1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* Basic authentication token and access key management 3 * 4 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 8 #include <linux/export.h> 9 #include <linux/init.h> 10 #include <linux/poison.h> 11 #include <linux/sched.h> 12 #include <linux/slab.h> 13 #include <linux/security.h> 14 #include <linux/workqueue.h> 15 #include <linux/random.h> 16 #include <linux/ima.h> 17 #include <linux/err.h> 18 #include "internal.h" 19 20 struct kmem_cache *key_jar; 21 struct rb_root key_serial_tree; /* tree of keys indexed by serial */ 22 DEFINE_SPINLOCK(key_serial_lock); 23 24 struct rb_root key_user_tree; /* tree of quota records indexed by UID */ 25 DEFINE_SPINLOCK(key_user_lock); 26 27 unsigned int key_quota_root_maxkeys = 1000000; /* root's key count quota */ 28 unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */ 29 unsigned int key_quota_maxkeys = 200; /* general key count quota */ 30 unsigned int key_quota_maxbytes = 20000; /* general key space quota */ 31 32 static LIST_HEAD(key_types_list); 33 static DECLARE_RWSEM(key_types_sem); 34 35 /* We serialise key instantiation and link */ 36 DEFINE_MUTEX(key_construction_mutex); 37 38 #ifdef KEY_DEBUGGING 39 void __key_check(const struct key *key) 40 { 41 printk("__key_check: key %p {%08x} should be {%08x}\n", 42 key, key->magic, KEY_DEBUG_MAGIC); 43 BUG(); 44 } 45 #endif 46 47 /* 48 * Get the key quota record for a user, allocating a new record if one doesn't 49 * already exist. 50 */ 51 struct key_user *key_user_lookup(kuid_t uid) 52 { 53 struct key_user *candidate = NULL, *user; 54 struct rb_node *parent, **p; 55 56 try_again: 57 parent = NULL; 58 p = &key_user_tree.rb_node; 59 spin_lock(&key_user_lock); 60 61 /* search the tree for a user record with a matching UID */ 62 while (*p) { 63 parent = *p; 64 user = rb_entry(parent, struct key_user, node); 65 66 if (uid_lt(uid, user->uid)) 67 p = &(*p)->rb_left; 68 else if (uid_gt(uid, user->uid)) 69 p = &(*p)->rb_right; 70 else 71 goto found; 72 } 73 74 /* if we get here, we failed to find a match in the tree */ 75 if (!candidate) { 76 /* allocate a candidate user record if we don't already have 77 * one */ 78 spin_unlock(&key_user_lock); 79 80 user = NULL; 81 candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL); 82 if (unlikely(!candidate)) 83 goto out; 84 85 /* the allocation may have scheduled, so we need to repeat the 86 * search lest someone else added the record whilst we were 87 * asleep */ 88 goto try_again; 89 } 90 91 /* if we get here, then the user record still hadn't appeared on the 92 * second pass - so we use the candidate record */ 93 refcount_set(&candidate->usage, 1); 94 atomic_set(&candidate->nkeys, 0); 95 atomic_set(&candidate->nikeys, 0); 96 candidate->uid = uid; 97 candidate->qnkeys = 0; 98 candidate->qnbytes = 0; 99 spin_lock_init(&candidate->lock); 100 mutex_init(&candidate->cons_lock); 101 102 rb_link_node(&candidate->node, parent, p); 103 rb_insert_color(&candidate->node, &key_user_tree); 104 spin_unlock(&key_user_lock); 105 user = candidate; 106 goto out; 107 108 /* okay - we found a user record for this UID */ 109 found: 110 refcount_inc(&user->usage); 111 spin_unlock(&key_user_lock); 112 kfree(candidate); 113 out: 114 return user; 115 } 116 117 /* 118 * Dispose of a user structure 119 */ 120 void key_user_put(struct key_user *user) 121 { 122 if (refcount_dec_and_lock(&user->usage, &key_user_lock)) { 123 rb_erase(&user->node, &key_user_tree); 124 spin_unlock(&key_user_lock); 125 126 kfree(user); 127 } 128 } 129 130 /* 131 * Allocate a serial number for a key. These are assigned randomly to avoid 132 * security issues through covert channel problems. 133 */ 134 static inline void key_alloc_serial(struct key *key) 135 { 136 struct rb_node *parent, **p; 137 struct key *xkey; 138 139 /* propose a random serial number and look for a hole for it in the 140 * serial number tree */ 141 do { 142 get_random_bytes(&key->serial, sizeof(key->serial)); 143 144 key->serial >>= 1; /* negative numbers are not permitted */ 145 } while (key->serial < 3); 146 147 spin_lock(&key_serial_lock); 148 149 attempt_insertion: 150 parent = NULL; 151 p = &key_serial_tree.rb_node; 152 153 while (*p) { 154 parent = *p; 155 xkey = rb_entry(parent, struct key, serial_node); 156 157 if (key->serial < xkey->serial) 158 p = &(*p)->rb_left; 159 else