xref: /openbmc/linux/security/keys/key.c (revision d0807da7)
1 /* Basic authentication token and access key management
2  *
3  * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/poison.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/security.h>
18 #include <linux/workqueue.h>
19 #include <linux/random.h>
20 #include <linux/err.h>
21 #include "internal.h"
22 
23 struct kmem_cache *key_jar;
24 struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
25 DEFINE_SPINLOCK(key_serial_lock);
26 
27 struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
28 DEFINE_SPINLOCK(key_user_lock);
29 
30 unsigned int key_quota_root_maxkeys = 1000000;	/* root's key count quota */
31 unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
32 unsigned int key_quota_maxkeys = 200;		/* general key count quota */
33 unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
34 
35 static LIST_HEAD(key_types_list);
36 static DECLARE_RWSEM(key_types_sem);
37 
38 /* We serialise key instantiation and link */
39 DEFINE_MUTEX(key_construction_mutex);
40 
41 #ifdef KEY_DEBUGGING
42 void __key_check(const struct key *key)
43 {
44 	printk("__key_check: key %p {%08x} should be {%08x}\n",
45 	       key, key->magic, KEY_DEBUG_MAGIC);
46 	BUG();
47 }
48 #endif
49 
50 /*
51  * Get the key quota record for a user, allocating a new record if one doesn't
52  * already exist.
53  */
54 struct key_user *key_user_lookup(kuid_t uid)
55 {
56 	struct key_user *candidate = NULL, *user;
57 	struct rb_node *parent, **p;
58 
59 try_again:
60 	parent = NULL;
61 	p = &key_user_tree.rb_node;
62 	spin_lock(&key_user_lock);
63 
64 	/* search the tree for a user record with a matching UID */
65 	while (*p) {
66 		parent = *p;
67 		user = rb_entry(parent, struct key_user, node);
68 
69 		if (uid_lt(uid, user->uid))
70 			p = &(*p)->rb_left;
71 		else if (uid_gt(uid, user->uid))
72 			p = &(*p)->rb_right;
73 		else
74 			goto found;
75 	}
76 
77 	/* if we get here, we failed to find a match in the tree */
78 	if (!candidate) {
79 		/* allocate a candidate user record if we don't already have
80 		 * one */
81 		spin_unlock(&key_user_lock);
82 
83 		user = NULL;
84 		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
85 		if (unlikely(!candidate))
86 			goto out;
87 
88 		/* the allocation may have scheduled, so we need to repeat the
89 		 * search lest someone else added the record whilst we were
90 		 * asleep */
91 		goto try_again;
92 	}
93 
94 	/* if we get here, then the user record still hadn't appeared on the
95 	 * second pass - so we use the candidate record */
96 	refcount_set(&candidate->usage, 1);
97 	atomic_set(&candidate->nkeys, 0);
98 	atomic_set(&candidate->nikeys, 0);
99 	candidate->uid = uid;
100 	candidate->qnkeys = 0;
101 	candidate->qnbytes = 0;
102 	spin_lock_init(&candidate->lock);
103 	mutex_init(&candidate->cons_lock);
104 
105 	rb_link_node(&candidate->node, parent, p);
106 	rb_insert_color(&candidate->node, &key_user_tree);
107 	spin_unlock(&key_user_lock);
108 	user = candidate;
109 	goto out;
110 
111 	/* okay - we found a user record for this UID */
112 found:
113 	refcount_inc(&user->usage);
114 	spin_unlock(&key_user_lock);
115 	kfree(candidate);
116 out:
117 	return user;
118 }
119 
120 /*
121  * Dispose of a user structure
122  */
123 void key_user_put(struct key_user *user)
124 {
125 	if (refcount_dec_and_lock(&user->usage, &key_user_lock)) {
126 		rb_erase(&user->node, &key_user_tree);
127 		spin_unlock(&key_user_lock);
128 
129 		kfree(user);
130 	}
131 }
132 
133 /*
134  * Allocate a serial number for a key.  These are assigned randomly to avoid
135  * security issues through covert channel problems.
