR_ERR(ktype); 759 goto error4; 760 } 761 762 /* do the search */ 763 key_ref = keyring_search(keyring_ref, ktype, description, true); 764 if (IS_ERR(key_ref)) { 765 ret = PTR_ERR(key_ref); 766 767 /* treat lack or presence of a negative key the same */ 768 if (ret == -EAGAIN) 769 ret = -ENOKEY; 770 goto error5; 771 } 772 773 /* link the resulting key to the destination keyring if we can */ 774 if (dest_ref) { 775 ret = key_permission(key_ref, KEY_NEED_LINK); 776 if (ret < 0) 777 goto error6; 778 779 ret = key_link(key_ref_to_ptr(dest_ref), key_ref_to_ptr(key_ref)); 780 if (ret < 0) 781 goto error6; 782 } 783 784 ret = key_ref_to_ptr(key_ref)->serial; 785 786 error6: 787 key_ref_put(key_ref); 788 error5: 789 key_type_put(ktype); 790 error4: 791 key_ref_put(dest_ref); 792 error3: 793 key_ref_put(keyring_ref); 794 error2: 795 kfree(description); 796 error: 797 return ret; 798 } 799 800 /* 801 * Call the read method 802 */ 803 static long __keyctl_read_key(struct key *key, char *buffer, size_t buflen) 804 { 805 long ret; 806 807 down_read(&key->sem); 808 ret = key_validate(key); 809 if (ret == 0) 810 ret = key->type->read(key, buffer, buflen); 811 up_read(&key->sem); 812 return ret; 813 } 814 815 /* 816 * Read a key's payload. 817 * 818 * The key must either grant the caller Read permission, or it must grant the 819 * caller Search permission when searched for from the process keyrings. 820 * 821 * If successful, we place up to buflen bytes of data into the buffer, if one 822 * is provided, and return the amount of data that is available in the key, 823 * irrespective of how much we copied into the buffer. 824 */ 825 long keyctl_read_key(key_serial_t keyid, char __user *buffer, size_t buflen) 826 { 827 struct key *key; 828 key_ref_t key_ref; 829 long ret; 830 char *key_data = NULL; 831 size_t key_data_len; 832 833 /* find the key first */ 834 key_ref = lookup_user_key(keyid, 0, 0); 835 if (IS_ERR(key_ref)) { 836 ret = -ENOKEY; 837 goto out; 838 } 839 840 key = key_ref_to_ptr(key_ref); 841 842 ret = key_read_state(key); 843 if (ret < 0) 844 goto key_put_out; /* Negatively instantiated */ 845 846 /* see if we can read it directly */ 847 ret = key_permission(key_ref, KEY_NEED_READ); 848 if (ret == 0) 849 goto can_read_key; 850 if (ret != -EACCES) 851 goto key_put_out; 852 853 /* we can't; see if it's searchable from this process's keyrings 854 * - we automatically take account of the fact that it may be 855 * dangling off an instantiation key 856 */ 857 if (!is_key_possessed(key_ref)) { 858 ret = -EACCES; 859 goto key_put_out; 860 } 861 862 /* the key is probably readable - now try to read it */ 863 can_read_key: 864 if (!key->type->read) { 865 ret = -EOPNOTSUPP; 866 goto key_put_out; 867 } 868 869 if (!buffer || !buflen) { 870 /* Get the key length from the read method */ 871 ret = __keyctl_read_key(key, NULL, 0); 872 goto key_put_out; 873 } 874 875 /* 876 * Read the data with the semaphore held (since we might sleep) 877 * to protect against the key being updated or revoked. 878 * 879 * Allocating a temporary buffer to hold the keys before 880 * transferring them to user buffer to avoid potential 881 * deadlock involving page fault and mmap_sem. 882 * 883 * key_data_len = (buflen <= PAGE_SIZE) 884 * ? buflen : actual length of key data 885 * 886 * This prevents allocating arbitrary large buffer which can 887 * be much larger than the actual key length. In the latter case, 888 * at least 2 passes of this loop is required. 889 */ 890 key_data_len = (buflen <= PAGE_SIZE) ? buflen : 0; 891 for (;;) { 892 if (key_data_len) { 893 key_data = kvmalloc(key_data_len, GFP_KERNEL); 894 if (!key_data) { 895 ret = -ENOMEM; 896 goto key_put_out; 897 } 898 } 899 900 ret = __keyctl_read_key(key, key_data, key_data_len); 901 902 /* 903 * Read methods will just return the required length without 904 * any copying if the provided length isn't large enough. 905 */ 906 if (ret <= 0 || ret > buflen) 907 break; 908 909 /* 910 * The key may change (unlikely) in between 2 consecutive 911 * __keyctl_read_key() calls. In this case, we reallocate 912 * a larger buffer and redo the key read when 913 * key_data_len < ret <= buflen. 