xref: /openbmc/linux/security/keys/key.c (revision ca460cc2)
1 /* Basic authentication token and access key management
2  *
3  * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/poison.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/security.h>
18 #include <linux/workqueue.h>
19 #include <linux/random.h>
20 #include <linux/err.h>
21 #include "internal.h"
22 
23 struct kmem_cache *key_jar;
24 struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
25 DEFINE_SPINLOCK(key_serial_lock);
26 
27 struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
28 DEFINE_SPINLOCK(key_user_lock);
29 
30 unsigned int key_quota_root_maxkeys = 1000000;	/* root's key count quota */
31 unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
32 unsigned int key_quota_maxkeys = 200;		/* general key count quota */
33 unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
34 
35 static LIST_HEAD(key_types_list);
36 static DECLARE_RWSEM(key_types_sem);
37 
38 /* We serialise key instantiation and link */
39 DEFINE_MUTEX(key_construction_mutex);
40 
41 #ifdef KEY_DEBUGGING
42 void __key_check(const struct key *key)
43 {
44 	printk("__key_check: key %p {%08x} should be {%08x}\n",
45 	       key, key->magic, KEY_DEBUG_MAGIC);
46 	BUG();
47 }
48 #endif
49 
50 /*
51  * Get the key quota record for a user, allocating a new record if one doesn't
52  * already exist.
53  */
54 struct key_user *key_user_lookup(kuid_t uid)
55 {
56 	struct key_user *candidate = NULL, *user;
57 	struct rb_node *parent = NULL;
58 	struct rb_node **p;
59 
60 try_again:
61 	p = &key_user_tree.rb_node;
62 	spin_lock(&key_user_lock);
63 
64 	/* search the tree for a user record with a matching UID */
65 	while (*p) {
66 		parent = *p;
67 		user = rb_entry(parent, struct key_user, node);
68 
69 		if (uid_lt(uid, user->uid))
70 			p = &(*p)->rb_left;
71 		else if (uid_gt(uid, user->uid))
72 			p = &(*p)->rb_right;
73 		else
74 			goto found;
75 	}
76 
77 	/* if we get here, we failed to find a match in the tree */
78 	if (!candidate) {
79 		/* allocate a candidate user record if we don't already have
80 		 * one */
81 		spin_unlock(&key_user_lock);
82 
83 		user = NULL;
84 		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
85 		if (unlikely(!candidate))
86 			goto out;
87 
88 		/* the allocation may have scheduled, so we need to repeat the
89 		 * search lest someone else added the record whilst we were
90 		 * asleep */
91 		goto try_again;
92 	}
93 
94 	/* if we get here, then the user record still hadn't appeared on the
95 	 * second pass - so we use the candidate record */
96 	atomic_set(&candidate->usage, 1);
97 	atomic_set(&candidate->nkeys, 0);
98 	atomic_set(&candidate->nikeys, 0);
99 	candidate->uid = uid;
100 	candidate->qnkeys = 0;
101 	candidate->qnbytes = 0;
102 	spin_lock_init(&candidate->lock);
103 	mutex_init(&candidate->cons_lock);
104 
105 	rb_link_node(&candidate->node, parent, p);
106 	rb_insert_color(&candidate->node, &key_user_tree);
107 	spin_unlock(&key_user_lock);
108 	user = candidate;
109 	goto out;
110 
111 	/* okay - we found a user record for this UID */
112 found:
113 	atomic_inc(&user->usage);
114 	spin_unlock(&key_user_lock);
115 	kfree(candidate);
116 out:
117 	return user;
118 }
119 
120 /*
121  * Dispose of a user structure
122  */
123 void key_user_put(struct key_user *user)
124 {
125 	if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
126 		rb_erase(&user->node, &key_user_tree);
127 		spin_unlock(&key_user_lock);
128 
129 		kfree(user);
130 	}
131 }
132 
133 /*
134  * Allocate a serial number for a key.  These are assigned randomly to avoid
135  * security issues through covert channel problems.