136  */
137 static inline void key_alloc_serial(struct key *key)
138 {
139 	struct rb_node *parent, **p;
140 	struct key *xkey;
141 
142 	/* propose a random serial number and look for a hole for it in the
143 	 * serial number tree */
144 	do {
145 		get_random_bytes(&key->serial, sizeof(key->serial));
146 
147 		key->serial >>= 1; /* negative numbers are not permitted */
148 	} while (key->serial < 3);
149 
150 	spin_lock(&key_serial_lock);
151 
152 attempt_insertion:
153 	parent = NULL;
154 	p = &key_serial_tree.rb_node;
155 
156 	while (*p) {
157 		parent = *p;
158 		xkey = rb_entry(parent, struct key, serial_node);
159 
160 		if (key->serial < xkey->serial)
161 			p = &(*p)->rb_left;
162 		else if (key->serial > xkey->serial)
163 			p = &(*p)->rb_right;
164 		else
165 			goto serial_exists;
166 	}
167 
168 	/* we've found a suitable hole - arrange for this key to occupy it */
169 	rb_link_node(&key->serial_node, parent, p);
170 	rb_insert_color(&key->serial_node, &key_serial_tree);
171 
172 	spin_unlock(&key_serial_lock);
173 	return;
174 
175 	/* we found a key with the proposed serial number - walk the tree from
176 	 * that point looking for the next unused serial number */
177 serial_exists:
178 	for (;;) {
179 		key->serial++;
180 		if (key->serial < 3) {
181 			key->serial = 3;
182 			goto attempt_insertion;
183 		}
184 
185 		parent = rb_next(parent);
186 		if (!parent)
187 			goto attempt_insertion;
188 
189 		xkey = rb_entry(parent, struct key, serial_node);
190 		if (key->serial < xkey->serial)
191 			goto attempt_insertion;
192 	}
193 }
194 
195 /**
196  * key_alloc - Allocate a key of the specified type.
197  * @type: The type of key to allocate.
198  * @desc: The key description to allow the key to be searched out.
199  * @uid: The owner of the new key.
200  * @gid: The group ID for the new key's group permissions.
201  * @cred: The credentials specifying UID namespace.
202  * @perm: The permissions mask of the new key.
203  * @flags: Flags specifying quota properties.
204  * @restrict_link: Optional link restriction for new keyrings.
205  *
206  * Allocate a key of the specified type with the attributes given.  The key is
207  * returned in an uninstantiated state and the caller needs to instantiate the
208  * key before returning.
209  *
210  * The restrict_link structure (if not NULL) will be freed when the
211  * keyring is destroyed, so it must be dynamically allocated.
212  *
213  * The user's key count quota is updated to reflect the creation of the key and
214  * the user's key data quota has the default for the key type reserved.  The
215  * instantiation function should amend this as necessary.  If insufficient
216  * quota is available, -EDQUOT will be returned.
217  *
218  * The LSM security modules can prevent a key being created, in which case
219  * -EACCES will be returned.
220  *
221  * Returns a pointer to the new key if successful and an error code otherwise.
222  *
223  * Note that the caller needs to ensure the key type isn't uninstantiated.
224  * Internally this can be done by locking key_types_sem.  Externally, this can
225  * be done by either never unregistering the key type, or making sure
226  * key_alloc() calls don't race with module unloading.
227  */
228 struct key *key_alloc(struct key_type *type, const char *desc,
229 		      kuid_t uid, kgid_t gid, const struct cred *cred,
230 		      key_perm_t perm, unsigned long flags,
231 		      struct key_restriction *restrict_link)
232 {
233 	struct key_user *user = NULL;
234 	struct key *key;
235 	size_t desclen, quotalen;
236 	int ret;
237 
238 	key = ERR_PTR(-EINVAL);
239 	if (!desc || !*desc)
240 		goto error;
241 
242 	if (type->vet_description) {
243 		ret = type->vet_description(desc);
244 		if (ret < 0) {
245 			key = ERR_PTR(ret);
246 			goto error;
247 		}
248 	}
249 
250 	desclen = strlen(desc);
251 	quotalen = desclen + 1 + type->def_datalen;
252 
253 	/* get hold of the key tracking for this user */
254 	user = key_user_lookup(uid);
255 	if (!user)
256 		goto no_memory_1;
257 
258 	/* check that the user's quota permits allocation of another key and
259 	 * its description */
260 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
261 		unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
262 			key_quota_root_maxkeys : key_quota_maxkeys;
263 		unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
264 			key_quota_root_maxbytes : key_quota_maxbytes;
265 
266 		spin_lock(&user->lock);
267 		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
268 			if (user->qnkeys + 1 >= maxkeys ||
269 			    user->qnbytes + quotalen >= maxbytes ||
270 			    user->qnbytes + quotalen < user->qnbytes)
271 				goto no_quota;
272 		}
273 
274 		user->qnkeys++;
275 		user->qnbytes += quotalen;
276 		spin_unlock(&user->lock);
277 	}
278 
279 	/* allocate and initialise the key and its description */
280 	key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
281 	if (!key)
282 		goto no_memory_2;
283 
284 	key->index_key.desc_len = desclen;
285 	key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
286 	if (!key->index_key.description)
287 		goto no_memory_3;
288 
289 	refcount_set(&key->usage, 1);
290 	init_rwsem(&key->sem);
291 	lockdep_set_class(&key->sem, &type->lock_class);
292 	key->index_key.type = type;
293 	key->user = user;