914 */ 915 if (ret > key_data_len) { 916 if (unlikely(key_data)) 917 __kvzfree(key_data, key_data_len); 918 key_data_len = ret; 919 continue; /* Allocate buffer */ 920 } 921 922 if (copy_to_user(buffer, key_data, ret)) 923 ret = -EFAULT; 924 break; 925 } 926 __kvzfree(key_data, key_data_len); 927 928 key_put_out: 929 key_put(key); 930 out: 931 return ret; 932 } 933 934 /* 935 * Change the ownership of a key 936 * 937 * The key must grant the caller Setattr permission for this to work, though 938 * the key need not be fully instantiated yet. For the UID to be changed, or 939 * for the GID to be changed to a group the caller is not a member of, the 940 * caller must have sysadmin capability. If either uid or gid is -1 then that 941 * attribute is not changed. 942 * 943 * If the UID is to be changed, the new user must have sufficient quota to 944 * accept the key. The quota deduction will be removed from the old user to 945 * the new user should the attribute be changed. 946 * 947 * If successful, 0 will be returned. 948 */ 949 long keyctl_chown_key(key_serial_t id, uid_t user, gid_t group) 950 { 951 struct key_user *newowner, *zapowner = NULL; 952 struct key *key; 953 key_ref_t key_ref; 954 long ret; 955 kuid_t uid; 956 kgid_t gid; 957 958 uid = make_kuid(current_user_ns(), user); 959 gid = make_kgid(current_user_ns(), group); 960 ret = -EINVAL; 961 if ((user != (uid_t) -1) && !uid_valid(uid)) 962 goto error; 963 if ((group != (gid_t) -1) && !gid_valid(gid)) 964 goto error; 965 966 ret = 0; 967 if (user == (uid_t) -1 && group == (gid_t) -1) 968 goto error; 969 970 key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE | KEY_LOOKUP_PARTIAL, 971 KEY_NEED_SETATTR); 972 if (IS_ERR(key_ref)) { 973 ret = PTR_ERR(key_ref); 974 goto error; 975 } 976 977 key = key_ref_to_ptr(key_ref); 978 979 /* make the changes with the locks held to prevent chown/chown races */ 980 ret = -EACCES; 981 down_write(&key->sem); 982 983 if (!capable(CAP_SYS_ADMIN)) { 984 /* only the sysadmin can chown a key to some other UID */ 985 if (user != (uid_t) -1 && !uid_eq(key->uid, uid)) 986 goto error_put; 987 988 /* only the sysadmin can set the key's GID to a group other 989 * than one of those that the current process subscribes to */ 990 if (group != (gid_t) -1 && !gid_eq(gid, key->gid) && !in_group_p(gid)) 991 goto error_put; 992 } 993 994 /* change the UID */ 995 if (user != (uid_t) -1 && !uid_eq(uid, key->uid)) { 996 ret = -ENOMEM; 997 newowner = key_user_lookup(uid); 998 if (!newowner) 999 goto error_put; 1000 1001 /* transfer the quota burden to the new user */ 1002 if (test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) { 1003 unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ? 1004 key_quota_root_maxkeys : key_quota_maxkeys; 1005 unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ? 1006 key_quota_root_maxbytes : key_quota_maxbytes; 1007 1008 spin_lock(&newowner->lock); 1009 if (newowner->qnkeys + 1 > maxkeys || 1010 newowner->qnbytes + key->quotalen > maxbytes || 1011 newowner->qnbytes + key->quotalen < 1012 newowner->qnbytes) 1013 goto quota_overrun; 1014 1015 newowner->qnkeys++; 1016 newowner->qnbytes += key->quotalen; 1017 spin_unlock(&newowner->lock); 1018 1019 spin_lock(&key->user->lock); 1020 key->user->qnkeys--; 1021 key->user->qnbytes -= key->quotalen; 1022 spin_unlock(&key->user->lock); 1023 } 1024 1025 atomic_dec(&key->user->nkeys); 1026 atomic_inc(&newowner->nkeys); 1027 1028 if (key->state != KEY_IS_UNINSTANTIATED) { 1029 atomic_dec(&key->user->nikeys); 1030 atomic_inc(&newowner->nikeys); 1031 } 1032 1033 zapowner = key->user; 1034 key->user = newowner; 1035 key->uid = uid; 1036 } 1037 1038 /* change the GID */ 1039 if (group != (gid_t) -1) 1040 key->gid = gid; 1041 1042 ret = 0; 1043 1044 error_put: 1045 up_write(&key->sem); 1046 key_put(key); 1047 if (zapowner) 1048 key_user_put(zapowner); 1049 error: 1050 return ret; 1051 1052 quota_overrun: 1053 spin_unlock(&newowner->lock); 1054 zapowner = newowner; 1055 ret = -EDQUOT; 1056 goto error_put; 1057 } 1058 1059 /* 1060 * Change the permission mask on a key. 1061 * 1062 * The key must grant the caller Setattr permission for this to work, though 1063 * the key need not be fully instantiated yet. If the caller does not have 1064 * sysadmin capability, it may only change the permission on keys that it owns. 1065 */ 1066 long keyctl_setperm_key(key_serial_t id, key_perm_t perm) 1067 { 1068 struct key *key; 1069 key_ref_t key_ref; 1070 long ret; 1071 1072 ret = -EINVAL; 1073 if (perm & ~(KEY_POS_ALL | KEY_USR_ALL | KEY_GRP_ALL | KEY_OTH_ALL)) 1074 goto error; 1075 1076 key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE | KEY_LOOKUP_PARTIAL, 1077 KEY_NEED_SETATTR); 1078 if (IS_ERR(key_ref)) { 1079 ret = PTR_ERR(key_ref); 1080 goto error; 1081 } 1082 1083 key = key_ref_to_ptr(key_ref); 1084 1085 /* make the changes with the locks held to prevent chown/chmod races */ 1086 ret = -EACCES; 1087 down_write(&key->sem); 1088 1089 /* if we're not the sysadmin, we can only change a key that we own */ 1090 if (capable(CAP_SYS_ADMIN) || uid_eq(key->uid, current_fsuid())) { 1091 key->perm = perm; 1092 ret = 0; 1093 } 1094 1095 up_write(&key->sem); 1096 key_put(key); 1097 error: 1098 return ret; 1099 } 1100 1101 /* 1102 * Get the destination keyring for instantiation and check that the caller has 1103 * Write permission on it. 1104 */ 1105 static long get_instantiation_keyring(key_serial_t ringid, 1106 struct request_key_auth *rka, 1107 struct key **_dest_keyring) 1108 { 1109 key_ref_t dkref; 1110 1111 *_dest_keyring = NULL; 1112 1113 /* just return a NULL pointer if we weren't asked to make a link */ 1114 if (ringid == 0) 1115 return 0; 1116 1117 /* if a specific keyring is nominated by ID, then use that */ 1118 if (ringid > 0) { 1119 dkref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE); 1120 if (IS_ERR(dkref)) 1121 return PTR_ERR(dkref); 1122 *_dest_keyring = key_ref_to_ptr(dkref); 1123 return 0; 1124 } 1125 1126 if (ringid == KEY_SPEC_REQKEY_AUTH_KEY) 1127 return -EINVAL; 1128 1129 /* otherwise specify the destination keyring recorded in the 1130 * authorisation key (any KEY_SPEC_*_KEYRING) */ 1131 if (ringid >= KEY_SPEC_REQUESTOR_KEYRING) { 1132 *_dest_keyring = key_get(rka->dest_keyring); 1133 return 0; 1134 } 1135 1136 return -ENOKEY; 1137 } 1138 1139 /* 1140 * Change the request_key authorisation key on the current process. 1141 */ 1142 static int keyctl_change_reqkey_auth(struct key *key) 1143 { 1144 struct cred *new; 1145 1146 new = prepare_creds(); 1147 if (!new) 1148 return -ENOMEM; 1149 1150 key_put(new->request_key_auth); 1151 new->request_key_auth = key_get(key); 1152 1153 return commit_creds(new); 1154 } 1155 1156 /* 1157 * Instantiate a key with the specified payload and link the key into the 1158 * destination keyring if one is given. 1159 * 1160 * The caller must have the appropriate instantiation permit set for this to 1161 * work (see keyctl_assume_authority). No other permissions are required. 1162 * 1163 * If successful, 0 will be returned. 1164 */ 1165 long keyctl_instantiate_key_common(key_serial_t id, 1166 struct iov_iter *from, 1167 key_serial_t ringid) 1168 { 1169 const struct cred *cred = current_cred(); 1170 struct request_key_auth *rka; 1171 struct key *instkey, *dest_keyring; 1172 size_t plen = from ? iov_iter_count(from) : 0; 1173 void *payload; 1174 long ret; 1175 1176 kenter("%d,,%zu,%d", id, plen, ringid); 1177 1178 if (!plen) 1179 from = NULL; 1180 1181 ret = -EINVAL; 1182 if (plen > 1024 * 1024 - 1) 1183 goto error; 1184 1185 /* the appropriate instantiation authorisation key must have been 1186 * assumed before calling this */ 1187 ret = -EPERM; 1188 instkey = cred->request_key_auth; 1189 if (!instkey) 1190 goto error; 1191 1192 rka = instkey->payload.data[0]; 1193 if (rka->target_key->serial != id) 1194 goto error; 1195 1196 /* pull the payload in if one was supplied */ 1197 payload = NULL; 1198 1199 if (from) { 1200 ret = -ENOMEM; 1201 payload = kvmalloc(plen, GFP_KERNEL); 1202 if (!payload) 1203 goto error; 1204 1205 ret = -EFAULT; 1206 if (!copy_from_iter_full(payload, plen, from)) 1207 goto error2; 1208 } 1209 1210 /* find the destination keyring amongst those belonging to the 1211 * requesting task */ 1212 ret = get_instantiation_keyring(ringid, rka, &dest_keyring); 1213 if (ret < 0) 1214 goto error2; 1215 1216 /* instantiate the key and link it into a keyring */ 1217 ret = key_instantiate_and_link(rka->target_key, payload, plen, 1218 dest_keyring, instkey); 1219 1220 key_put(dest_keyring); 1221 1222 /* discard the assumed authority if it's just been disabled by 1223 * instantiation of the key */ 1224 if (ret == 0) 1225 keyctl_change_reqkey_auth(NULL); 1226 1227 error2: 1228 if (payload) { 1229 memzero_explicit(payload, plen); 1230 kvfree(payload); 1231 } 1232 error: 1233 return ret; 1234 } 1235 1236 /* 1237 * Instantiate a key with the specified payload and link the key into the 1238 * destination keyring if one is given. 