136  */
137 static inline void key_alloc_serial(struct key *key)
138 {
139 	struct rb_node *parent, **p;
140 	struct key *xkey;
141 
142 	/* propose a random serial number and look for a hole for it in the
143 	 * serial number tree */
144 	do {
145 		get_random_bytes(&key->serial, sizeof(key->serial));
146 
147 		key->serial >>= 1; /* negative numbers are not permitted */
148 	} while (key->serial < 3);
149 
150 	spin_lock(&key_serial_lock);
151 
152 attempt_insertion:
153 	parent = NULL;
154 	p = &key_serial_tree.rb_node;
155 
156 	while (*p) {
157 		parent = *p;
158 		xkey = rb_entry(parent, struct key, serial_node);
159 
160 		if (key->serial < xkey->serial)
161 			p = &(*p)->rb_left;
162 		else if (key->serial > xkey->serial)
163 			p = &(*p)->rb_right;
164 		else
165 			goto serial_exists;
166 	}
167 
168 	/* we've found a suitable hole - arrange for this key to occupy it */
169 	rb_link_node(&key->serial_node, parent, p);
170 	rb_insert_color(&key->serial_node, &key_serial_tree);
171 
172 	spin_unlock(&key_serial_lock);
173 	return;
174 
175 	/* we found a key with the proposed serial number - walk the tree from
176 	 * that point looking for the next unused serial number */
177 serial_exists:
178 	for (;;) {
179 		key->serial++;
180 		if (key->serial < 3) {
181 			key->serial = 3;
182 			goto attempt_insertion;
183 		}
184 
185 		parent = rb_next(parent);
186 		if (!parent)
187 			goto attempt_insertion;
188 
189 		xkey = rb_entry(parent, struct key, serial_node);
190 		if (key->serial < xkey->serial)
191 			goto attempt_insertion;
192 	}
193 }
194 
195 /**
196  * key_alloc - Allocate a key of the specified type.
197  * @type: The type of key to allocate.
198  * @desc: The key description to allow the key to be searched out.
199  * @uid: The owner of the new key.
200  * @gid: The group ID for the new key's group permissions.
201  * @cred: The credentials specifying UID namespace.
202  * @perm: The permissions mask of the new key.
203  * @flags: Flags specifying quota properties.
204  *
205  * Allocate a key of the specified type with the attributes given.  The key is
206  * returned in an uninstantiated state and the caller needs to instantiate the
207  * key before returning.
208  *
209  * The user's key count quota is updated to reflect the creation of the key and
210  * the user's key data quota has the default for the key type reserved.  The
211  * instantiation function should amend this as necessary.  If insufficient
212  * quota is available, -EDQUOT will be returned.
213  *
214  * The LSM security modules can prevent a key being created, in which case
215  * -EACCES will be returned.
216  *
217  * Returns a pointer to the new key if successful and an error code otherwise.
218  *
219  * Note that the caller needs to ensure the key type isn't uninstantiated.
220  * Internally this can be done by locking key_types_sem.  Externally, this can
221  * be done by either never unregistering the key type, or making sure
222  * key_alloc() calls don't race with module unloading.
