xref: /openbmc/linux/security/keys/key.c (revision fd589a8f)
1 /* Basic authentication token and access key management
2  *
3  * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/poison.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/security.h>
18 #include <linux/workqueue.h>
19 #include <linux/random.h>
20 #include <linux/err.h>
21 #include <linux/user_namespace.h>
22 #include "internal.h"
23 
24 static struct kmem_cache	*key_jar;
25 struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
26 DEFINE_SPINLOCK(key_serial_lock);
27 
28 struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
29 DEFINE_SPINLOCK(key_user_lock);
30 
31 unsigned int key_quota_root_maxkeys = 200;	/* root's key count quota */
32 unsigned int key_quota_root_maxbytes = 20000;	/* root's key space quota */
33 unsigned int key_quota_maxkeys = 200;		/* general key count quota */
34 unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
35 
36 static LIST_HEAD(key_types_list);
37 static DECLARE_RWSEM(key_types_sem);
38 
39 static void key_cleanup(struct work_struct *work);
40 static DECLARE_WORK(key_cleanup_task, key_cleanup);
41 
42 /* we serialise key instantiation and link */
43 DEFINE_MUTEX(key_construction_mutex);
44 
45 /* any key who's type gets unegistered will be re-typed to this */
46 static struct key_type key_type_dead = {
47 	.name		= "dead",
48 };
49 
50 #ifdef KEY_DEBUGGING
51 void __key_check(const struct key *key)
52 {
53 	printk("__key_check: key %p {%08x} should be {%08x}\n",
54 	       key, key->magic, KEY_DEBUG_MAGIC);
55 	BUG();
56 }
57 #endif
58 
59 /*****************************************************************************/
60 /*
61  * get the key quota record for a user, allocating a new record if one doesn't
62  * already exist
63  */
64 struct key_user *key_user_lookup(uid_t uid, struct user_namespace *user_ns)
65 {
66 	struct key_user *candidate = NULL, *user;
67 	struct rb_node *parent = NULL;
68 	struct rb_node **p;
69 
70  try_again:
71 	p = &key_user_tree.rb_node;
72 	spin_lock(&key_user_lock);
73 
74 	/* search the tree for a user record with a matching UID */
75 	while (*p) {
76 		parent = *p;
77 		user = rb_entry(parent, struct key_user, node);
78 
79 		if (uid < user->uid)
80 			p = &(*p)->rb_left;
81 		else if (uid > user->uid)
82 			p = &(*p)->rb_right;
83 		else if (user_ns < user->user_ns)
84 			p = &(*p)->rb_left;
85 		else if (user_ns > user->user_ns)
86 			p = &(*p)->rb_right;
87 		else
88 			goto found;
89 	}
90 
91 	/* if we get here, we failed to find a match in the tree */
92 	if (!candidate) {
93 		/* allocate a candidate user record if we don't already have
94 		 * one */
95 		spin_unlock(&key_user_lock);
96 
97 		user = NULL;
98 		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
99 		if (unlikely(!candidate))
100 			goto out;
101 
102 		/* the allocation may have scheduled, so we need to repeat the
103 		 * search lest someone else added the record whilst we were
104 		 * asleep */
105 		goto try_again;
106 	}
107 
108 	/* if we get here, then the user record still hadn't appeared on the
109 	 * second pass - so we use the candidate record */
110 	atomic_set(&candidate->usage, 1);
111 	atomic_set(&candidate->nkeys, 0);
112 	atomic_set(&candidate->nikeys, 0);
113 	candidate->uid = uid;
114 	candidate->user_ns = get_user_ns(user_ns);
115 	candidate->qnkeys = 0;
116 	candidate->qnbytes = 0;
117 	spin_lock_init(&candidate->lock);
118 	mutex_init(&candidate->cons_lock);
119 
120 	rb_link_node(&candidate->node, parent, p);
121 	rb_insert_color(&candidate->node, &key_user_tree);
122 	spin_unlock(&key_user_lock);
123 	user = candidate;
124 	goto out;
125 
126 	/* okay - we found a user record for this UID */
127  found:
128 	atomic_inc(&user->usage);