294 	key->quotalen = quotalen;
295 	key->datalen = type->def_datalen;
296 	key->uid = uid;
297 	key->gid = gid;
298 	key->perm = perm;
299 	key->restrict_link = restrict_link;
300 
301 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
302 		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
303 	if (flags & KEY_ALLOC_BUILT_IN)
304 		key->flags |= 1 << KEY_FLAG_BUILTIN;
305 	if (flags & KEY_ALLOC_UID_KEYRING)
306 		key->flags |= 1 << KEY_FLAG_UID_KEYRING;
307 
308 #ifdef KEY_DEBUGGING
309 	key->magic = KEY_DEBUG_MAGIC;
310 #endif
311 
312 	/* let the security module know about the key */
313 	ret = security_key_alloc(key, cred, flags);
314 	if (ret < 0)
315 		goto security_error;
316 
317 	/* publish the key by giving it a serial number */
318 	atomic_inc(&user->nkeys);
319 	key_alloc_serial(key);
320 
321 error:
322 	return key;
323 
324 security_error:
325 	kfree(key->description);
326 	kmem_cache_free(key_jar, key);
327 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
328 		spin_lock(&user->lock);
329 		user->qnkeys--;
330 		user->qnbytes -= quotalen;
331 		spin_unlock(&user->lock);
332 	}
333 	key_user_put(user);
334 	key = ERR_PTR(ret);
335 	goto error;
336 
337 no_memory_3:
338 	kmem_cache_free(key_jar, key);
339 no_memory_2:
340 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
341 		spin_lock(&user->lock);
342 		user->qnkeys--;
343 		user->qnbytes -= quotalen;
344 		spin_unlock(&user->lock);
345 	}
346 	key_user_put(user);
347 no_memory_1:
348 	key = ERR_PTR(-ENOMEM);
349 	goto error;
350 
351 no_quota:
352 	spin_unlock(&user->lock);
353 	key_user_put(user);
354 	key = ERR_PTR(-EDQUOT);
355 	goto error;
356 }
357 EXPORT_SYMBOL(key_alloc);
358 
359 /**
360  * key_payload_reserve - Adjust data quota reservation for the key's payload
361  * @key: The key to make the reservation for.
362  * @datalen: The amount of data payload the caller now wants.
363  *
364  * Adjust the amount of the owning user's key data quota that a key reserves.
365  * If the amount is increased, then -EDQUOT may be returned if there isn't
366  * enough free quota available.
367  *
368  * If successful, 0 is returned.
369  */
370 int key_payload_reserve(struct key *key, size_t datalen)
371 {
372 	int delta = (int)datalen - key->datalen;
373 	int ret = 0;
374 
375 	key_check(key);
376 
377 	/* contemplate the quota adjustment */
378 	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
379 		unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
380 			key_quota_root_maxbytes : key_quota_maxbytes;
381 
382 		spin_lock(&key->user->lock);
383 
384 		if (delta > 0 &&
385 		    (key->user->qnbytes + delta >= maxbytes ||
386 		     key->user->qnbytes + delta < key->user->qnbytes)) {
387 			ret = -EDQUOT;
388 		}
389 		else {
390 			key->user->qnbytes += delta;
391 			key->quotalen += delta;
392 		}
393 		spin_unlock(&key->user->lock);
394 	}
395 
396 	/* change the recorded data length if that didn't generate an error */
397 	if (ret == 0)
398 		key->datalen = datalen;
399 
400 	return ret;
401 }
402 EXPORT_SYMBOL(key_payload_reserve);
403 
404 /*
405  * Change the key state to being instantiated.
406  */
407 static void mark_key_instantiated(struct key *key, int reject_error)
408 {
409 	/* Commit the payload before setting the state; barrier versus
410 	 * key_read_state().
411 	 */
412 	smp_store_release(&key->state,
413 			  (reject_error < 0) ? reject_error : KEY_IS_POSITIVE);
414 }
415 
416 /*
417  * Instantiate a key and link it into the target keyring atomically.  Must be
418  * called with the target keyring's semaphore writelocked.  The target key's
419  * semaphore need not be locked as instantiation is serialised by
420  * key_construction_mutex.
421  */
422 static int __key_instantiate_and_link(struct key *key,
423 				      struct key_preparsed_payload *prep,
424 				      struct key *keyring,
425 				      struct key *authkey,
426 				      struct assoc_array_edit **_edit)
427 {
428 	int ret, awaken;
429 
430 	key_check(key);
431 	key_check(keyring);
432 
433 	awaken = 0;
434 	ret = -EBUSY;
435 
436 	mutex_lock(&key_construction_mutex);
437 
438 	/* can't instantiate twice */
439 	if (key->state == KEY_IS_UNINSTANTIATED) {
440 		/* instantiate the key */
441 		ret = key->type->instantiate(key, prep);
442 
443 		if (ret == 0) {
444 			/* mark the key as being instantiated */
445 			atomic_inc(&key->user->nikeys);
446 			mark_key_instantiated(key, 0);
447 
448 			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
449 				awaken = 1;
450 
451 			/* and link it into the destination keyring */
452 			if (keyring) {
453 				if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
454 					set_bit(KEY_FLAG_KEEP, &key->flags);
455 
456 				__key_link(key, _edit);
457 			}
458 
459 			/* disable the authorisation key */
460 			if (authkey)
461 				key_revoke(authkey);
462 
463 			if (prep->expiry != TIME_T_MAX) {
464 				key->expiry = prep->expiry;
465 				key_schedule_gc(prep->expiry + key_gc_delay);
466 			}
467 		}
468 	}
469 
470 	mutex_unlock(&key_construction_mutex);
471 
472 	/* wake up anyone waiting for a key to be constructed */
473 	if (awaken)
474 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
475 
476 	return ret;
477 }
478 
479 /**
480  * key_instantiate_and_link - Instantiate a key and link it into the keyring.