223  */
224 struct key *key_alloc(struct key_type *type, const char *desc,
225 		      kuid_t uid, kgid_t gid, const struct cred *cred,
226 		      key_perm_t perm, unsigned long flags)
227 {
228 	struct key_user *user = NULL;
229 	struct key *key;
230 	size_t desclen, quotalen;
231 	int ret;
232 
233 	key = ERR_PTR(-EINVAL);
234 	if (!desc || !*desc)
235 		goto error;
236 
237 	if (type->vet_description) {
238 		ret = type->vet_description(desc);
239 		if (ret < 0) {
240 			key = ERR_PTR(ret);
241 			goto error;
242 		}
243 	}
244 
245 	desclen = strlen(desc);
246 	quotalen = desclen + 1 + type->def_datalen;
247 
248 	/* get hold of the key tracking for this user */
249 	user = key_user_lookup(uid);
250 	if (!user)
251 		goto no_memory_1;
252 
253 	/* check that the user's quota permits allocation of another key and
254 	 * its description */
255 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
256 		unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
257 			key_quota_root_maxkeys : key_quota_maxkeys;
258 		unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
259 			key_quota_root_maxbytes : key_quota_maxbytes;
260 
261 		spin_lock(&user->lock);
262 		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
263 			if (user->qnkeys + 1 >= maxkeys ||
264 			    user->qnbytes + quotalen >= maxbytes ||
265 			    user->qnbytes + quotalen < user->qnbytes)
266 				goto no_quota;
267 		}
268 
269 		user->qnkeys++;
270 		user->qnbytes += quotalen;
271 		spin_unlock(&user->lock);
272 	}
273 
274 	/* allocate and initialise the key and its description */
275 	key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
276 	if (!key)
277 		goto no_memory_2;
278 
279 	if (desc) {
280 		key->index_key.desc_len = desclen;
281 		key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
282 		if (!key->description)
283 			goto no_memory_3;
284 	}
285 
286 	atomic_set(&key->usage, 1);
287 	init_rwsem(&key->sem);
288 	lockdep_set_class(&key->sem, &type->lock_class);
289 	key->index_key.type = type;
290 	key->user = user;
291 	key->quotalen = quotalen;
292 	key->datalen = type->def_datalen;
293 	key->uid = uid;
294 	key->gid = gid;
295 	key->perm = perm;
296 
297 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
298 		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
299 	if (flags & KEY_ALLOC_TRUSTED)
300 		key->flags |= 1 << KEY_FLAG_TRUSTED;
301 
302 #ifdef KEY_DEBUGGING
303 	key->magic = KEY_DEBUG_MAGIC;
304 #endif
305 
306 	/* let the security module know about the key */
307 	ret = security_key_alloc(key, cred, flags);
308 	if (ret < 0)
309 		goto security_error;
310 
311 	/* publish the key by giving it a serial number */
312 	atomic_inc(&user->nkeys);
313 	key_alloc_serial(key);
314 
315 error:
316 	return key;
317 
318 security_error:
319 	kfree(key->description);
320 	kmem_cache_free(key_jar, key);
321 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
322 		spin_lock(&user->lock);
323 		user->qnkeys--;
324 		user->qnbytes -= quotalen;
325 		spin_unlock(&user->lock);
326 	}
327 	key_user_put(user);
328 	key = ERR_PTR(ret);
329 	goto error;
330 
331 no_memory_3:
332 	kmem_cache_free(key_jar, key);
333 no_memory_2:
334 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
335 		spin_lock(&user->lock);
336 		user->qnkeys--;
337 		user->qnbytes -= quotalen;
338 		spin_unlock(&user->lock);
339 	}
340 	key_user_put(user);
341 no_memory_1:
342 	key = ERR_PTR(-ENOMEM);
343 	goto error;
344 
345 no_quota:
346 	spin_unlock(&user->lock);
347 	key_user_put(user);
348 	key = ERR_PTR(-EDQUOT);
349 	goto error;
350 }
351 EXPORT_SYMBOL(key_alloc);
352 
353 /**
354  * key_payload_reserve - Adjust data quota reservation for the key's payload
355  * @key: The key to make the reservation for.
356  * @datalen: The amount of data payload the caller now wants.
357  *
358  * Adjust the amount of the owning user's key data quota that a key reserves.
359  * If the amount is increased, then -EDQUOT may be returned if there isn't
360  * enough free quota available.
361  *
362  * If successful, 0 is returned.