if (key->serial > xkey->serial) 160 p = &(*p)->rb_right; 161 else 162 goto serial_exists; 163 } 164 165 /* we've found a suitable hole - arrange for this key to occupy it */ 166 rb_link_node(&key->serial_node, parent, p); 167 rb_insert_color(&key->serial_node, &key_serial_tree); 168 169 spin_unlock(&key_serial_lock); 170 return; 171 172 /* we found a key with the proposed serial number - walk the tree from 173 * that point looking for the next unused serial number */ 174 serial_exists: 175 for (;;) { 176 key->serial++; 177 if (key->serial < 3) { 178 key->serial = 3; 179 goto attempt_insertion; 180 } 181 182 parent = rb_next(parent); 183 if (!parent) 184 goto attempt_insertion; 185 186 xkey = rb_entry(parent, struct key, serial_node); 187 if (key->serial < xkey->serial) 188 goto attempt_insertion; 189 } 190 } 191 192 /** 193 * key_alloc - Allocate a key of the specified type. 194 * @type: The type of key to allocate. 195 * @desc: The key description to allow the key to be searched out. 196 * @uid: The owner of the new key. 197 * @gid: The group ID for the new key's group permissions. 198 * @cred: The credentials specifying UID namespace. 199 * @perm: The permissions mask of the new key. 200 * @flags: Flags specifying quota properties. 201 * @restrict_link: Optional link restriction for new keyrings. 202 * 203 * Allocate a key of the specified type with the attributes given. The key is 204 * returned in an uninstantiated state and the caller needs to instantiate the 205 * key before returning. 206 * 207 * The restrict_link structure (if not NULL) will be freed when the 208 * keyring is destroyed, so it must be dynamically allocated. 209 * 210 * The user's key count quota is updated to reflect the creation of the key and 211 * the user's key data quota has the default for the key type reserved. The 212 * instantiation function should amend this as necessary. If insufficient 213 * quota is available, -EDQUOT will be returned. 214 * 215 * The LSM security modules can prevent a key being created, in which case 216 * -EACCES will be returned. 217 * 218 * Returns a pointer to the new key if successful and an error code otherwise. 219 * 220 * Note that the caller needs to ensure the key type isn't uninstantiated. 221 * Internally this can be done by locking key_types_sem. Externally, this can 222 * be done by either never unregistering the key type, or making sure 223 * key_alloc() calls don't race with module unloading. 224 */ 225 struct key *key_alloc(struct key_type *type, const char *desc, 226 kuid_t uid, kgid_t gid, const struct cred *cred, 227 key_perm_t perm, unsigned long flags, 228 struct key_restriction *restrict_link) 229 { 230 struct key_user *user = NULL; 231 struct key *key; 232 size_t desclen, quotalen; 233 int ret; 234 235 key = ERR_PTR(-EINVAL); 236 if (!desc || !*desc) 237 goto error; 238 239 if (type->vet_description) { 240 ret = type->vet_description(desc); 241 if (ret < 0) { 242 key = ERR_PTR(ret); 243 goto error; 244 } 245 } 246 247 desclen = strlen(desc); 248 quotalen = desclen + 1 + type->def_datalen; 249 250 /* get hold of the key tracking for this user */ 251 user = key_user_lookup(uid); 252 if (!user) 253 goto no_memory_1; 254 255 /* check that the user's quota permits allocation of another key and 256 * its description */ 257 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { 258 unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ? 259 key_quota_root_maxkeys : key_quota_maxkeys; 260 unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ? 261 key_quota_root_maxbytes : key_quota_maxbytes; 262 263 spin_lock(&user->lock); 264 if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) { 265 if (user->qnkeys + 1 > maxkeys || 266 user->qnbytes + quotalen > maxbytes || 267 user->qnbytes + quotalen < user->qnbytes) 268 goto no_quota; 269 } 270 271 user->qnkeys++; 272 user->qnbytes += quotalen; 273 spin_unlock(&user->lock); 274 } 275 276 /* allocate and initialise the key and its description */ 277 key = kmem_cache_zalloc(key_jar, GFP_KERNEL); 278 if (!key) 279 goto no_memory_2; 280 281 key->index_key.desc_len = desclen; 282 key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL); 283 if (!key->index_key.description) 284 goto no_memory_3; 285 key->index_key.type = type; 286 key_set_index_key(&key->index_key); 287 288 refcount_set(&key->usage, 1); 289 init_rwsem(&key->sem); 