481  * @key: The key to instantiate.
482  * @data: The data to use to instantiate the keyring.
483  * @datalen: The length of @data.
484  * @keyring: Keyring to create a link in on success (or NULL).
485  * @authkey: The authorisation token permitting instantiation.
486  *
487  * Instantiate a key that's in the uninstantiated state using the provided data
488  * and, if successful, link it in to the destination keyring if one is
489  * supplied.
490  *
491  * If successful, 0 is returned, the authorisation token is revoked and anyone
492  * waiting for the key is woken up.  If the key was already instantiated,
493  * -EBUSY will be returned.
494  */
495 int key_instantiate_and_link(struct key *key,
496 			     const void *data,
497 			     size_t datalen,
498 			     struct key *keyring,
499 			     struct key *authkey)
500 {
501 	struct key_preparsed_payload prep;
502 	struct assoc_array_edit *edit;
503 	int ret;
504 
505 	memset(&prep, 0, sizeof(prep));
506 	prep.data = data;
507 	prep.datalen = datalen;
508 	prep.quotalen = key->type->def_datalen;
509 	prep.expiry = TIME_T_MAX;
510 	if (key->type->preparse) {
511 		ret = key->type->preparse(&prep);
512 		if (ret < 0)
513 			goto error;
514 	}
515 
516 	if (keyring) {
517 		ret = __key_link_begin(keyring, &key->index_key, &edit);
518 		if (ret < 0)
519 			goto error;
520 
521 		if (keyring->restrict_link && keyring->restrict_link->check) {
522 			struct key_restriction *keyres = keyring->restrict_link;
523 
524 			ret = keyres->check(keyring, key->type, &prep.payload,
525 					    keyres->key);
526 			if (ret < 0)
527 				goto error_link_end;
528 		}
529 	}
530 
531 	ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
532 
533 error_link_end:
534 	if (keyring)
535 		__key_link_end(keyring, &key->index_key, edit);
536 
537 error:
538 	if (key->type->preparse)
539 		key->type->free_preparse(&prep);
540 	return ret;
541 }
542 
543 EXPORT_SYMBOL(key_instantiate_and_link);
544 
545 /**
546  * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
547  * @key: The key to instantiate.
548  * @timeout: The timeout on the negative key.
549  * @error: The error to return when the key is hit.
550  * @keyring: Keyring to create a link in on success (or NULL).
551  * @authkey: The authorisation token permitting instantiation.
552  *
553  * Negatively instantiate a key that's in the uninstantiated state and, if
554  * successful, set its timeout and stored error and link it in to the
555  * destination keyring if one is supplied.  The key and any links to the key
556  * will be automatically garbage collected after the timeout expires.
557  *
558  * Negative keys are used to rate limit repeated request_key() calls by causing
559  * them to return the stored error code (typically ENOKEY) until the negative
560  * key expires.
561  *
562  * If successful, 0 is returned, the authorisation token is revoked and anyone
563  * waiting for the key is woken up.  If the key was already instantiated,
564  * -EBUSY will be returned.