129 	spin_unlock(&key_user_lock);
130 	kfree(candidate);
131  out:
132 	return user;
133 
134 } /* end key_user_lookup() */
135 
136 /*****************************************************************************/
137 /*
138  * dispose of a user structure
139  */
140 void key_user_put(struct key_user *user)
141 {
142 	if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
143 		rb_erase(&user->node, &key_user_tree);
144 		spin_unlock(&key_user_lock);
145 		put_user_ns(user->user_ns);
146 
147 		kfree(user);
148 	}
149 
150 } /* end key_user_put() */
151 
152 /*****************************************************************************/
153 /*
154  * assign a key the next unique serial number
155  * - these are assigned randomly to avoid security issues through covert
156  *   channel problems
157  */
158 static inline void key_alloc_serial(struct key *key)
159 {
160 	struct rb_node *parent, **p;
161 	struct key *xkey;
162 
163 	/* propose a random serial number and look for a hole for it in the
164 	 * serial number tree */
165 	do {
166 		get_random_bytes(&key->serial, sizeof(key->serial));
167 
168 		key->serial >>= 1; /* negative numbers are not permitted */
169 	} while (key->serial < 3);
170 
171 	spin_lock(&key_serial_lock);
172 
173 attempt_insertion:
174 	parent = NULL;
175 	p = &key_serial_tree.rb_node;
176 
177 	while (*p) {
178 		parent = *p;
179 		xkey = rb_entry(parent, struct key, serial_node);
180 
181 		if (key->serial < xkey->serial)
182 			p = &(*p)->rb_left;
183 		else if (key->serial > xkey->serial)
184 			p = &(*p)->rb_right;
185 		else
186 			goto serial_exists;
187 	}
188 
189 	/* we've found a suitable hole - arrange for this key to occupy it */
190 	rb_link_node(&key->serial_node, parent, p);
191 	rb_insert_color(&key->serial_node, &key_serial_tree);
192 
193 	spin_unlock(&key_serial_lock);
194 	return;
195 
196 	/* we found a key with the proposed serial number - walk the tree from
197 	 * that point looking for the next unused serial number */
198 serial_exists:
199 	for (;;) {
200 		key->serial++;
201 		if (key->serial < 3) {
202 			key->serial = 3;
203 			goto attempt_insertion;
204 		}
205 
206 		parent = rb_next(parent);
207 		if (!parent)
208 			goto attempt_insertion;
209 
210 		xkey = rb_entry(parent, struct key, serial_node);
211 		if (key->serial < xkey->serial)
212 			goto attempt_insertion;
213 	}
214 
215 } /* end key_alloc_serial() */
216 
217 /*****************************************************************************/
218 /*
219  * allocate a key of the specified type
220  * - update the user's quota to reflect the existence of the key
221  * - called from a key-type operation with key_types_sem read-locked by
222  *   key_create_or_update()
223  *   - this prevents unregistration of the key type
224  * - upon return the key is as yet uninstantiated; the caller needs to either
225  *   instantiate the key or discard it before returning
226  */
227 struct key *key_alloc(struct key_type *type, const char *desc,
228 		      uid_t uid, gid_t gid, const struct cred *cred,
229 		      key_perm_t perm, unsigned long flags)
230 {
231 	struct key_user *user = NULL;
232 	struct key *key;
233 	size_t desclen, quotalen;
234 	int ret;
235 
236 	key = ERR_PTR(-EINVAL);
237 	if (!desc || !*desc)
238 		goto error;
239 
240 	desclen = strlen(desc) + 1;
241 	quotalen = desclen + type->def_datalen;
242 
243 	/* get hold of the key tracking for this user */
244 	user = key_user_lookup(uid, cred->user->user_ns);
245 	if (!user)
246 		goto no_memory_1;
247 
248 	/* check that the user's quota permits allocation of another key and
249 	 * its description */
250 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
251 		unsigned maxkeys = (uid == 0) ?