290 lockdep_set_class(&key->sem, &type->lock_class); 291 key->user = user; 292 key->quotalen = quotalen; 293 key->datalen = type->def_datalen; 294 key->uid = uid; 295 key->gid = gid; 296 key->perm = perm; 297 key->restrict_link = restrict_link; 298 key->last_used_at = ktime_get_real_seconds(); 299 300 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) 301 key->flags |= 1 << KEY_FLAG_IN_QUOTA; 302 if (flags & KEY_ALLOC_BUILT_IN) 303 key->flags |= 1 << KEY_FLAG_BUILTIN; 304 if (flags & KEY_ALLOC_UID_KEYRING) 305 key->flags |= 1 << KEY_FLAG_UID_KEYRING; 306 307 #ifdef KEY_DEBUGGING 308 key->magic = KEY_DEBUG_MAGIC; 309 #endif 310 311 /* let the security module know about the key */ 312 ret = security_key_alloc(key, cred, flags); 313 if (ret < 0) 314 goto security_error; 315 316 /* publish the key by giving it a serial number */ 317 refcount_inc(&key->domain_tag->usage); 318 atomic_inc(&user->nkeys); 319 key_alloc_serial(key); 320 321 error: 322 return key; 323 324 security_error: 325 kfree(key->description); 326 kmem_cache_free(key_jar, key); 327 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { 328 spin_lock(&user->lock); 329 user->qnkeys--; 330 user->qnbytes -= quotalen; 331 spin_unlock(&user->lock); 332 } 333 key_user_put(user); 334 key = ERR_PTR(ret); 335 goto error; 336 337 no_memory_3: 338 kmem_cache_free(key_jar, key); 339 no_memory_2: 340 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { 341 spin_lock(&user->lock); 342 user->qnkeys--; 343 user->qnbytes -= quotalen; 344 spin_unlock(&user->lock); 345 } 346 key_user_put(user); 347 no_memory_1: 348 key = ERR_PTR(-ENOMEM); 349 goto error; 350 351 no_quota: 352 spin_unlock(&user->lock); 353 key_user_put(user); 354 key = ERR_PTR(-EDQUOT); 355 goto error; 356 } 357 EXPORT_SYMBOL(key_alloc); 358 359 /** 360 * key_payload_reserve - Adjust data quota reservation for the key's payload 361 * @key: The key to make the reservation for. 362 * @datalen: The amount of data payload the caller now wants. 363 * 364 * Adjust the amount of the owning user's key data quota that a key reserves. 365 * If the amount is increased, then -EDQUOT may be returned if there isn't 366 * enough free quota available. 367 * 368 * If successful, 0 is returned. 369 */ 370 int key_payload_reserve(struct key *key, size_t datalen) 371 { 372 int delta = (int)datalen - key->datalen; 373 int ret = 0; 374 375 key_check(key); 376 377 /* contemplate the quota adjustment */ 378 if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) { 379 unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ? 380 key_quota_root_maxbytes : key_quota_maxbytes; 381 382 spin_lock(&key->user->lock); 383 384 if (delta > 0 && 385 (key->user->qnbytes + delta >= maxbytes || 386 key->user->qnbytes + delta < key->user->qnbytes)) { 387 ret = -EDQUOT; 388 } 389 else { 390 key->user->qnbytes += delta; 391 key->quotalen += delta; 392 } 393 spin_unlock(&key->user->lock); 394 } 395 396 /* change the recorded data length if that didn't generate an error */ 397 if (ret == 0) 398 key->datalen = datalen; 399 400 return ret; 401 } 402 EXPORT_SYMBOL(key_payload_reserve); 403 404 /* 405 * Change the key state to being instantiated. 406 */ 407 static void mark_key_instantiated(struct key *key, int reject_error) 408 { 409 /* Commit the payload before setting the state; barrier versus 410 * key_read_state(). 411 */ 412 smp_store_release(&key->state, 413 (reject_error < 0) ? reject_error : KEY_IS_POSITIVE); 414 } 415 416 /* 417 * Instantiate a key and link it into the target keyring atomically. Must be 418 * called with the target keyring's semaphore writelocked. The target key's 419 * semaphore need not be locked as instantiation is serialised by 420 * key_construction_mutex. 