363  */
364 int key_payload_reserve(struct key *key, size_t datalen)
365 {
366 	int delta = (int)datalen - key->datalen;
367 	int ret = 0;
368 
369 	key_check(key);
370 
371 	/* contemplate the quota adjustment */
372 	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
373 		unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
374 			key_quota_root_maxbytes : key_quota_maxbytes;
375 
376 		spin_lock(&key->user->lock);
377 
378 		if (delta > 0 &&
379 		    (key->user->qnbytes + delta >= maxbytes ||
380 		     key->user->qnbytes + delta < key->user->qnbytes)) {
381 			ret = -EDQUOT;
382 		}
383 		else {
384 			key->user->qnbytes += delta;
385 			key->quotalen += delta;
386 		}
387 		spin_unlock(&key->user->lock);
388 	}
389 
390 	/* change the recorded data length if that didn't generate an error */
391 	if (ret == 0)
392 		key->datalen = datalen;
393 
394 	return ret;
395 }
396 EXPORT_SYMBOL(key_payload_reserve);
397 
398 /*
399  * Instantiate a key and link it into the target keyring atomically.  Must be
400  * called with the target keyring's semaphore writelocked.  The target key's
401  * semaphore need not be locked as instantiation is serialised by
402  * key_construction_mutex.
403  */
404 static int __key_instantiate_and_link(struct key *key,
405 				      struct key_preparsed_payload *prep,
406 				      struct key *keyring,
407 				      struct key *authkey,
408 				      struct assoc_array_edit **_edit)
409 {
410 	int ret, awaken;
411 
412 	key_check(key);
413 	key_check(keyring);
414 
415 	awaken = 0;
416 	ret = -EBUSY;
417 
418 	mutex_lock(&key_construction_mutex);
419 
420 	/* can't instantiate twice */
421 	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
422 		/* instantiate the key */
423 		ret = key->type->instantiate(key, prep);
424 
425 		if (ret == 0) {
426 			/* mark the key as being instantiated */
427 			atomic_inc(&key->user->nikeys);
428 			set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
429 
430 			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
431 				awaken = 1;
432 
433 			/* and link it into the destination keyring */
434 			if (keyring)
435 				__key_link(key, _edit);
436 
437 			/* disable the authorisation key */
438 			if (authkey)
439 				key_revoke(authkey);
440 
441 			if (prep->expiry != TIME_T_MAX) {
442 				key->expiry = prep->expiry;
443 				key_schedule_gc(prep->expiry + key_gc_delay);
444 			}
445 		}
446 	}
447 
448 	mutex_unlock(&key_construction_mutex);
449 
450 	/* wake up anyone waiting for a key to be constructed */
451 	if (awaken)
452 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
453 
454 	return ret;
455 }
456 
457 /**
458  * key_instantiate_and_link - Instantiate a key and link it into the keyring.
459  * @key: The key to instantiate.
460  * @data: The data to use to instantiate the keyring.
461  * @datalen: The length of @data.
462  * @keyring: Keyring to create a link in on success (or NULL).
463  * @authkey: The authorisation token permitting instantiation.
464  *
465  * Instantiate a key that's in the uninstantiated state using the provided data
466  * and, if successful, link it in to the destination keyring if one is
467  * supplied.
468  *
469  * If successful, 0 is returned, the authorisation token is revoked and anyone
470  * waiting for the key is woken up.  If the key was already instantiated,
471  * -EBUSY will be returned.
472  */
473 int key_instantiate_and_link(struct key *key,
474 			     const void *data,
475 			     size_t datalen,
476 			     struct key *keyring,
477 			     struct key *authkey)
478 {
479 	struct key_preparsed_payload prep;
480 	struct assoc_array_edit *edit;
481 	int ret;
482 
483 	memset(&prep, 0, sizeof(prep));
484 	prep.data = data;
485 	prep.datalen = datalen;
486 	prep.quotalen = key->type->def_datalen;
487 	prep.expiry = TIME_T_MAX;
488 	if (key->type->preparse) {
489 		ret = key->type->preparse(&prep);
490 		if (ret < 0)
491 			goto error;
492 	}
493 
494 	if (keyring) {
495 		ret = __key_link_begin(keyring, &key->index_key, &edit);
496 		if (ret < 0)
497 			goto error;
498 	}
499 
500 	ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
501 
502 	if (keyring)
503 		__key_link_end(keyring, &key->index_key, edit);
504 
505 error:
506 	if (key->type->preparse)
507 		key->type->free_preparse(&prep);
508 	return ret;
509 }
510 
511 EXPORT_SYMBOL(key_instantiate_and_link);
512 
513 /**
514  * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
515  * @key: The key to instantiate.