252 			key_quota_root_maxkeys : key_quota_maxkeys;
253 		unsigned maxbytes = (uid == 0) ?
254 			key_quota_root_maxbytes : key_quota_maxbytes;
255 
256 		spin_lock(&user->lock);
257 		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
258 			if (user->qnkeys + 1 >= maxkeys ||
259 			    user->qnbytes + quotalen >= maxbytes ||
260 			    user->qnbytes + quotalen < user->qnbytes)
261 				goto no_quota;
262 		}
263 
264 		user->qnkeys++;
265 		user->qnbytes += quotalen;
266 		spin_unlock(&user->lock);
267 	}
268 
269 	/* allocate and initialise the key and its description */
270 	key = kmem_cache_alloc(key_jar, GFP_KERNEL);
271 	if (!key)
272 		goto no_memory_2;
273 
274 	if (desc) {
275 		key->description = kmemdup(desc, desclen, GFP_KERNEL);
276 		if (!key->description)
277 			goto no_memory_3;
278 	}
279 
280 	atomic_set(&key->usage, 1);
281 	init_rwsem(&key->sem);
282 	key->type = type;
283 	key->user = user;
284 	key->quotalen = quotalen;
285 	key->datalen = type->def_datalen;
286 	key->uid = uid;
287 	key->gid = gid;
288 	key->perm = perm;
289 	key->flags = 0;
290 	key->expiry = 0;
291 	key->payload.data = NULL;
292 	key->security = NULL;
293 
294 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
295 		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
296 
297 	memset(&key->type_data, 0, sizeof(key->type_data));
298 
299 #ifdef KEY_DEBUGGING
300 	key->magic = KEY_DEBUG_MAGIC;
301 #endif
302 
303 	/* let the security module know about the key */
304 	ret = security_key_alloc(key, cred, flags);
305 	if (ret < 0)
306 		goto security_error;
307 
308 	/* publish the key by giving it a serial number */
309 	atomic_inc(&user->nkeys);
310 	key_alloc_serial(key);
311 
312 error:
313 	return key;
314 
315 security_error:
316 	kfree(key->description);
317 	kmem_cache_free(key_jar, key);
318 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
319 		spin_lock(&user->lock);
320 		user->qnkeys--;
321 		user->qnbytes -= quotalen;
322 		spin_unlock(&user->lock);
323 	}
324 	key_user_put(user);
325 	key = ERR_PTR(ret);
326 	goto error;
327 
328 no_memory_3:
329 	kmem_cache_free(key_jar, key);
330 no_memory_2:
331 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
332 		spin_lock(&user->lock);
333 		user->qnkeys--;
334 		user->qnbytes -= quotalen;
335 		spin_unlock(&user->lock);
336 	}
337 	key_user_put(user);
338 no_memory_1:
339 	key = ERR_PTR(-ENOMEM);
340 	goto error;
341 
342 no_quota:
343 	spin_unlock(&user->lock);
344 	key_user_put(user);
345 	key = ERR_PTR(-EDQUOT);
346 	goto error;
347 
348 } /* end key_alloc() */
349 
350 EXPORT_SYMBOL(key_alloc);
351 
352 /*****************************************************************************/
353 /*
354  * reserve an amount of quota for the key's payload
355  */
356 int key_payload_reserve(struct key *key, size_t datalen)
357 {
358 	int delta = (int) datalen - key->datalen;
359 	int ret = 0;
360 
361 	key_check(key);
362 
363 	/* contemplate the quota adjustment */
364 	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
365 		unsigned maxbytes = (key->user->uid == 0) ?