421 */ 422 static int __key_instantiate_and_link(struct key *key, 423 struct key_preparsed_payload *prep, 424 struct key *keyring, 425 struct key *authkey, 426 struct assoc_array_edit **_edit) 427 { 428 int ret, awaken; 429 430 key_check(key); 431 key_check(keyring); 432 433 awaken = 0; 434 ret = -EBUSY; 435 436 mutex_lock(&key_construction_mutex); 437 438 /* can't instantiate twice */ 439 if (key->state == KEY_IS_UNINSTANTIATED) { 440 /* instantiate the key */ 441 ret = key->type->instantiate(key, prep); 442 443 if (ret == 0) { 444 /* mark the key as being instantiated */ 445 atomic_inc(&key->user->nikeys); 446 mark_key_instantiated(key, 0); 447 448 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) 449 awaken = 1; 450 451 /* and link it into the destination keyring */ 452 if (keyring) { 453 if (test_bit(KEY_FLAG_KEEP, &keyring->flags)) 454 set_bit(KEY_FLAG_KEEP, &key->flags); 455 456 __key_link(key, _edit); 457 } 458 459 /* disable the authorisation key */ 460 if (authkey) 461 key_invalidate(authkey); 462 463 if (prep->expiry != TIME64_MAX) { 464 key->expiry = prep->expiry; 465 key_schedule_gc(prep->expiry + key_gc_delay); 466 } 467 } 468 } 469 470 mutex_unlock(&key_construction_mutex); 471 472 /* wake up anyone waiting for a key to be constructed */ 473 if (awaken) 474 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT); 475 476 return ret; 477 } 478 479 /** 480 * key_instantiate_and_link - Instantiate a key and link it into the keyring. 481 * @key: The key to instantiate. 482 * @data: The data to use to instantiate the keyring. 483 * @datalen: The length of @data. 484 * @keyring: Keyring to create a link in on success (or NULL). 485 * @authkey: The authorisation token permitting instantiation. 486 * 487 * Instantiate a key that's in the uninstantiated state using the provided data 488 * and, if successful, link it in to the destination keyring if one is 489 * supplied. 490 * 491 * If successful, 0 is returned, the authorisation token is revoked and anyone 492 * waiting for the key is woken up. If the key was already instantiated, 493 * -EBUSY will be returned. 494 */ 495 int key_instantiate_and_link(struct key *key, 496 const void *data, 497 size_t datalen, 498 struct key *keyring, 499 struct key *authkey) 500 { 501 struct key_preparsed_payload prep; 502 struct assoc_array_edit *edit = NULL; 503 int ret; 504 505 memset(&prep, 0, sizeof(prep)); 506 prep.data = data; 507 prep.datalen = datalen; 508 prep.quotalen = key->type->def_datalen; 509 prep.expiry = TIME64_MAX; 510 if (key->type->preparse) { 511 ret = key->type->preparse(&prep); 512 if (ret < 0) 513 goto error; 514 } 515 516 if (keyring) { 517 ret = __key_link_lock(keyring, &key->index_key); 518 if (ret < 0) 519 goto error; 520 521 ret = __key_link_begin(keyring, &key->index_key, &edit); 522 if (ret < 0) 523 goto error_link_end; 524 525 if (keyring->restrict_link && keyring->restrict_link->check) { 526 struct key_restriction *keyres = keyring->restrict_link; 527 528 ret = keyres->check(keyring, key->type, &prep.payload, 529 keyres->key); 530 if (ret < 0) 531 goto error_link_end; 532 } 533 } 534 535 ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit); 536 537 error_link_end: 538 if (keyring) 539 __key_link_end(keyring, &key->index_key, edit); 540 541 error: 542 if (key->type->preparse) 543 key->type->free_preparse(&prep); 544 return ret; 545 } 546 547 EXPORT_SYMBOL(key_instantiate_and_link); 548 549 /** 550 * key_reject_and_link - Negatively instantiate a key and link it into the keyring. 551 * @key: The key to instantiate. 552 * @timeout: The timeout on the negative key. 553 * @error: The error to return when the key is hit. 554 * @keyring: Keyring to create a link in on success (or NULL). 555 * @authkey: The authorisation token permitting instantiation. 556 * 557 * Negatively instantiate a key that's in the uninstantiated state and, if 558 * successful, set its timeout and stored error and link it in to the 559 * destination keyring if one is supplied. The key and any links to the key 560 * will be automatically garbage collected after the timeout expires. 561 * 562 * Negative keys are used to rate limit repeated request_key() calls by causing 563 * them to return the stored error code (typically ENOKEY) until the negative 564 * key expires. 565 * 566 * If successful, 0 is returned, the authorisation token is revoked and anyone 567 * waiting for the key is woken up. If the key was already instantiated, 568 * -EBUSY will be returned. 