516  * @timeout: The timeout on the negative key.
517  * @error: The error to return when the key is hit.
518  * @keyring: Keyring to create a link in on success (or NULL).
519  * @authkey: The authorisation token permitting instantiation.
520  *
521  * Negatively instantiate a key that's in the uninstantiated state and, if
522  * successful, set its timeout and stored error and link it in to the
523  * destination keyring if one is supplied.  The key and any links to the key
524  * will be automatically garbage collected after the timeout expires.
525  *
526  * Negative keys are used to rate limit repeated request_key() calls by causing
527  * them to return the stored error code (typically ENOKEY) until the negative
528  * key expires.
529  *
530  * If successful, 0 is returned, the authorisation token is revoked and anyone
531  * waiting for the key is woken up.  If the key was already instantiated,
532  * -EBUSY will be returned.
533  */
534 int key_reject_and_link(struct key *key,
535 			unsigned timeout,
536 			unsigned error,
537 			struct key *keyring,
538 			struct key *authkey)
539 {
540 	struct assoc_array_edit *edit;
541 	struct timespec now;
542 	int ret, awaken, link_ret = 0;
543 
544 	key_check(key);
545 	key_check(keyring);
546 
547 	awaken = 0;
548 	ret = -EBUSY;
549 
550 	if (keyring)
551 		link_ret = __key_link_begin(keyring, &key->index_key, &edit);
552 
553 	mutex_lock(&key_construction_mutex);
554 
555 	/* can't instantiate twice */
556 	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
557 		/* mark the key as being negatively instantiated */
558 		atomic_inc(&key->user->nikeys);
559 		key->type_data.reject_error = -error;
560 		smp_wmb();
561 		set_bit(KEY_FLAG_NEGATIVE, &key->flags);
562 		set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
563 		now = current_kernel_time();
564 		key->expiry = now.tv_sec + timeout;
565 		key_schedule_gc(key->expiry + key_gc_delay);
566 
567 		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
568 			awaken = 1;
569 
570 		ret = 0;
571 
572 		/* and link it into the destination keyring */
573 		if (keyring && link_ret == 0)
574 			__key_link(key, &edit);
575 
576 		/* disable the authorisation key */
577 		if (authkey)
578 			key_revoke(authkey);
579 	}
580 
581 	mutex_unlock(&key_construction_mutex);
582 
583 	if (keyring)
584 		__key_link_end(keyring, &key->index_key, edit);
585 
586 	/* wake up anyone waiting for a key to be constructed */
587 	if (awaken)
588 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
589 
590 	return ret == 0 ? link_ret : ret;
591 }
592 EXPORT_SYMBOL(key_reject_and_link);
593 
594 /**
595  * key_put - Discard a reference to a key.
596  * @key: The key to discard a reference from.
597  *
598  * Discard a reference to a key, and when all the references are gone, we
599  * schedule the cleanup task to come and pull it out of the tree in process
600  * context at some later time.
601  */
602 void key_put(struct key *key)
603 {
604 	if (key) {
605 		key_check(key);
606 
607 		if (atomic_dec_and_test(&key->usage))
608 			schedule_work(&key_gc_work);
609 	}
610 }
611 EXPORT_SYMBOL(key_put);
612 
613 /*
614  * Find a key by its serial number.