366 			key_quota_root_maxbytes : key_quota_maxbytes;
367 
368 		spin_lock(&key->user->lock);
369 
370 		if (delta > 0 &&
371 		    (key->user->qnbytes + delta >= maxbytes ||
372 		     key->user->qnbytes + delta < key->user->qnbytes)) {
373 			ret = -EDQUOT;
374 		}
375 		else {
376 			key->user->qnbytes += delta;
377 			key->quotalen += delta;
378 		}
379 		spin_unlock(&key->user->lock);
380 	}
381 
382 	/* change the recorded data length if that didn't generate an error */
383 	if (ret == 0)
384 		key->datalen = datalen;
385 
386 	return ret;
387 
388 } /* end key_payload_reserve() */
389 
390 EXPORT_SYMBOL(key_payload_reserve);
391 
392 /*****************************************************************************/
393 /*
394  * instantiate a key and link it into the target keyring atomically
395  * - called with the target keyring's semaphore writelocked
396  */
397 static int __key_instantiate_and_link(struct key *key,
398 				      const void *data,
399 				      size_t datalen,
400 				      struct key *keyring,
401 				      struct key *authkey)
402 {
403 	int ret, awaken;
404 
405 	key_check(key);
406 	key_check(keyring);
407 
408 	awaken = 0;
409 	ret = -EBUSY;
410 
411 	mutex_lock(&key_construction_mutex);
412 
413 	/* can't instantiate twice */
414 	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
415 		/* instantiate the key */
416 		ret = key->type->instantiate(key, data, datalen);
417 
418 		if (ret == 0) {
419 			/* mark the key as being instantiated */
420 			atomic_inc(&key->user->nikeys);
421 			set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
422 
423 			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
424 				awaken = 1;
425 
426 			/* and link it into the destination keyring */
427 			if (keyring)
428 				ret = __key_link(keyring, key);
429 
430 			/* disable the authorisation key */
431 			if (authkey)
432 				key_revoke(authkey);
433 		}
434 	}
435 
436 	mutex_unlock(&key_construction_mutex);
437 
438 	/* wake up anyone waiting for a key to be constructed */
439 	if (awaken)
440 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
441 
442 	return ret;
443 
444 } /* end __key_instantiate_and_link() */
445 
446 /*****************************************************************************/
447 /*
448  * instantiate a key and link it into the target keyring atomically
449  */
450 int key_instantiate_and_link(struct key *key,
451 			     const void *data,
452 			     size_t datalen,
453 			     struct key *keyring,
454 			     struct key *authkey)
455 {
456 	int ret;
457 
458 	if (keyring)
459 		down_write(&keyring->sem);
460 
461 	ret = __key_instantiate_and_link(key, data, datalen, keyring, authkey);
462 
463 	if (keyring)
464 		up_write(&keyring->sem);
465 
466 	return ret;
467 
468 } /* end key_instantiate_and_link() */
469 
470 EXPORT_SYMBOL(key_instantiate_and_link);
471 
472 /*****************************************************************************/
473 /*
474  * negatively instantiate a key and link it into the target keyring atomically
475  */
476 int key_negate_and_link(struct key *key,
477 			unsigned timeout,
478 			struct key *keyring,
479 			struct key *authkey)
480 {
481 	struct timespec now;
482 	int ret, awaken;
483 
484 	key_check(key);
485 	key_check(keyring);
486 
487 	awaken = 0;
488 	ret = -EBUSY;
489 
490 	if (keyring)
491 		down_write(&keyring->sem);
492 
493 	mutex_lock(&key_construction_mutex);
494 
495 	/* can't instantiate twice */
496 	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
497 		/* mark the key as being negatively instantiated */
498 		atomic_inc(&key->user->nikeys);