1239 * 1240 * The caller must have the appropriate instantiation permit set for this to 1241 * work (see keyctl_assume_authority). No other permissions are required. 1242 * 1243 * If successful, 0 will be returned. 1244 */ 1245 long keyctl_instantiate_key(key_serial_t id, 1246 const void __user *_payload, 1247 size_t plen, 1248 key_serial_t ringid) 1249 { 1250 if (_payload && plen) { 1251 struct iovec iov; 1252 struct iov_iter from; 1253 int ret; 1254 1255 ret = import_single_range(WRITE, (void __user *)_payload, plen, 1256 &iov, &from); 1257 if (unlikely(ret)) 1258 return ret; 1259 1260 return keyctl_instantiate_key_common(id, &from, ringid); 1261 } 1262 1263 return keyctl_instantiate_key_common(id, NULL, ringid); 1264 } 1265 1266 /* 1267 * Instantiate a key with the specified multipart payload and link the key into 1268 * the destination keyring if one is given. 1269 * 1270 * The caller must have the appropriate instantiation permit set for this to 1271 * work (see keyctl_assume_authority). No other permissions are required. 1272 * 1273 * If successful, 0 will be returned. 1274 */ 1275 long keyctl_instantiate_key_iov(key_serial_t id, 1276 const struct iovec __user *_payload_iov, 1277 unsigned ioc, 1278 key_serial_t ringid) 1279 { 1280 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1281 struct iov_iter from; 1282 long ret; 1283 1284 if (!_payload_iov) 1285 ioc = 0; 1286 1287 ret = import_iovec(WRITE, _payload_iov, ioc, 1288 ARRAY_SIZE(iovstack), &iov, &from); 1289 if (ret < 0) 1290 return ret; 1291 ret = keyctl_instantiate_key_common(id, &from, ringid); 1292 kfree(iov); 1293 return ret; 1294 } 1295 1296 /* 1297 * Negatively instantiate the key with the given timeout (in seconds) and link 1298 * the key into the destination keyring if one is given. 1299 * 1300 * The caller must have the appropriate instantiation permit set for this to 1301 * work (see keyctl_assume_authority). No other permissions are required. 1302 * 1303 * The key and any links to the key will be automatically garbage collected 1304 * after the timeout expires. 1305 * 1306 * Negative keys are used to rate limit repeated request_key() calls by causing 1307 * them to return -ENOKEY until the negative key expires. 1308 * 1309 * If successful, 0 will be returned. 1310 */ 1311 long keyctl_negate_key(key_serial_t id, unsigned timeout, key_serial_t ringid) 1312 { 1313 return keyctl_reject_key(id, timeout, ENOKEY, ringid); 1314 } 1315 1316 /* 1317 * Negatively instantiate the key with the given timeout (in seconds) and error 1318 * code and link the key into the destination keyring if one is given. 1319 * 1320 * The caller must have the appropriate instantiation permit set for this to 1321 * work (see keyctl_assume_authority). No other permissions are required. 1322 * 1323 * The key and any links to the key will be automatically garbage collected 1324 * after the timeout expires. 1325 * 1326 * Negative keys are used to rate limit repeated request_key() calls by causing 1327 * them to return the specified error code until the negative key expires. 1328 * 1329 * If successful, 0 will be returned. 