565  */
566 int key_reject_and_link(struct key *key,
567 			unsigned timeout,
568 			unsigned error,
569 			struct key *keyring,
570 			struct key *authkey)
571 {
572 	struct assoc_array_edit *edit;
573 	struct timespec now;
574 	int ret, awaken, link_ret = 0;
575 
576 	key_check(key);
577 	key_check(keyring);
578 
579 	awaken = 0;
580 	ret = -EBUSY;
581 
582 	if (keyring) {
583 		if (keyring->restrict_link)
584 			return -EPERM;
585 
586 		link_ret = __key_link_begin(keyring, &key->index_key, &edit);
587 	}
588 
589 	mutex_lock(&key_construction_mutex);
590 
591 	/* can't instantiate twice */
592 	if (key->state == KEY_IS_UNINSTANTIATED) {
593 		/* mark the key as being negatively instantiated */
594 		atomic_inc(&key->user->nikeys);
595 		mark_key_instantiated(key, -error);
596 		now = current_kernel_time();
597 		key->expiry = now.tv_sec + timeout;
598 		key_schedule_gc(key->expiry + key_gc_delay);
599 
600 		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
601 			awaken = 1;
602 
603 		ret = 0;
604 
605 		/* and link it into the destination keyring */
606 		if (keyring && link_ret == 0)
607 			__key_link(key, &edit);
608 
609 		/* disable the authorisation key */
610 		if (authkey)
611 			key_revoke(authkey);
612 	}
613 
614 	mutex_unlock(&key_construction_mutex);
615 
616 	if (keyring && link_ret == 0)
617 		__key_link_end(keyring, &key->index_key, edit);
618 
619 	/* wake up anyone waiting for a key to be constructed */
620 	if (awaken)
621 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
622 
623 	return ret == 0 ? link_ret : ret;
624 }
625 EXPORT_SYMBOL(key_reject_and_link);
626 
627 /**
628  * key_put - Discard a reference to a key.
629  * @key: The key to discard a reference from.
630  *
631  * Discard a reference to a key, and when all the references are gone, we
632  * schedule the cleanup task to come and pull it out of the tree in process
633  * context at some later time.
634  */
635 void key_put(struct key *key)
636 {
637 	if (key) {
638 		key_check(key);
639 
640 		if (refcount_dec_and_test(&key->usage))
641 			schedule_work(&key_gc_work);
642 	}
643 }
644 EXPORT_SYMBOL(key_put);
645 
646 /*
647  * Find a key by its serial number.
648  */
649 struct key *key_lookup(key_serial_t id)
650 {
651 	struct rb_node *n;
652 	struct key *key;
653 
654 	spin_lock(&key_serial_lock);
655 
656 	/* search the tree for the specified key */
657 	n = key_serial_tree.rb_node;
658 	while (n) {
659 		key = rb_entry(n, struct key, serial_node);
660 
661 		if (id < key->serial)
662 			n = n->rb_left;
663 		else if (id > key->serial)
664 			n = n->rb_right;
665 		else
666 			goto found;
667 	}
668 
669 not_found:
670 	key = ERR_PTR(-ENOKEY);
671 	goto error;
672 
673 found:
674 	/* A key is allowed to be looked up only if someone still owns a
675 	 * reference to it - otherwise it's awaiting the gc.
676 	 */
677 	if (!refcount_inc_not_zero(&key->usage))
678 		goto not_found;
679 
680 error:
681 	spin_unlock(&key_serial_lock);
682 	return key;
683 }
684 
685 /*
686  * Find and lock the specified key type against removal.
687  *
688  * We return with the sem read-locked if successful.  If the type wasn't
689  * available -ENOKEY is returned instead.
690  */
691 struct key_type *key_type_lookup(const char *type)
692 {
693 	struct key_type *ktype;
694 
695 	down_read(&key_types_sem);
696 
697 	/* look up the key type to see if it's one of the registered kernel
698 	 * types */
699 	list_for_each_entry(ktype, &key_types_list, link) {
700 		if (strcmp(ktype->name, type) == 0)
701 			goto found_kernel_type;
702 	}
703 
704 	up_read(&key_types_sem);
705 	ktype = ERR_PTR(-ENOKEY);
706 
707 found_kernel_type:
708 	return ktype;
709 }
710 
711 void key_set_timeout(struct key *key, unsigned timeout)
712 {
713 	struct timespec now;
714 	time_t expiry = 0;
715 
716 	/* make the changes with the locks held to prevent races */
717 	down_write(&key->sem);
718 
719 	if (timeout > 0) {
720 		now = current_kernel_time();
721 		expiry = now.tv_sec + timeout;
722 	}
723 
724 	key->expiry = expiry;
725 	key_schedule_gc(key->expiry + key_gc_delay);
726 
727 	up_write(&key->sem);
728 }
729 EXPORT_SYMBOL_GPL(key_set_timeout);
730 
731 /*
732  * Unlock a key type locked by key_type_lookup().
733  */
734 void key_type_put(struct key_type *ktype)
735 {
736 	up_read(&key_types_sem);
737 }
738 
739 /*
740  * Attempt to update an existing key.
741  *
742  * The key is given to us with an incremented refcount that we need to discard
743  * if we get an error.
744  */
745 static inline key_ref_t __key_update(key_ref_t key_ref,
746 				     struct key_preparsed_payload *prep)
747 {
748 	struct key *key = key_ref_to_ptr(key_ref);
749 	int ret;
750 
751 	/* need write permission on the key to update it */
752 	ret = key_permission(key_ref, KEY_NEED_WRITE);
753 	if (ret < 0)
754 		goto error;
755 
756 	ret = -EEXIST;
757 	if (!key->type->update)
758 		goto error;
759 
760 	down_write(&key->sem);
761 
762 	ret = key->type->update(key, prep);
763 	if (ret == 0)
764 		/* Updating a negative key positively instantiates it */
765 		mark_key_instantiated(key, 0);
766 
767 	up_write(&key->sem);
768 
769 	if (ret < 0)
770 		goto error;
771 out:
772 	return key_ref;
773 
774 error:
775 	key_put(key);
776 	key_ref = ERR_PTR(ret);
777 	goto out;
778 }
779 
780 /**
781  * key_create_or_update - Update or create and instantiate a key.