499 		set_bit(KEY_FLAG_NEGATIVE, &key->flags);
500 		set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
501 		now = current_kernel_time();
502 		key->expiry = now.tv_sec + timeout;
503 		key_schedule_gc(key->expiry + key_gc_delay);
504 
505 		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
506 			awaken = 1;
507 
508 		ret = 0;
509 
510 		/* and link it into the destination keyring */
511 		if (keyring)
512 			ret = __key_link(keyring, key);
513 
514 		/* disable the authorisation key */
515 		if (authkey)
516 			key_revoke(authkey);
517 	}
518 
519 	mutex_unlock(&key_construction_mutex);
520 
521 	if (keyring)
522 		up_write(&keyring->sem);
523 
524 	/* wake up anyone waiting for a key to be constructed */
525 	if (awaken)
526 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
527 
528 	return ret;
529 
530 } /* end key_negate_and_link() */
531 
532 EXPORT_SYMBOL(key_negate_and_link);
533 
534 /*****************************************************************************/
535 /*
536  * do cleaning up in process context so that we don't have to disable
537  * interrupts all over the place
538  */
539 static void key_cleanup(struct work_struct *work)
540 {
541 	struct rb_node *_n;
542 	struct key *key;
543 
544  go_again:
545 	/* look for a dead key in the tree */
546 	spin_lock(&key_serial_lock);
547 
548 	for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
549 		key = rb_entry(_n, struct key, serial_node);
550 
551 		if (atomic_read(&key->usage) == 0)
552 			goto found_dead_key;
553 	}
554 
555 	spin_unlock(&key_serial_lock);
556 	return;
557 
558  found_dead_key:
559 	/* we found a dead key - once we've removed it from the tree, we can
560 	 * drop the lock */
561 	rb_erase(&key->serial_node, &key_serial_tree);
562 	spin_unlock(&key_serial_lock);
563 
564 	key_check(key);
565 
566 	security_key_free(key);
567 
568 	/* deal with the user's key tracking and quota */
569 	if (test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
570 		spin_lock(&key->user->lock);
571 		key->user->qnkeys--;
572 		key->user->qnbytes -= key->quotalen;
573 		spin_unlock(&key->user->lock);
574 	}
575 
576 	atomic_dec(&key->user->nkeys);
577 	if (test_bit(KEY_FLAG_INSTANTIATED, &key->flags))
578 		atomic_dec(&key->user->nikeys);
579 
580 	key_user_put(key->user);
581 
582 	/* now throw away the key memory */
583 	if (key->type->destroy)
584 		key->type->destroy(key);
585 
586 	kfree(key->description);
587 
588 #ifdef KEY_DEBUGGING
589 	key->magic = KEY_DEBUG_MAGIC_X;
590 #endif
591 	kmem_cache_free(key_jar, key);
592 
593 	/* there may, of course, be more than one key to destroy */
594 	goto go_again;
595 
596 } /* end key_cleanup() */
597 
598 /*****************************************************************************/
599 /*
600  * dispose of a reference to a key
601  * - when all the references are gone, we schedule the cleanup task to come and
602  *   pull it out of the tree in definite process context
603  */
604 void key_put(struct key *key)
605 {
606 	if (key) {
607 		key_check(key);
608 
609 		if (atomic_dec_and_test(&key->usage))
610 			schedule_work(&key_cleanup_task);
611 	}
612 
613 } /* end key_put() */
614 
615 EXPORT_SYMBOL(key_put);
616 
617 /*****************************************************************************/
618 /*
619  * find a key by its serial number
620  */
621 struct key *key_lookup(key_serial_t id)
622 {
623 	struct rb_node *n;
624 	struct key *key;
625 
626 	spin_lock(&key_serial_lock);
627 
628 	/* search the tree for the specified key */
629 	n = key_serial_tree.rb_node;
630 	while (n) {