569 */ 570 int key_reject_and_link(struct key *key, 571 unsigned timeout, 572 unsigned error, 573 struct key *keyring, 574 struct key *authkey) 575 { 576 struct assoc_array_edit *edit = NULL; 577 int ret, awaken, link_ret = 0; 578 579 key_check(key); 580 key_check(keyring); 581 582 awaken = 0; 583 ret = -EBUSY; 584 585 if (keyring) { 586 if (keyring->restrict_link) 587 return -EPERM; 588 589 link_ret = __key_link_lock(keyring, &key->index_key); 590 if (link_ret == 0) { 591 link_ret = __key_link_begin(keyring, &key->index_key, &edit); 592 if (link_ret < 0) 593 __key_link_end(keyring, &key->index_key, edit); 594 } 595 } 596 597 mutex_lock(&key_construction_mutex); 598 599 /* can't instantiate twice */ 600 if (key->state == KEY_IS_UNINSTANTIATED) { 601 /* mark the key as being negatively instantiated */ 602 atomic_inc(&key->user->nikeys); 603 mark_key_instantiated(key, -error); 604 key->expiry = ktime_get_real_seconds() + timeout; 605 key_schedule_gc(key->expiry + key_gc_delay); 606 607 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) 608 awaken = 1; 609 610 ret = 0; 611 612 /* and link it into the destination keyring */ 613 if (keyring && link_ret == 0) 614 __key_link(key, &edit); 615 616 /* disable the authorisation key */ 617 if (authkey) 618 key_invalidate(authkey); 619 } 620 621 mutex_unlock(&key_construction_mutex); 622 623 if (keyring && link_ret == 0) 624 __key_link_end(keyring, &key->index_key, edit); 625 626 /* wake up anyone waiting for a key to be constructed */ 627 if (awaken) 628 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT); 629 630 return ret == 0 ? link_ret : ret; 631 } 632 EXPORT_SYMBOL(key_reject_and_link); 633 634 /** 635 * key_put - Discard a reference to a key. 636 * @key: The key to discard a reference from. 637 * 638 * Discard a reference to a key, and when all the references are gone, we 639 * schedule the cleanup task to come and pull it out of the tree in process 640 * context at some later time. 641 */ 642 void key_put(struct key *key) 643 { 644 if (key) { 645 key_check(key); 646 647 if (refcount_dec_and_test(&key->usage)) 648 schedule_work(&key_gc_work); 649 } 650 } 651 EXPORT_SYMBOL(key_put); 652 653 /* 654 * Find a key by its serial number. 655 */ 656 struct key *key_lookup(key_serial_t id) 657 { 658 struct rb_node *n; 659 struct key *key; 660 661 spin_lock(&key_serial_lock); 662 663 /* search the tree for the specified key */ 664 n = key_serial_tree.rb_node; 665 while (n) { 666 key = rb_entry(n, struct key, serial_node); 667 668 if (id < key->serial) 669 n = n->rb_left; 670 else if (id > key->serial) 671 n = n->rb_right; 672 else 673 goto found; 674 } 675 676 not_found: 677 key = ERR_PTR(-ENOKEY); 678 goto error; 679 680 found: 681 /* A key is allowed to be looked up only if someone still owns a 682 * reference to it - otherwise it's awaiting the gc. 683 */ 684 if (!refcount_inc_not_zero(&key->usage)) 685 goto not_found; 686 687 error: 688 spin_unlock(&key_serial_lock); 689 return key; 690 } 691 692 /* 693 * Find and lock the specified key type against removal. 694 * 695 * We return with the sem read-locked if successful. If the type wasn't 696 * available -ENOKEY is returned instead. 697 */ 698 struct key_type *key_type_lookup(const char *type) 699 { 700 struct key_type *ktype; 701 702 down_read(&key_types_sem); 703 704 /* look up the key type to see if it's one of the registered kernel 705 * types */ 706 list_for_each_entry(ktype, &key_types_list, link) { 707 if (strcmp(ktype->name, type) == 0) 708 goto found_kernel_type; 709 } 710 711 up_read(&key_types_sem); 712 ktype = ERR_PTR(-ENOKEY); 713 714 found_kernel_type: 715 return ktype; 716 } 717 718 void key_set_timeout(struct key *key, unsigned timeout) 719 { 720 time64_t expiry = 0; 721 722 /* make the changes with the locks held to prevent races */ 723 down_write(&key->sem); 724 725 if (timeout > 0) 726 expiry = ktime_get_real_seconds() + timeout; 727 728 key->expiry = expiry; 729 key_schedule_gc(key->expiry + key_gc_delay); 730 731 up_write(&key->sem); 732 } 733 EXPORT_SYMBOL_GPL(key_set_timeout); 734 735 /* 736 * Unlock a key type locked by key_type_lookup(). 737 */ 738 void key_type_put(struct key_type *ktype) 739 { 740 up_read(&key_types_sem); 741 } 742 743 /* 744 * Attempt to update an existing key. 745 * 746 * The key is given to us with an incremented refcount that we need to discard 747 * if we get an error. 