782  * @keyring_ref: A pointer to the destination keyring with possession flag.
783  * @type: The type of key.
784  * @description: The searchable description for the key.
785  * @payload: The data to use to instantiate or update the key.
786  * @plen: The length of @payload.
787  * @perm: The permissions mask for a new key.
788  * @flags: The quota flags for a new key.
789  *
790  * Search the destination keyring for a key of the same description and if one
791  * is found, update it, otherwise create and instantiate a new one and create a
792  * link to it from that keyring.
793  *
794  * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
795  * concocted.
796  *
797  * Returns a pointer to the new key if successful, -ENODEV if the key type
798  * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
799  * caller isn't permitted to modify the keyring or the LSM did not permit
800  * creation of the key.
801  *
802  * On success, the possession flag from the keyring ref will be tacked on to
803  * the key ref before it is returned.
804  */
805 key_ref_t key_create_or_update(key_ref_t keyring_ref,
806 			       const char *type,
807 			       const char *description,
808 			       const void *payload,
809 			       size_t plen,
810 			       key_perm_t perm,
811 			       unsigned long flags)
812 {
813 	struct keyring_index_key index_key = {
814 		.description	= description,
815 	};
816 	struct key_preparsed_payload prep;
817 	struct assoc_array_edit *edit;
818 	const struct cred *cred = current_cred();
819 	struct key *keyring, *key = NULL;
820 	key_ref_t key_ref;
821 	int ret;
822 	struct key_restriction *restrict_link = NULL;
823 
824 	/* look up the key type to see if it's one of the registered kernel
825 	 * types */
826 	index_key.type = key_type_lookup(type);
827 	if (IS_ERR(index_key.type)) {
828 		key_ref = ERR_PTR(-ENODEV);
829 		goto error;
830 	}
831 
832 	key_ref = ERR_PTR(-EINVAL);
833 	if (!index_key.type->instantiate ||
834 	    (!index_key.description && !index_key.type->preparse))
835 		goto error_put_type;
836 
837 	keyring = key_ref_to_ptr(keyring_ref);
838 
839 	key_check(keyring);
840 
841 	key_ref = ERR_PTR(-EPERM);
842 	if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
843 		restrict_link = keyring->restrict_link;
844 
845 	key_ref = ERR_PTR(-ENOTDIR);
846 	if (keyring->type != &key_type_keyring)
847 		goto error_put_type;
848 
849 	memset(&prep, 0, sizeof(prep));
850 	prep.data = payload;
851 	prep.datalen = plen;
852 	prep.quotalen = index_key.type->def_datalen;
853 	prep.expiry = TIME_T_MAX;
854 	if (index_key.type->preparse) {
855 		ret = index_key.type->preparse(&prep);
856 		if (ret < 0) {
857 			key_ref = ERR_PTR(ret);
858 			goto error_free_prep;
859 		}
860 		if (!index_key.description)
861 			index_key.description = prep.description;
862 		key_ref = ERR_PTR(-EINVAL);
863 		if (!index_key.description)
864 			goto error_free_prep;
865 	}
866 	index_key.desc_len = strlen(index_key.description);
867 
868 	ret = __key_link_begin(keyring, &index_key, &edit);
869 	if (ret < 0) {
870 		key_ref = ERR_PTR(ret);
871 		goto error_free_prep;
872 	}
873 
874 	if (restrict_link && restrict_link->check) {
875 		ret = restrict_link->check(keyring, index_key.type,
876 					   &prep.payload, restrict_link->key);
877 		if (ret < 0) {
878 			key_ref = ERR_PTR(ret);
879 			goto error_link_end;
880 		}
881 	}
882 
883 	/* if we're going to allocate a new key, we're going to have
884 	 * to modify the keyring */
885 	ret = key_permission(keyring_ref, KEY_NEED_WRITE);
886 	if (ret < 0) {
887 		key_ref = ERR_PTR(ret);
888 		goto error_link_end;
889 	}
890 
891 	/* if it's possible to update this type of key, search for an existing
892 	 * key of the same type and description in the destination keyring and
893 	 * update that instead if possible
894 	 */
895 	if (index_key.type->update) {
896 		key_ref = find_key_to_update(keyring_ref, &index_key);
897 		if (key_ref)
898 			goto found_matching_key;
899 	}
900 
901 	/* if the client doesn't provide, decide on the permissions we want */
902 	if (perm == KEY_PERM_UNDEF) {
903 		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
904 		perm |= KEY_USR_VIEW;
905 
906 		if (index_key.type->read)
907 			perm |= KEY_POS_READ;
908 
909 		if (index_key.type == &key_type_keyring ||
910 		    index_key.type->update)
911 			perm |= KEY_POS_WRITE;
912 	}
913 
914 	/* allocate a new key */