1330 */ 1331 long keyctl_reject_key(key_serial_t id, unsigned timeout, unsigned error, 1332 key_serial_t ringid) 1333 { 1334 const struct cred *cred = current_cred(); 1335 struct request_key_auth *rka; 1336 struct key *instkey, *dest_keyring; 1337 long ret; 1338 1339 kenter("%d,%u,%u,%d", id, timeout, error, ringid); 1340 1341 /* must be a valid error code and mustn't be a kernel special */ 1342 if (error <= 0 || 1343 error >= MAX_ERRNO || 1344 error == ERESTARTSYS || 1345 error == ERESTARTNOINTR || 1346 error == ERESTARTNOHAND || 1347 error == ERESTART_RESTARTBLOCK) 1348 return -EINVAL; 1349 1350 /* the appropriate instantiation authorisation key must have been 1351 * assumed before calling this */ 1352 ret = -EPERM; 1353 instkey = cred->request_key_auth; 1354 if (!instkey) 1355 goto error; 1356 1357 rka = instkey->payload.data[0]; 1358 if (rka->target_key->serial != id) 1359 goto error; 1360 1361 /* find the destination keyring if present (which must also be 1362 * writable) */ 1363 ret = get_instantiation_keyring(ringid, rka, &dest_keyring); 1364 if (ret < 0) 1365 goto error; 1366 1367 /* instantiate the key and link it into a keyring */ 1368 ret = key_reject_and_link(rka->target_key, timeout, error, 1369 dest_keyring, instkey); 1370 1371 key_put(dest_keyring); 1372 1373 /* discard the assumed authority if it's just been disabled by 1374 * instantiation of the key */ 1375 if (ret == 0) 1376 keyctl_change_reqkey_auth(NULL); 1377 1378 error: 1379 return ret; 1380 } 1381 1382 /* 1383 * Read or set the default keyring in which request_key() will cache keys and 1384 * return the old setting. 1385 * 1386 * If a thread or process keyring is specified then it will be created if it 1387 * doesn't yet exist. The old setting will be returned if successful. 1388 */ 1389 long keyctl_set_reqkey_keyring(int reqkey_defl) 1390 { 1391 struct cred *new; 1392 int ret, old_setting; 1393 1394 old_setting = current_cred_xxx(jit_keyring); 1395 1396 if (reqkey_defl == KEY_REQKEY_DEFL_NO_CHANGE) 1397 return old_setting; 1398 1399 new = prepare_creds(); 1400 if (!new) 1401 return -ENOMEM; 1402 1403 switch (reqkey_defl) { 1404 case KEY_REQKEY_DEFL_THREAD_KEYRING: 1405 ret = install_thread_keyring_to_cred(new); 1406 if (ret < 0) 1407 goto error; 1408 goto set; 1409 1410 case KEY_REQKEY_DEFL_PROCESS_KEYRING: 1411 ret = install_process_keyring_to_cred(new); 1412 if (ret < 0) 1413 goto error; 1414 goto set; 1415 1416 case KEY_REQKEY_DEFL_DEFAULT: 1417 case KEY_REQKEY_DEFL_SESSION_KEYRING: 1418 case KEY_REQKEY_DEFL_USER_KEYRING: 1419 case KEY_REQKEY_DEFL_USER_SESSION_KEYRING: 1420 case KEY_REQKEY_DEFL_REQUESTOR_KEYRING: 1421 goto set; 1422 1423 case KEY_REQKEY_DEFL_NO_CHANGE: 1424 case KEY_REQKEY_DEFL_GROUP_KEYRING: 1425 default: 1426 ret = -EINVAL; 1427 goto error; 1428 } 1429 1430 set: 1431 new->jit_keyring = reqkey_defl; 1432 commit_creds(new); 1433 return old_setting; 1434 error: 1435 abort_creds(new); 1436 return ret; 1437 } 1438 1439 /* 1440 * Set or clear the timeout on a key. 1441 * 1442 * Either the key must grant the caller Setattr permission or else the caller 1443 * must hold an instantiation authorisation token for the key. 1444 * 1445 * The timeout is either 0 to clear the timeout, or a number of seconds from 1446 * the current time. The key and any links to the key will be automatically 1447 * garbage collected after the timeout expires. 1448 * 1449 * Keys with KEY_FLAG_KEEP set should not be timed out. 1450 * 1451 * If successful, 0 is returned. 1452 */ 1453 long keyctl_set_timeout(key_serial_t id, unsigned timeout) 1454 { 1455 struct key *key, *instkey; 1456 key_ref_t key_ref; 1457 long ret; 1458 1459 key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE | KEY_LOOKUP_PARTIAL, 1460 KEY_NEED_SETATTR); 1461 if (IS_ERR(key_ref)) { 1462 /* setting the timeout on a key under construction is permitted 1463 * if we have the authorisation token handy */ 1464 if (PTR_ERR(key_ref) == -EACCES) { 1465 instkey = key_get_instantiation_authkey(id); 1466 if (!IS_ERR(instkey)) { 1467 key_put(instkey); 1468 key_ref = lookup_user_key(id, 1469 KEY_LOOKUP_PARTIAL, 1470 0); 1471 if (!IS_ERR(key_ref)) 1472 goto okay; 1473 } 1474 } 1475 1476 ret = PTR_ERR(key_ref); 1477 goto error; 1478 } 1479 1480 okay: 1481 key = key_ref_to_ptr(key_ref); 1482 ret = 0; 1483 if (test_bit(KEY_FLAG_KEEP, &key->flags)) 1484 ret = -EPERM; 1485 else 1486 key_set_timeout(key, timeout); 1487 key_put(key); 1488 1489 error: 1490 return ret; 1491 } 1492 1493 /* 1494 * Assume (or clear) the authority to instantiate the specified key. 1495 * 1496 * This sets the authoritative token currently in force for key instantiation. 1497 * This must be done for a key to be instantiated. It has the effect of making 1498 * available all the keys from the caller of the request_key() that created a 1499 * key to request_key() calls made by the caller of this function. 