631 		key = rb_entry(n, struct key, serial_node);
632 
633 		if (id < key->serial)
634 			n = n->rb_left;
635 		else if (id > key->serial)
636 			n = n->rb_right;
637 		else
638 			goto found;
639 	}
640 
641  not_found:
642 	key = ERR_PTR(-ENOKEY);
643 	goto error;
644 
645  found:
646 	/* pretend it doesn't exist if it is awaiting deletion */
647 	if (atomic_read(&key->usage) == 0)
648 		goto not_found;
649 
650 	/* this races with key_put(), but that doesn't matter since key_put()
651 	 * doesn't actually change the key
652 	 */
653 	atomic_inc(&key->usage);
654 
655  error:
656 	spin_unlock(&key_serial_lock);
657 	return key;
658 
659 } /* end key_lookup() */
660 
661 /*****************************************************************************/
662 /*
663  * find and lock the specified key type against removal
664  * - we return with the sem readlocked
665  */
666 struct key_type *key_type_lookup(const char *type)
667 {
668 	struct key_type *ktype;
669 
670 	down_read(&key_types_sem);
671 
672 	/* look up the key type to see if it's one of the registered kernel
673 	 * types */
674 	list_for_each_entry(ktype, &key_types_list, link) {
675 		if (strcmp(ktype->name, type) == 0)
676 			goto found_kernel_type;
677 	}
678 
679 	up_read(&key_types_sem);
680 	ktype = ERR_PTR(-ENOKEY);
681 
682  found_kernel_type:
683 	return ktype;
684 
685 } /* end key_type_lookup() */
686 
687 /*****************************************************************************/
688 /*
689  * unlock a key type
690  */
691 void key_type_put(struct key_type *ktype)
692 {
693 	up_read(&key_types_sem);
694 
695 } /* end key_type_put() */
696 
697 /*****************************************************************************/
698 /*
699  * attempt to update an existing key
700  * - the key has an incremented refcount
701  * - we need to put the key if we get an error
702  */
703 static inline key_ref_t __key_update(key_ref_t key_ref,
704 				     const void *payload, size_t plen)
705 {
706 	struct key *key = key_ref_to_ptr(key_ref);
707 	int ret;
708 
709 	/* need write permission on the key to update it */
710 	ret = key_permission(key_ref, KEY_WRITE);
711 	if (ret < 0)
712 		goto error;
713 
714 	ret = -EEXIST;
715 	if (!key->type->update)
716 		goto error;
717 
718 	down_write(&key->sem);
719 
720 	ret = key->type->update(key, payload, plen);
721 	if (ret == 0)
722 		/* updating a negative key instantiates it */
723 		clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
724 
725 	up_write(&key->sem);
726 
727 	if (ret < 0)
728 		goto error;
729 out:
730 	return key_ref;
731 
732 error:
733 	key_put(key);
734 	key_ref = ERR_PTR(ret);
735 	goto out;
736 
737 } /* end __key_update() */
738 
739 /*****************************************************************************/
740 /*
741  * search the specified keyring for a key of the same description; if one is
742  * found, update it, otherwise add a new one
743  */
744 key_ref_t key_create_or_update(key_ref_t keyring_ref,
745 			       const char *type,
746 			       const char *description,
747 			       const void *payload,
748 			       size_t plen,
749 			       key_perm_t perm,
750 			       unsigned long flags)
751 {
752 	const struct cred *cred = current_cred();
753 	struct key_type *ktype;
754 	struct key *keyring, *key = NULL;
755 	key_ref_t key_ref;
756 	int ret;
757 
758 	/* look up the key type to see if it's one of the registered kernel
759 	 * types */
760 	ktype = key_type_lookup(type);
761 	if (IS_ERR(ktype)) {
762 		key_ref = ERR_PTR(-ENODEV);
763 		goto error;
764 	}
765 
766 	key_ref = ERR_PTR(-EINVAL);