915 	key = key_alloc(index_key.type, index_key.description,
916 			cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
917 	if (IS_ERR(key)) {
918 		key_ref = ERR_CAST(key);
919 		goto error_link_end;
920 	}
921 
922 	/* instantiate it and link it into the target keyring */
923 	ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
924 	if (ret < 0) {
925 		key_put(key);
926 		key_ref = ERR_PTR(ret);
927 		goto error_link_end;
928 	}
929 
930 	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
931 
932 error_link_end:
933 	__key_link_end(keyring, &index_key, edit);
934 error_free_prep:
935 	if (index_key.type->preparse)
936 		index_key.type->free_preparse(&prep);
937 error_put_type:
938 	key_type_put(index_key.type);
939 error:
940 	return key_ref;
941 
942  found_matching_key:
943 	/* we found a matching key, so we're going to try to update it
944 	 * - we can drop the locks first as we have the key pinned
945 	 */
946 	__key_link_end(keyring, &index_key, edit);
947 
948 	key = key_ref_to_ptr(key_ref);
949 	if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) {
950 		ret = wait_for_key_construction(key, true);
951 		if (ret < 0) {
952 			key_ref_put(key_ref);
953 			key_ref = ERR_PTR(ret);
954 			goto error_free_prep;
955 		}
956 	}
957 
958 	key_ref = __key_update(key_ref, &prep);
959 	goto error_free_prep;
960 }
961 EXPORT_SYMBOL(key_create_or_update);
962 
963 /**
964  * key_update - Update a key's contents.
965  * @key_ref: The pointer (plus possession flag) to the key.
966  * @payload: The data to be used to update the key.
967  * @plen: The length of @payload.
968  *
969  * Attempt to update the contents of a key with the given payload data.  The
970  * caller must be granted Write permission on the key.  Negative keys can be
971  * instantiated by this method.
972  *
973  * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
974  * type does not support updating.  The key type may return other errors.
975  */
976 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
977 {
978 	struct key_preparsed_payload prep;
979 	struct key *key = key_ref_to_ptr(key_ref);
980 	int ret;
981 
982 	key_check(key);
983 
984 	/* the key must be writable */
985 	ret = key_permission(key_ref, KEY_NEED_WRITE);
986 	if (ret < 0)
987 		return ret;
988 
989 	/* attempt to update it if supported */
990 	if (!key->type->update)
991 		return -EOPNOTSUPP;
992 
993 	memset(&prep, 0, sizeof(prep));
994 	prep.data = payload;
995 	prep.datalen = plen;
996 	prep.quotalen = key->type->def_datalen;
997 	prep.expiry = TIME_T_MAX;
998 	if (key->type->preparse) {
999 		ret = key->type->preparse(&prep);
1000 		if (ret < 0)
1001 			goto error;
1002 	}
1003 
1004 	down_write(&key->sem);
1005 
1006 	ret = key->type->update(key, &prep);
1007 	if (ret == 0)
1008 		/* Updating a negative key positively instantiates it */
1009 		mark_key_instantiated(key, 0);
1010 
1011 	up_write(&key->sem);
1012 
1013 error:
1014 	if (key->type->preparse)
1015 		key->type->free_preparse(&prep);
1016 	return ret;
1017 }
1018 EXPORT_SYMBOL(key_update);
1019 
1020 /**
1021  * key_revoke - Revoke a key.
1022  * @key: The key to be revoked.
1023  *
1024  * Mark a key as being revoked and ask the type to free up its resources.  The
1025  * revocation timeout is set and the key and all its links will be
1026  * automatically garbage collected after key_gc_delay amount of time if they
1027  * are not manually dealt with first.
1028  */
1029 void key_revoke(struct key *key)
1030 {
1031 	struct timespec now;
1032 	time_t time;
1033 
1034 	key_check(key);
1035 
1036 	/* make sure no one's trying to change or use the key when we mark it
1037 	 * - we tell lockdep that we might nest because we might be revoking an
1038 	 *   authorisation key whilst holding the sem on a key we've just
1039 	 *   instantiated
1040 	 */
1041 	down_write_nested(&key->sem, 1);
1042 	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
1043 	    key->type->revoke)
1044 		key->type->revoke(key);
1045 
1046 	/* set the death time to no more than the expiry time */
1047 	now = current_kernel_time();
1048 	time = now.tv_sec;
1049 	if (key->revoked_at == 0 || key->revoked_at > time) {
1050 		key->revoked_at = time;
1051 		key_schedule_gc(key->revoked_at + key_gc_delay);
1052 	}
1053 
1054 	up_write(&key->sem);
1055 }
1056 EXPORT_SYMBOL(key_revoke);
1057 
1058 /**
1059  * key_invalidate - Invalidate a key.