1500 * 1501 * The caller must have the instantiation key in their process keyrings with a 1502 * Search permission grant available to the caller. 1503 * 1504 * If the ID given is 0, then the setting will be cleared and 0 returned. 1505 * 1506 * If the ID given has a matching an authorisation key, then that key will be 1507 * set and its ID will be returned. The authorisation key can be read to get 1508 * the callout information passed to request_key(). 1509 */ 1510 long keyctl_assume_authority(key_serial_t id) 1511 { 1512 struct key *authkey; 1513 long ret; 1514 1515 /* special key IDs aren't permitted */ 1516 ret = -EINVAL; 1517 if (id < 0) 1518 goto error; 1519 1520 /* we divest ourselves of authority if given an ID of 0 */ 1521 if (id == 0) { 1522 ret = keyctl_change_reqkey_auth(NULL); 1523 goto error; 1524 } 1525 1526 /* attempt to assume the authority temporarily granted to us whilst we 1527 * instantiate the specified key 1528 * - the authorisation key must be in the current task's keyrings 1529 * somewhere 1530 */ 1531 authkey = key_get_instantiation_authkey(id); 1532 if (IS_ERR(authkey)) { 1533 ret = PTR_ERR(authkey); 1534 goto error; 1535 } 1536 1537 ret = keyctl_change_reqkey_auth(authkey); 1538 if (ret == 0) 1539 ret = authkey->serial; 1540 key_put(authkey); 1541 error: 1542 return ret; 1543 } 1544 1545 /* 1546 * Get a key's the LSM security label. 1547 * 1548 * The key must grant the caller View permission for this to work. 1549 * 1550 * If there's a buffer, then up to buflen bytes of data will be placed into it. 1551 * 1552 * If successful, the amount of information available will be returned, 1553 * irrespective of how much was copied (including the terminal NUL). 1554 */ 1555 long keyctl_get_security(key_serial_t keyid, 1556 char __user *buffer, 1557 size_t buflen) 1558 { 1559 struct key *key, *instkey; 1560 key_ref_t key_ref; 1561 char *context; 1562 long ret; 1563 1564 key_ref = lookup_user_key(keyid, KEY_LOOKUP_PARTIAL, KEY_NEED_VIEW); 1565 if (IS_ERR(key_ref)) { 1566 if (PTR_ERR(key_ref) != -EACCES) 1567 return PTR_ERR(key_ref); 1568 1569 /* viewing a key under construction is also permitted if we 1570 * have the authorisation token handy */ 1571 instkey = key_get_instantiation_authkey(keyid); 1572 if (IS_ERR(instkey)) 1573 return PTR_ERR(instkey); 1574 key_put(instkey); 1575 1576 key_ref = lookup_user_key(keyid, KEY_LOOKUP_PARTIAL, 0); 1577 if (IS_ERR(key_ref)) 1578 return PTR_ERR(key_ref); 1579 } 1580 1581 key = key_ref_to_ptr(key_ref); 1582 ret = security_key_getsecurity(key, &context); 1583 if (ret == 0) { 1584 /* if no information was returned, give userspace an empty 1585 * string */ 1586 ret = 1; 1587 if (buffer && buflen > 0 && 1588 copy_to_user(buffer, "", 1) != 0) 1589 ret = -EFAULT; 1590 } else if (ret > 0) { 1591 /* return as much data as there's room for */ 1592 if (buffer && buflen > 0) { 1593 if (buflen > ret) 1594 buflen = ret; 1595 1596 if (copy_to_user(buffer, context, buflen) != 0) 1597 ret = -EFAULT; 1598 } 1599 1600 kfree(context); 1601 } 1602 1603 key_ref_put(key_ref); 1604 return ret; 1605 } 1606 1607 /* 1608 * Attempt to install the calling process's session keyring on the process's 1609 * parent process. 1610 * 1611 * The keyring must exist and must grant the caller LINK permission, and the 1612 * parent process must be single-threaded and must have the same effective 1613 * ownership as this process and mustn't be SUID/SGID. 1614 * 1615 * The keyring will be emplaced on the parent when it next resumes userspace. 1616 * 1617 * If successful, 0 will be returned. 