748 */ 749 static inline key_ref_t __key_update(key_ref_t key_ref, 750 struct key_preparsed_payload *prep) 751 { 752 struct key *key = key_ref_to_ptr(key_ref); 753 int ret; 754 755 /* need write permission on the key to update it */ 756 ret = key_permission(key_ref, KEY_NEED_WRITE); 757 if (ret < 0) 758 goto error; 759 760 ret = -EEXIST; 761 if (!key->type->update) 762 goto error; 763 764 down_write(&key->sem); 765 766 ret = key->type->update(key, prep); 767 if (ret == 0) 768 /* Updating a negative key positively instantiates it */ 769 mark_key_instantiated(key, 0); 770 771 up_write(&key->sem); 772 773 if (ret < 0) 774 goto error; 775 out: 776 return key_ref; 777 778 error: 779 key_put(key); 780 key_ref = ERR_PTR(ret); 781 goto out; 782 } 783 784 /** 785 * key_create_or_update - Update or create and instantiate a key. 786 * @keyring_ref: A pointer to the destination keyring with possession flag. 787 * @type: The type of key. 788 * @description: The searchable description for the key. 789 * @payload: The data to use to instantiate or update the key. 790 * @plen: The length of @payload. 791 * @perm: The permissions mask for a new key. 792 * @flags: The quota flags for a new key. 793 * 794 * Search the destination keyring for a key of the same description and if one 795 * is found, update it, otherwise create and instantiate a new one and create a 796 * link to it from that keyring. 797 * 798 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be 799 * concocted. 800 * 801 * Returns a pointer to the new key if successful, -ENODEV if the key type 802 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the 803 * caller isn't permitted to modify the keyring or the LSM did not permit 804 * creation of the key. 805 * 806 * On success, the possession flag from the keyring ref will be tacked on to 807 * the key ref before it is returned. 808 */ 809 key_ref_t key_create_or_update(key_ref_t keyring_ref, 810 const char *type, 811 const char *description, 812 const void *payload, 813 size_t plen, 814 key_perm_t perm, 815 unsigned long flags) 816 { 817 struct keyring_index_key index_key = { 818 .description = description, 819 }; 820 struct key_preparsed_payload prep; 821 struct assoc_array_edit *edit = NULL; 822 const struct cred *cred = current_cred(); 823 struct key *keyring, *key = NULL; 824 key_ref_t key_ref; 825 int ret; 826 struct key_restriction *restrict_link = NULL; 827 828 /* look up the key type to see if it's one of the registered kernel 829 * types */ 830 index_key.type = key_type_lookup(type); 831 if (IS_ERR(index_key.type)) { 832 key_ref = ERR_PTR(-ENODEV); 833 goto error; 834 } 835 836 key_ref = ERR_PTR(-EINVAL); 837 if (!index_key.type->instantiate || 838 (!index_key.description && !index_key.type->preparse)) 839 goto error_put_type; 840 841 keyring = key_ref_to_ptr(keyring_ref); 842 843 key_check(keyring); 844 845 if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION)) 846 restrict_link = keyring->restrict_link; 847 848 key_ref = ERR_PTR(-ENOTDIR); 849 if (keyring->type != &key_type_keyring) 850 goto error_put_type; 851 852 memset(&prep, 0, sizeof(prep)); 853 prep.data = payload; 854 prep.datalen = plen; 855 prep.quotalen = index_key.type->def_datalen; 856 prep.expiry = TIME64_MAX; 857 if (index_key.type->preparse) { 858 ret = index_key.type->preparse(&prep); 859 if (ret < 0) { 860 key_ref = ERR_PTR(ret); 861 goto error_free_prep; 862 } 863 if (!index_key.description) 864 index_key.description = prep.description; 865 key_ref = ERR_PTR(-EINVAL); 866 if (!index_key.description) 867 goto error_free_prep; 868 } 869 index_key.desc_len = strlen(index_key.description); 870 key_set_index_key(&index_key); 871 872 ret = __key_link_lock(keyring, &index_key); 873 if (ret < 0) { 874 key_ref = ERR_PTR(ret); 875 goto error_free_prep; 876 } 877 878 ret = __key_link_begin(keyring, &index_key, &edit); 879 if (ret < 0) { 880 key_ref = ERR_PTR(ret); 881 goto error_link_end; 882 } 883 884 if (restrict_link && restrict_link->check) { 885 ret = restrict_link->check(keyring, index_key.type, 886 &prep.payload, restrict_link->key); 887 if (ret < 0) { 888 key_ref = ERR_PTR(ret); 889 goto error_link_end; 890 } 891 } 892 893 /* if we're going to allocate a new key, we're going to have 894 * to modify the keyring */ 895 ret = key_permission(keyring_ref, KEY_NEED_WRITE); 896 if (ret < 0) { 897 key_ref = ERR_PTR(ret); 898 goto error_link_end; 899 } 900 901 /* if it's possible to update this type of key, search for an existing 902 * key of the same type and description in the destination keyring and 903 * update that instead if possible 904 */ 905 if (index_key.type->update) { 906 key_ref = find_key_to_update(keyring_ref, &index_key); 907 if (key_ref) 908 goto found_matching_key; 909 } 910 911 /* if the client doesn't provide, decide on the permissions we want */ 912 if (perm == KEY_PERM_UNDEF) { 913 perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR; 914 perm |= KEY_USR_VIEW; 915 916 if (index_key.type->read) 917 perm |= KEY_POS_READ; 918 919 if (index_key.type == &key_type_keyring || 920 index_key.type->update) 921 perm |= KEY_POS_WRITE; 922 } 923 924 /* allocate a new key */ 925 key = key_alloc(index_key.type, index_key.description, 926 cred->fsuid, cred->fsgid, cred, perm, flags, NULL); 927 if (IS_ERR(key)) { 928 key_ref = ERR_CAST(key); 929 goto error_link_end; 930 } 931 932 /* instantiate it and link it into the target keyring */ 933 ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit); 934 if (ret < 0) { 935 key_put(key); 936 key_ref = ERR_PTR(ret); 937 goto error_link_end; 938 } 939 940 ima_post_key_create_or_update(keyring, key, payload, plen, 941 flags, true); 942 943 key_ref = make_key_ref(key, is_key_possessed(keyring_ref)); 944 945 error_link_end: 946 __key_link_end(keyring, &index_key, edit); 947 error_free_prep: 948 if (index_key.type->preparse) 949 index_key.type->free_preparse(&prep); 950 error_put_type: 951 key_type_put(index_key.type); 952 error: 953 return key_ref; 954 955 found_matching_key: 956 /* we found a matching key, so we're going to try to update it 957 * - we can drop the locks first as we have the key pinned 958 */ 959 __key_link_end(keyring, &index_key, edit); 960 961 key = key_ref_to_ptr(key_ref); 962 if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) { 963 ret = wait_for_key_construction(key, true); 964 if (ret < 0) { 965 key_ref_put(key_ref); 966 key_ref = ERR_PTR(ret); 967 goto error_free_prep; 968 } 969 } 970 971 key_ref = __key_update(key_ref, &prep); 972 973 if (!IS_ERR(key_ref)) 974 ima_post_key_create_or_update(keyring, key, 975 payload, plen, 976 flags, false); 977 978 goto error_free_prep; 979 } 980 EXPORT_SYMBOL(key_create_or_update); 981 982 /** 983 * key_update - Update a key's contents. 984 * @key_ref: The pointer (plus possession flag) to the key. 985 * @payload: The data to be used to update the key. 986 * @plen: The length of @payload. 987 * 988 * Attempt to update the contents of a key with the given payload data. The 989 * caller must be granted Write permission on the key. Negative keys can be 990 * instantiated by this method. 991 * 992 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key 993 * type does not support updating. The key type may return other errors. 994 */ 995 int key_update(key_ref_t key_ref, const void *payload, size_t plen) 996 { 997 struct key_preparsed_payload prep; 998 struct key *key = key_ref_to_ptr(key_ref); 999 int ret; 1000 1001 key_check(key); 1002 1003 /* the key must be writable */ 1004 ret = key_permission(key_ref, KEY_NEED_WRITE); 1005 if (ret < 0) 1006 return ret; 1007 1008 /* attempt to update it if supported */ 1009 if (!key->type->update) 1010 return -EOPNOTSUPP; 1011 1012 memset(&prep, 0, sizeof(prep)); 1013 prep.data = payload; 1014 prep.datalen = plen; 1015 prep.quotalen = key->type->def_datalen; 1016 prep.expiry = TIME64_MAX; 1017 if (key->type->preparse) { 1018 ret = key->type->preparse(&prep); 1019 if (ret < 0) 1020 goto error; 1021 } 1022 1023 down_write(&key->sem); 1024 1025 ret = key->type->update(key, &prep); 1026 if (ret == 0) 1027 /* Updating a negative key positively instantiates it */ 1028 mark_key_instantiated(key, 0); 1029 1030 up_write(&key->sem); 1031 1032 error: 1033 if (key->type->preparse) 1034 key->type->free_preparse(&prep); 1035 return ret; 1036 } 1037 EXPORT_SYMBOL(key_update); 1038 1039 /** 1040 * key_revoke - Revoke a key. 1041 * @key: The key to be revoked. 1042 * 1043 * Mark a key as being revoked and ask the type to free up its resources. The 1044 * revocation timeout is set and the key and all its links will be 1045 * automatically garbage collected after key_gc_delay amount of time if they 1046 * are not manually dealt with first. 1047 */ 1048 void key_revoke(struct key *key) 1049 { 1050 time64_t time; 1051 1052 key_check(key); 1053 1054 /* make sure no one's trying to change or use the key when we mark it 1055 * - we tell lockdep that we might nest because we might be revoking an 1056 * authorisation key whilst holding the sem on a key we've just 1057 * instantiated 1058 */ 1059 down_write_nested(&key->sem, 1); 1060 if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) && 1061 key->type->revoke) 1062 key->type->revoke(key); 1063 1064 /* set the death time to no more than the expiry time */ 1065 time = ktime_get_real_seconds(); 1066 if (key->revoked_at == 0 || key->revoked_at > time) { 1067 key->revoked_at = time; 1068 key_schedule_gc(key->revoked_at + key_gc_delay); 1069 } 1070 1071 up_write(&key->sem); 1072 } 1073 EXPORT_SYMBOL(key_revoke); 1074 1075 /** 1076 * key_invalidate - Invalidate a key. 1077 * @key: The key to be invalidated. 