1060  * @key: The key to be invalidated.
1061  *
1062  * Mark a key as being invalidated and have it cleaned up immediately.  The key
1063  * is ignored by all searches and other operations from this point.
1064  */
1065 void key_invalidate(struct key *key)
1066 {
1067 	kenter("%d", key_serial(key));
1068 
1069 	key_check(key);
1070 
1071 	if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1072 		down_write_nested(&key->sem, 1);
1073 		if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
1074 			key_schedule_gc_links();
1075 		up_write(&key->sem);
1076 	}
1077 }
1078 EXPORT_SYMBOL(key_invalidate);
1079 
1080 /**
1081  * generic_key_instantiate - Simple instantiation of a key from preparsed data
1082  * @key: The key to be instantiated
1083  * @prep: The preparsed data to load.
1084  *
1085  * Instantiate a key from preparsed data.  We assume we can just copy the data
1086  * in directly and clear the old pointers.
1087  *
1088  * This can be pointed to directly by the key type instantiate op pointer.
1089  */
1090 int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1091 {
1092 	int ret;
1093 
1094 	pr_devel("==>%s()\n", __func__);
1095 
1096 	ret = key_payload_reserve(key, prep->quotalen);
1097 	if (ret == 0) {
1098 		rcu_assign_keypointer(key, prep->payload.data[0]);
1099 		key->payload.data[1] = prep->payload.data[1];
1100 		key->payload.data[2] = prep->payload.data[2];
1101 		key->payload.data[3] = prep->payload.data[3];
1102 		prep->payload.data[0] = NULL;
1103 		prep->payload.data[1] = NULL;
1104 		prep->payload.data[2] = NULL;
1105 		prep->payload.data[3] = NULL;
1106 	}
1107 	pr_devel("<==%s() = %d\n", __func__, ret);
1108 	return ret;
1109 }
1110 EXPORT_SYMBOL(generic_key_instantiate);
1111 
1112 /**
1113  * register_key_type - Register a type of key.
1114  * @ktype: The new key type.
1115  *
1116  * Register a new key type.
1117  *
1118  * Returns 0 on success or -EEXIST if a type of this name already exists.
1119  */
1120 int register_key_type(struct key_type *ktype)
1121 {
1122 	struct key_type *p;
1123 	int ret;
1124 
1125 	memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1126 
1127 	ret = -EEXIST;
1128 	down_write(&key_types_sem);
1129 
1130 	/* disallow key types with the same name */
1131 	list_for_each_entry(p, &key_types_list, link) {
1132 		if (strcmp(p->name, ktype->name) == 0)
1133 			goto out;
1134 	}
1135 
1136 	/* store the type */
1137 	list_add(&ktype->link, &key_types_list);
1138 
1139 	pr_notice("Key type %s registered\n", ktype->name);
1140 	ret = 0;
1141 
1142 out:
1143 	up_write(&key_types_sem);
1144 	return ret;
1145 }
1146 EXPORT_SYMBOL(register_key_type);
1147 
1148 /**
1149  * unregister_key_type - Unregister a type of key.
1150  * @ktype: The key type.
1151  *
1152  * Unregister a key type and mark all the extant keys of this type as dead.
1153  * Those keys of this type are then destroyed to get rid of their payloads and
1154  * they and their links will be garbage collected as soon as possible.
1155  */
1156 void unregister_key_type(struct key_type *ktype)
1157 {
1158 	down_write(&key_types_sem);
1159 	list_del_init(&ktype->link);
1160 	downgrade_write(&key_types_sem);
1161 	key_gc_keytype(ktype);
1162 	pr_notice("Key type %s unregistered\n", ktype->name);
1163 	up_read(&key_types_sem);
1164 }
1165 EXPORT_SYMBOL(unregister_key_type);
1166 
1167 /*
1168  * Initialise the key management state.
1169  */
1170 void __init key_init(void)
1171 {
1172 	/* allocate a slab in which we can store keys */
1173 	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1174 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1175 
1176 	/* add the special key types */
1177 	list_add_tail(&key_type_keyring.link, &key_types_list);
1178 	list_add_tail(&key_type_dead.link, &key_types_list);
1179 	list_add_tail(&key_type_user.link, &key_types_list);
1180 	list_add_tail(&key_type_logon.link, &key_types_list);
1181 
1182 	/* record the root user tracking */
1183 	rb_link_node(&root_key_user.node,
1184 		     NULL,
1185 		     &key_user_tree.rb_node);
1186 
1187 	rb_insert_color(&root_key_user.node,
1188 			&key_user_tree);
1189 }
1190