615  */
616 struct key *key_lookup(key_serial_t id)
617 {
618 	struct rb_node *n;
619 	struct key *key;
620 
621 	spin_lock(&key_serial_lock);
622 
623 	/* search the tree for the specified key */
624 	n = key_serial_tree.rb_node;
625 	while (n) {
626 		key = rb_entry(n, struct key, serial_node);
627 
628 		if (id < key->serial)
629 			n = n->rb_left;
630 		else if (id > key->serial)
631 			n = n->rb_right;
632 		else
633 			goto found;
634 	}
635 
636 not_found:
637 	key = ERR_PTR(-ENOKEY);
638 	goto error;
639 
640 found:
641 	/* pretend it doesn't exist if it is awaiting deletion */
642 	if (atomic_read(&key->usage) == 0)
643 		goto not_found;
644 
645 	/* this races with key_put(), but that doesn't matter since key_put()
646 	 * doesn't actually change the key
647 	 */
648 	__key_get(key);
649 
650 error:
651 	spin_unlock(&key_serial_lock);
652 	return key;
653 }
654 
655 /*
656  * Find and lock the specified key type against removal.
657  *
658  * We return with the sem read-locked if successful.  If the type wasn't
659  * available -ENOKEY is returned instead.
660  */
661 struct key_type *key_type_lookup(const char *type)
662 {
663 	struct key_type *ktype;
664 
665 	down_read(&key_types_sem);
666 
667 	/* look up the key type to see if it's one of the registered kernel
668 	 * types */
669 	list_for_each_entry(ktype, &key_types_list, link) {
670 		if (strcmp(ktype->name, type) == 0)
671 			goto found_kernel_type;
672 	}
673 
674 	up_read(&key_types_sem);
675 	ktype = ERR_PTR(-ENOKEY);
676 
677 found_kernel_type:
678 	return ktype;
679 }
680 
681 void key_set_timeout(struct key *key, unsigned timeout)
682 {
683 	struct timespec now;
684 	time_t expiry = 0;
685 
686 	/* make the changes with the locks held to prevent races */
687 	down_write(&key->sem);
688 
689 	if (timeout > 0) {
690 		now = current_kernel_time();
691 		expiry = now.tv_sec + timeout;
692 	}
693 
694 	key->expiry = expiry;
695 	key_schedule_gc(key->expiry + key_gc_delay);
696 
697 	up_write(&key->sem);
698 }
699 EXPORT_SYMBOL_GPL(key_set_timeout);
700 
701 /*
702  * Unlock a key type locked by key_type_lookup().
703  */
704 void key_type_put(struct key_type *ktype)
705 {
706 	up_read(&key_types_sem);
707 }
708 
709 /*
710  * Attempt to update an existing key.
711  *
712  * The key is given to us with an incremented refcount that we need to discard
713  * if we get an error.
714  */
715 static inline key_ref_t __key_update(key_ref_t key_ref,
716 				     struct key_preparsed_payload *prep)
717 {
718 	struct key *key = key_ref_to_ptr(key_ref);
719 	int ret;
720 
721 	/* need write permission on the key to update it */
722 	ret = key_permission(key_ref, KEY_NEED_WRITE);
723 	if (ret < 0)
724 		goto error;
725 
726 	ret = -EEXIST;
727 	if (!key->type->update)
728 		goto error;
729 
730 	down_write(&key->sem);
731 
732 	ret = key->type->update(key, prep);
733 	if (ret == 0)
734 		/* updating a negative key instantiates it */
735 		clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
736 
737 	up_write(&key->sem);
738 
739 	if (ret < 0)
740 		goto error;
741 out:
742 	return key_ref;
743 
744 error:
745 	key_put(key);
746 	key_ref = ERR_PTR(ret);
747 	goto out;
748 }
749 
750 /**
751  * key_create_or_update - Update or create and instantiate a key.
752  * @keyring_ref: A pointer to the destination keyring with possession flag.
753  * @type: The type of key.
754  * @description: The searchable description for the key.
755  * @payload: The data to use to instantiate or update the key.
756  * @plen: The length of @payload.
757  * @perm: The permissions mask for a new key.
758  * @flags: The quota flags for a new key.
759  *
760  * Search the destination keyring for a key of the same description and if one
761  * is found, update it, otherwise create and instantiate a new one and create a
762  * link to it from that keyring.