767 	if (!ktype->match || !ktype->instantiate)
768 		goto error_2;
769 
770 	keyring = key_ref_to_ptr(keyring_ref);
771 
772 	key_check(keyring);
773 
774 	key_ref = ERR_PTR(-ENOTDIR);
775 	if (keyring->type != &key_type_keyring)
776 		goto error_2;
777 
778 	down_write(&keyring->sem);
779 
780 	/* if we're going to allocate a new key, we're going to have
781 	 * to modify the keyring */
782 	ret = key_permission(keyring_ref, KEY_WRITE);
783 	if (ret < 0) {
784 		key_ref = ERR_PTR(ret);
785 		goto error_3;
786 	}
787 
788 	/* if it's possible to update this type of key, search for an existing
789 	 * key of the same type and description in the destination keyring and
790 	 * update that instead if possible
791 	 */
792 	if (ktype->update) {
793 		key_ref = __keyring_search_one(keyring_ref, ktype, description,
794 					       0);
795 		if (!IS_ERR(key_ref))
796 			goto found_matching_key;
797 	}
798 
799 	/* if the client doesn't provide, decide on the permissions we want */
800 	if (perm == KEY_PERM_UNDEF) {
801 		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
802 		perm |= KEY_USR_VIEW | KEY_USR_SEARCH | KEY_USR_LINK | KEY_USR_SETATTR;
803 
804 		if (ktype->read)
805 			perm |= KEY_POS_READ | KEY_USR_READ;
806 
807 		if (ktype == &key_type_keyring || ktype->update)
808 			perm |= KEY_USR_WRITE;
809 	}
810 
811 	/* allocate a new key */
812 	key = key_alloc(ktype, description, cred->fsuid, cred->fsgid, cred,
813 			perm, flags);
814 	if (IS_ERR(key)) {
815 		key_ref = ERR_CAST(key);
816 		goto error_3;
817 	}
818 
819 	/* instantiate it and link it into the target keyring */
820 	ret = __key_instantiate_and_link(key, payload, plen, keyring, NULL);
821 	if (ret < 0) {
822 		key_put(key);
823 		key_ref = ERR_PTR(ret);
824 		goto error_3;
825 	}
826 
827 	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
828 
829  error_3:
830 	up_write(&keyring->sem);
831  error_2:
832 	key_type_put(ktype);
833  error:
834 	return key_ref;
835 
836  found_matching_key:
837 	/* we found a matching key, so we're going to try to update it
838 	 * - we can drop the locks first as we have the key pinned
839 	 */
840 	up_write(&keyring->sem);
841 	key_type_put(ktype);
842 
843 	key_ref = __key_update(key_ref, payload, plen);
844 	goto error;
845 
846 } /* end key_create_or_update() */
847 
848 EXPORT_SYMBOL(key_create_or_update);
849 
850 /*****************************************************************************/
851 /*
852  * update a key
853  */
854 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
855 {
856 	struct key *key = key_ref_to_ptr(key_ref);
857 	int ret;
858 
859 	key_check(key);
860 
861 	/* the key must be writable */
862 	ret = key_permission(key_ref, KEY_WRITE);
863 	if (ret < 0)
864 		goto error;
865 
866 	/* attempt to update it if supported */
867 	ret = -EOPNOTSUPP;
868 	if (key->type->update) {
869 		down_write(&key->sem);
870 
871 		ret = key->type->update(key, payload, plen);
872 		if (ret == 0)
873 			/* updating a negative key instantiates it */
874 			clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
875 
876 		up_write(&key->sem);
877 	}
878 
879  error:
880 	return ret;
881 
882 } /* end key_update() */
883 
884 EXPORT_SYMBOL(key_update);
885 
886 /*****************************************************************************/
887 /*
888  * revoke a key
889  */
890 void key_revoke(struct key *key)
891 {
892 	struct timespec now;
893 	time_t time;
894 
895 	key_check(key);
896 
897 	/* make sure no one's trying to change or use the key when we mark it
898 	 * - we tell lockdep that we might nest because we might be revoking an