1078 * 1079 * Mark a key as being invalidated and have it cleaned up immediately. The key 1080 * is ignored by all searches and other operations from this point. 1081 */ 1082 void key_invalidate(struct key *key) 1083 { 1084 kenter("%d", key_serial(key)); 1085 1086 key_check(key); 1087 1088 if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) { 1089 down_write_nested(&key->sem, 1); 1090 if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags)) 1091 key_schedule_gc_links(); 1092 up_write(&key->sem); 1093 } 1094 } 1095 EXPORT_SYMBOL(key_invalidate); 1096 1097 /** 1098 * generic_key_instantiate - Simple instantiation of a key from preparsed data 1099 * @key: The key to be instantiated 1100 * @prep: The preparsed data to load. 1101 * 1102 * Instantiate a key from preparsed data. We assume we can just copy the data 1103 * in directly and clear the old pointers. 1104 * 1105 * This can be pointed to directly by the key type instantiate op pointer. 1106 */ 1107 int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep) 1108 { 1109 int ret; 1110 1111 pr_devel("==>%s()\n", __func__); 1112 1113 ret = key_payload_reserve(key, prep->quotalen); 1114 if (ret == 0) { 1115 rcu_assign_keypointer(key, prep->payload.data[0]); 1116 key->payload.data[1] = prep->payload.data[1]; 1117 key->payload.data[2] = prep->payload.data[2]; 1118 key->payload.data[3] = prep->payload.data[3]; 1119 prep->payload.data[0] = NULL; 1120 prep->payload.data[1] = NULL; 1121 prep->payload.data[2] = NULL; 1122 prep->payload.data[3] = NULL; 1123 } 1124 pr_devel("<==%s() = %d\n", __func__, ret); 1125 return ret; 1126 } 1127 EXPORT_SYMBOL(generic_key_instantiate); 1128 1129 /** 1130 * register_key_type - Register a type of key. 1131 * @ktype: The new key type. 1132 * 1133 * Register a new key type. 1134 * 1135 * Returns 0 on success or -EEXIST if a type of this name already exists. 1136 */ 1137 int register_key_type(struct key_type *ktype) 1138 { 1139 struct key_type *p; 1140 int ret; 1141 1142 memset(&ktype->lock_class, 0, sizeof(ktype->lock_class)); 1143 1144 ret = -EEXIST; 1145 down_write(&key_types_sem); 1146 1147 /* disallow key types with the same name */ 1148 list_for_each_entry(p, &key_types_list, link) { 1149 if (strcmp(p->name, ktype->name) == 0) 1150 goto out; 1151 } 1152 1153 /* store the type */ 1154 list_add(&ktype->link, &key_types_list); 1155 1156 pr_notice("Key type %s registered\n", ktype->name); 1157 ret = 0; 1158 1159 out: 1160 up_write(&key_types_sem); 1161 return ret; 1162 } 1163 EXPORT_SYMBOL(register_key_type); 1164 1165 /** 1166 * unregister_key_type - Unregister a type of key. 1167 * @ktype: The key type. 1168 * 1169 * Unregister a key type and mark all the extant keys of this type as dead. 1170 * Those keys of this type are then destroyed to get rid of their payloads and 1171 * they and their links will be garbage collected as soon as possible. 1172 */ 1173 void unregister_key_type(struct key_type *ktype) 1174 { 1175 down_write(&key_types_sem); 1176 list_del_init(&ktype->link); 1177 downgrade_write(&key_types_sem); 1178 key_gc_keytype(ktype); 1179 pr_notice("Key type %s unregistered\n", ktype->name); 1180 up_read(&key_types_sem); 1181 } 1182 EXPORT_SYMBOL(unregister_key_type); 1183 1184 /* 1185 * Initialise the key management state. 1186 */ 1187 void __init key_init(void) 1188 { 1189 /* allocate a slab in which we can store keys */ 1190 key_jar = kmem_cache_create("key_jar", sizeof(struct key), 1191 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 1192 1193 /* add the special key types */ 1194 list_add_tail(&key_type_keyring.link, &key_types_list); 1195 list_add_tail(&key_type_dead.link, &key_types_list); 1196 list_add_tail(&key_type_user.link, &key_types_list); 1197 list_add_tail(&key_type_logon.link, &key_types_list); 1198 1199 /* record the root user tracking */ 1200 rb_link_node(&root_key_user.node, 1201 NULL, 1202 &key_user_tree.rb_node); 1203 1204 rb_insert_color(&root_key_user.node, 1205 &key_user_tree); 1206 } 1207