763  *
764  * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
765  * concocted.
766  *
767  * Returns a pointer to the new key if successful, -ENODEV if the key type
768  * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
769  * caller isn't permitted to modify the keyring or the LSM did not permit
770  * creation of the key.
771  *
772  * On success, the possession flag from the keyring ref will be tacked on to
773  * the key ref before it is returned.
774  */
775 key_ref_t key_create_or_update(key_ref_t keyring_ref,
776 			       const char *type,
777 			       const char *description,
778 			       const void *payload,
779 			       size_t plen,
780 			       key_perm_t perm,
781 			       unsigned long flags)
782 {
783 	struct keyring_index_key index_key = {
784 		.description	= description,
785 	};
786 	struct key_preparsed_payload prep;
787 	struct assoc_array_edit *edit;
788 	const struct cred *cred = current_cred();
789 	struct key *keyring, *key = NULL;
790 	key_ref_t key_ref;
791 	int ret;
792 
793 	/* look up the key type to see if it's one of the registered kernel
794 	 * types */
795 	index_key.type = key_type_lookup(type);
796 	if (IS_ERR(index_key.type)) {
797 		key_ref = ERR_PTR(-ENODEV);
798 		goto error;
799 	}
800 
801 	key_ref = ERR_PTR(-EINVAL);
802 	if (!index_key.type->instantiate ||
803 	    (!index_key.description && !index_key.type->preparse))
804 		goto error_put_type;
805 
806 	keyring = key_ref_to_ptr(keyring_ref);
807 
808 	key_check(keyring);
809 
810 	key_ref = ERR_PTR(-ENOTDIR);
811 	if (keyring->type != &key_type_keyring)
812 		goto error_put_type;
813 
814 	memset(&prep, 0, sizeof(prep));
815 	prep.data = payload;
816 	prep.datalen = plen;
817 	prep.quotalen = index_key.type->def_datalen;
818 	prep.trusted = flags & KEY_ALLOC_TRUSTED;
819 	prep.expiry = TIME_T_MAX;
820 	if (index_key.type->preparse) {
821 		ret = index_key.type->preparse(&prep);
822 		if (ret < 0) {
823 			key_ref = ERR_PTR(ret);
824 			goto error_free_prep;
825 		}
826 		if (!index_key.description)
827 			index_key.description = prep.description;
828 		key_ref = ERR_PTR(-EINVAL);
829 		if (!index_key.description)
830 			goto error_free_prep;
831 	}
832 	index_key.desc_len = strlen(index_key.description);
833 
834 	key_ref = ERR_PTR(-EPERM);
835 	if (!prep.trusted && test_bit(KEY_FLAG_TRUSTED_ONLY, &keyring->flags))
836 		goto error_free_prep;
837 	flags |= prep.trusted ? KEY_ALLOC_TRUSTED : 0;
838 
839 	ret = __key_link_begin(keyring, &index_key, &edit);
840 	if (ret < 0) {
841 		key_ref = ERR_PTR(ret);
842 		goto error_free_prep;
843 	}
844 
845 	/* if we're going to allocate a new key, we're going to have
846 	 * to modify the keyring */
847 	ret = key_permission(keyring_ref, KEY_NEED_WRITE);
848 	if (ret < 0) {
849 		key_ref = ERR_PTR(ret);
850 		goto error_link_end;
851 	}
852 
853 	/* if it's possible to update this type of key, search for an existing
854 	 * key of the same type and description in the destination keyring and
855 	 * update that instead if possible
856 	 */
857 	if (index_key.type->update) {
858 		key_ref = find_key_to_update(keyring_ref, &index_key);
859 		if (key_ref)
860 			goto found_matching_key;
861 	}
862 
863 	/* if the client doesn't provide, decide on the permissions we want */
864 	if (perm == KEY_PERM_UNDEF) {
865 		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
866 		perm |= KEY_USR_VIEW;
867 
868 		if (index_key.type->read)
869 			perm |= KEY_POS_READ;
870 
871 		if (index_key.type == &key_type_keyring ||
872 		    index_key.type->update)
873 			perm |= KEY_POS_WRITE;
874 	}
875 
876 	/* allocate a new key */