899 	 *   authorisation key whilst holding the sem on a key we've just
900 	 *   instantiated
901 	 */
902 	down_write_nested(&key->sem, 1);
903 	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
904 	    key->type->revoke)
905 		key->type->revoke(key);
906 
907 	/* set the death time to no more than the expiry time */
908 	now = current_kernel_time();
909 	time = now.tv_sec;
910 	if (key->revoked_at == 0 || key->revoked_at > time) {
911 		key->revoked_at = time;
912 		key_schedule_gc(key->revoked_at + key_gc_delay);
913 	}
914 
915 	up_write(&key->sem);
916 
917 } /* end key_revoke() */
918 
919 EXPORT_SYMBOL(key_revoke);
920 
921 /*****************************************************************************/
922 /*
923  * register a type of key
924  */
925 int register_key_type(struct key_type *ktype)
926 {
927 	struct key_type *p;
928 	int ret;
929 
930 	ret = -EEXIST;
931 	down_write(&key_types_sem);
932 
933 	/* disallow key types with the same name */
934 	list_for_each_entry(p, &key_types_list, link) {
935 		if (strcmp(p->name, ktype->name) == 0)
936 			goto out;
937 	}
938 
939 	/* store the type */
940 	list_add(&ktype->link, &key_types_list);
941 	ret = 0;
942 
943  out:
944 	up_write(&key_types_sem);
945 	return ret;
946 
947 } /* end register_key_type() */
948 
949 EXPORT_SYMBOL(register_key_type);
950 
951 /*****************************************************************************/
952 /*
953  * unregister a type of key
954  */
955 void unregister_key_type(struct key_type *ktype)
956 {
957 	struct rb_node *_n;
958 	struct key *key;
959 
960 	down_write(&key_types_sem);
961 
962 	/* withdraw the key type */
963 	list_del_init(&ktype->link);
964 
965 	/* mark all the keys of this type dead */
966 	spin_lock(&key_serial_lock);
967 
968 	for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
969 		key = rb_entry(_n, struct key, serial_node);
970 
971 		if (key->type == ktype) {
972 			key->type = &key_type_dead;
973 			set_bit(KEY_FLAG_DEAD, &key->flags);
974 		}
975 	}
976 
977 	spin_unlock(&key_serial_lock);
978 
979 	/* make sure everyone revalidates their keys */
980 	synchronize_rcu();
981 
982 	/* we should now be able to destroy the payloads of all the keys of
983 	 * this type with impunity */
984 	spin_lock(&key_serial_lock);
985 
986 	for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
987 		key = rb_entry(_n, struct key, serial_node);
988 
989 		if (key->type == ktype) {
990 			if (ktype->destroy)
991 				ktype->destroy(key);
992 			memset(&key->payload, KEY_DESTROY, sizeof(key->payload));
993 		}
994 	}
995 
996 	spin_unlock(&key_serial_lock);
997 	up_write(&key_types_sem);
998 
999 	key_schedule_gc(0);
1000 
1001 } /* end unregister_key_type() */
1002 
1003 EXPORT_SYMBOL(unregister_key_type);
1004 
1005 /*****************************************************************************/
1006 /*
1007  * initialise the key management stuff
1008  */
1009 void __init key_init(void)
1010 {
1011 	/* allocate a slab in which we can store keys */
1012 	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1013 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1014 
1015 	/* add the special key types */
1016 	list_add_tail(&key_type_keyring.link, &key_types_list);
1017 	list_add_tail(&key_type_dead.link, &key_types_list);
1018 	list_add_tail(&key_type_user.link, &key_types_list);
1019 
1020 	/* record the root user tracking */
1021 	rb_link_node(&root_key_user.node,
1022 		     NULL,
1023 		     &key_user_tree.rb_node);
1024 
1025 	rb_insert_color(&root_key_user.node,
1026 			&key_user_tree);
1027 
1028 } /* end key_init() */
1029