1618 */ 1619 long keyctl_session_to_parent(void) 1620 { 1621 struct task_struct *me, *parent; 1622 const struct cred *mycred, *pcred; 1623 struct callback_head *newwork, *oldwork; 1624 key_ref_t keyring_r; 1625 struct cred *cred; 1626 int ret; 1627 1628 keyring_r = lookup_user_key(KEY_SPEC_SESSION_KEYRING, 0, KEY_NEED_LINK); 1629 if (IS_ERR(keyring_r)) 1630 return PTR_ERR(keyring_r); 1631 1632 ret = -ENOMEM; 1633 1634 /* our parent is going to need a new cred struct, a new tgcred struct 1635 * and new security data, so we allocate them here to prevent ENOMEM in 1636 * our parent */ 1637 cred = cred_alloc_blank(); 1638 if (!cred) 1639 goto error_keyring; 1640 newwork = &cred->rcu; 1641 1642 cred->session_keyring = key_ref_to_ptr(keyring_r); 1643 keyring_r = NULL; 1644 init_task_work(newwork, key_change_session_keyring); 1645 1646 me = current; 1647 rcu_read_lock(); 1648 write_lock_irq(&tasklist_lock); 1649 1650 ret = -EPERM; 1651 oldwork = NULL; 1652 parent = rcu_dereference_protected(me->real_parent, 1653 lockdep_is_held(&tasklist_lock)); 1654 1655 /* the parent mustn't be init and mustn't be a kernel thread */ 1656 if (parent->pid <= 1 || !parent->mm) 1657 goto unlock; 1658 1659 /* the parent must be single threaded */ 1660 if (!thread_group_empty(parent)) 1661 goto unlock; 1662 1663 /* the parent and the child must have different session keyrings or 1664 * there's no point */ 1665 mycred = current_cred(); 1666 pcred = __task_cred(parent); 1667 if (mycred == pcred || 1668 mycred->session_keyring == pcred->session_keyring) { 1669 ret = 0; 1670 goto unlock; 1671 } 1672 1673 /* the parent must have the same effective ownership and mustn't be 1674 * SUID/SGID */ 1675 if (!uid_eq(pcred->uid, mycred->euid) || 1676 !uid_eq(pcred->euid, mycred->euid) || 1677 !uid_eq(pcred->suid, mycred->euid) || 1678 !gid_eq(pcred->gid, mycred->egid) || 1679 !gid_eq(pcred->egid, mycred->egid) || 1680 !gid_eq(pcred->sgid, mycred->egid)) 1681 goto unlock; 1682 1683 /* the keyrings must have the same UID */ 1684 if ((pcred->session_keyring && 1685 !uid_eq(pcred->session_keyring->uid, mycred->euid)) || 1686 !uid_eq(mycred->session_keyring->uid, mycred->euid)) 1687 goto unlock; 1688 1689 /* cancel an already pending keyring replacement */ 1690 oldwork = task_work_cancel(parent, key_change_session_keyring); 1691 1692 /* the replacement session keyring is applied just prior to userspace 1693 * restarting */ 1694 ret = task_work_add(parent, newwork, true); 1695 if (!ret) 1696 newwork = NULL; 1697 unlock: 1698 write_unlock_irq(&tasklist_lock); 1699 rcu_read_unlock(); 1700 if (oldwork) 1701 put_cred(container_of(oldwork, struct cred, rcu)); 1702 if (newwork) 1703 put_cred(cred); 1704 return ret; 1705 1706 error_keyring: 1707 key_ref_put(keyring_r); 1708 return ret; 1709 } 1710 1711 /* 1712 * Apply a restriction to a given keyring. 1713 * 1714 * The caller must have Setattr permission to change keyring restrictions. 1715 * 1716 * The requested type name may be a NULL pointer to reject all attempts 1717 * to link to the keyring. In this case, _restriction must also be NULL. 1718 * Otherwise, both _type and _restriction must be non-NULL. 1719 * 1720 * Returns 0 if successful. 1721 */ 1722 long keyctl_restrict_keyring(key_serial_t id, const char __user *_type, 1723 const char __user *_restriction) 1724 { 1725 key_ref_t key_ref; 1726 char type[32]; 1727 char *restriction = NULL; 1728 long ret; 1729 1730 key_ref = lookup_user_key(id, 0, KEY_NEED_SETATTR); 1731 if (IS_ERR(key_ref)) 1732 return PTR_ERR(key_ref); 1733 1734 ret = -EINVAL; 1735 if (_type) { 1736 if (!_restriction) 1737 goto error; 1738 1739 ret = key_get_type_from_user(type, _type, sizeof(type)); 1740 if (ret < 0) 1741 goto error; 1742 1743 restriction = strndup_user(_restriction, PAGE_SIZE); 1744 if (IS_ERR(restriction)) { 1745 ret = PTR_ERR(restriction); 1746 goto error; 1747 } 1748 } else { 1749 if (_restriction) 1750 goto error; 1751 } 1752 1753 ret = keyring_restrict(key_ref, _type ? type : NULL, restriction); 1754 kfree(restriction); 1755 error: 1756 key_ref_put(key_ref); 1757 return ret; 1758 } 1759 1760 /* 1761 * Get keyrings subsystem capabilities. 1762 */ 1763 long keyctl_capabilities(unsigned char __user *_buffer, size_t buflen) 1764 { 1765 size_t size = buflen; 1766 1767 if (size > 0) { 1768 if (size > sizeof(keyrings_capabilities)) 1769 size = sizeof(keyrings_capabilities); 1770 if (copy_to_user(_buffer, keyrings_capabilities, size) != 0) 1771 return -EFAULT; 1772 if (size < buflen && 1773 clear_user(_buffer + size, buflen - size) != 0) 1774 return -EFAULT; 1775 } 1776 1777 return sizeof(keyrings_capabilities); 1778 } 1779 1780 /* 1781 * The key control system call 1782 */ 1783 SYSCALL_DEFINE5(keyctl, int, option, unsigned long, arg2, unsigned long, arg3, 1784 unsigned long, arg4, unsigned long, arg5) 1785 { 1786 switch (option) { 1787 case KEYCTL_GET_KEYRING_ID: 1788 return keyctl_get_keyring_ID((key_serial_t) arg2, 1789 (int) arg3); 1790 1791 case KEYCTL_JOIN_SESSION_KEYRING: 1792 return keyctl_join_session_keyring((const char __user *) arg2); 1793 1794 case KEYCTL_UPDATE: 1795 return keyctl_update_key((key_serial_t) arg2, 1796 (const void __user *) arg3, 1797 (size_t) arg4); 1798 1799 case KEYCTL_REVOKE: 1800 return keyctl_revoke_key((key_serial_t) arg2); 1801 1802 case KEYCTL_DESCRIBE: 1803 return keyctl_describe_key((key_serial_t) arg2, 1804 (char __user *) arg3, 1805 (unsigned) arg4); 1806 1807 case KEYCTL_CLEAR: 1808 return keyctl_keyring_clear((key_serial_t) arg2); 1809 1810 case KEYCTL_LINK: 1811 return keyctl_keyring_link((key_serial_t) arg2, 1812 (key_serial_t) arg3); 1813 1814 case KEYCTL_UNLINK: 1815 return keyctl_keyring_unlink((key_serial_t) arg2, 1816 (key_serial_t) arg3); 1817 1818 case KEYCTL_SEARCH: 1819 return keyctl_keyring_search((key_serial_t) arg2, 1820 (const char __user *) arg3, 1821 (const char __user *) arg4, 1822 (key_serial_t) arg5); 1823 1824 case KEYCTL_READ: 1825 return keyctl_read_key((key_serial_t) arg2, 1826 (char __user *) arg3, 1827 (size_t) arg4); 1828 1829 case KEYCTL_CHOWN: 1830 return keyctl_chown_key((key_serial_t) arg2, 1831 (uid_t) arg3, 1832 (gid_t) arg4); 1833 1834 case KEYCTL_SETPERM: 1835 return keyctl_setperm_key((key_serial_t) arg2, 1836 (key_perm_t) arg3); 1837 1838 case KEYCTL_INSTANTIATE: 1839 return keyctl_instantiate_key((key_serial_t) arg2, 1840 (const void __user *) arg3, 1841 (size_t) arg4, 1842 (key_serial_t) arg5); 1843 1844 case KEYCTL_NEGATE: 1845 return keyctl_negate_key((key_serial_t) arg2, 1846 (unsigned) arg3, 1847 (key_serial_t) arg4); 1848 1849 case KEYCTL_SET_REQKEY_KEYRING: 1850 return keyctl_set_reqkey_keyring(arg2); 1851 1852 case KEYCTL_SET_TIMEOUT: 1853 return keyctl_set_timeout((key_serial_t) arg2, 1854 (unsigned) arg3); 1855 1856 case KEYCTL_ASSUME_AUTHORITY: 1857 return keyctl_assume_authority((key_serial_t) arg2); 1858 1859 case KEYCTL_GET_SECURITY: 1860 return keyctl_get_security((key_serial_t) arg2, 1861 (char __user *) arg3, 1862 (size_t) arg4); 1863 1864 case KEYCTL_SESSION_TO_PARENT: 1865 return keyctl_session_to_parent(); 1866 1867 case KEYCTL_REJECT: 1868 return keyctl_reject_key((key_serial_t) arg2, 1869 (unsigned) arg3, 1870 (unsigned) arg4, 1871 (key_serial_t) arg5); 1872 1873 case KEYCTL_INSTANTIATE_IOV: 1874 return keyctl_instantiate_key_iov( 1875 (key_serial_t) arg2, 1876 (const struct iovec __user *) arg3, 1877 (unsigned) arg4, 1878 (key_serial_t) arg5); 1879 1880 case KEYCTL_INVALIDATE: 1881 return keyctl_invalidate_key((key_serial_t) arg2); 1882 1883 case KEYCTL_GET_PERSISTENT: 1884 return keyctl_get_persistent((uid_t)arg2, (key_serial_t)arg3); 1885 1886 case KEYCTL_DH_COMPUTE: 1887 return keyctl_dh_compute((struct keyctl_dh_params __user *) arg2, 1888 (char __user *) arg3, (size_t) arg4, 1889 (struct keyctl_kdf_params __user *) arg5); 1890 1891 case KEYCTL_RESTRICT_KEYRING: 1892 return keyctl_restrict_keyring((key_serial_t) arg2, 1893 (const char __user *) arg3, 1894 (const char __user *) arg4); 1895 1896 case KEYCTL_PKEY_QUERY: 1897 if (arg3 != 0) 1898 return -EINVAL; 1899 return keyctl_pkey_query((key_serial_t)arg2, 1900 (const char __user *)arg4, 1901 (struct keyctl_pkey_query __user *)arg5); 1902 1903 case KEYCTL_PKEY_ENCRYPT: 1904 case KEYCTL_PKEY_DECRYPT: 1905 case KEYCTL_PKEY_SIGN: 1906 return keyctl_pkey_e_d_s( 1907 option, 1908 (const struct keyctl_pkey_params __user *)arg2, 1909 (const char __user *)arg3, 1910 (const void __user *)arg4, 1911 (void __user *)arg5); 1912 1913 case KEYCTL_PKEY_VERIFY: 1914 return keyctl_pkey_verify( 1915 (const struct keyctl_pkey_params __user *)arg2, 1916 (const char __user *)arg3, 1917 (const void __user *)arg4, 1918 (const void __user *)arg5); 1919 1920 case KEYCTL_MOVE: 1921 return keyctl_keyring_move((key_serial_t)arg2, 1922 (key_serial_t)arg3, 1923 (key_serial_t)arg4, 1924 (unsigned int)arg5); 1925 1926 case KEYCTL_CAPABILITIES: 1927 return keyctl_capabilities((unsigned char __user *)arg2, (size_t)arg3); 1928 1929 default: 1930 return -EOPNOTSUPP; 1931 } 1932 } 1933