877 	key = key_alloc(index_key.type, index_key.description,
878 			cred->fsuid, cred->fsgid, cred, perm, flags);
879 	if (IS_ERR(key)) {
880 		key_ref = ERR_CAST(key);
881 		goto error_link_end;
882 	}
883 
884 	/* instantiate it and link it into the target keyring */
885 	ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
886 	if (ret < 0) {
887 		key_put(key);
888 		key_ref = ERR_PTR(ret);
889 		goto error_link_end;
890 	}
891 
892 	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
893 
894 error_link_end:
895 	__key_link_end(keyring, &index_key, edit);
896 error_free_prep:
897 	if (index_key.type->preparse)
898 		index_key.type->free_preparse(&prep);
899 error_put_type:
900 	key_type_put(index_key.type);
901 error:
902 	return key_ref;
903 
904  found_matching_key:
905 	/* we found a matching key, so we're going to try to update it
906 	 * - we can drop the locks first as we have the key pinned
907 	 */
908 	__key_link_end(keyring, &index_key, edit);
909 
910 	key_ref = __key_update(key_ref, &prep);
911 	goto error_free_prep;
912 }
913 EXPORT_SYMBOL(key_create_or_update);
914 
915 /**
916  * key_update - Update a key's contents.
917  * @key_ref: The pointer (plus possession flag) to the key.
918  * @payload: The data to be used to update the key.
919  * @plen: The length of @payload.
920  *
921  * Attempt to update the contents of a key with the given payload data.  The
922  * caller must be granted Write permission on the key.  Negative keys can be
923  * instantiated by this method.
924  *
925  * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
926  * type does not support updating.  The key type may return other errors.
927  */
928 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
929 {
930 	struct key_preparsed_payload prep;
931 	struct key *key = key_ref_to_ptr(key_ref);
932 	int ret;
933 
934 	key_check(key);
935 
936 	/* the key must be writable */
937 	ret = key_permission(key_ref, KEY_NEED_WRITE);
938 	if (ret < 0)
939 		goto error;
940 
941 	/* attempt to update it if supported */
942 	ret = -EOPNOTSUPP;
943 	if (!key->type->update)
944 		goto error;
945 
946 	memset(&prep, 0, sizeof(prep));
947 	prep.data = payload;
948 	prep.datalen = plen;
949 	prep.quotalen = key->type->def_datalen;
950 	prep.expiry = TIME_T_MAX;
951 	if (key->type->preparse) {
952 		ret = key->type->preparse(&prep);
953 		if (ret < 0)
954 			goto error;
955 	}
956 
957 	down_write(&key->sem);
958 
959 	ret = key->type->update(key, &prep);
960 	if (ret == 0)
961 		/* updating a negative key instantiates it */
962 		clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
963 
964 	up_write(&key->sem);
965 
966 error:
967 	if (key->type->preparse)
968 		key->type->free_preparse(&prep);
969 	return ret;
970 }
971 EXPORT_SYMBOL(key_update);
972 
973 /**
974  * key_revoke - Revoke a key.
975  * @key: The key to be revoked.
976  *
977  * Mark a key as being revoked and ask the type to free up its resources.  The
978  * revocation timeout is set and the key and all its links will be
979  * automatically garbage collected after key_gc_delay amount of time if they
980  * are not manually dealt with first.
981  */
982 void key_revoke(struct key *key)
983 {
984 	struct timespec now;
985 	time_t time;
986 
987 	key_check(key);
988 
989 	/* make sure no one's trying to change or use the key when we mark it
990 	 * - we tell lockdep that we might nest because we might be revoking an
991 	 *   authorisation key whilst holding the sem on a key we've just
992 	 *   instantiated
993 	 */
994 	down_write_nested(&key->sem, 1);
995 	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
996 	    key->type->revoke)
997 		key->type->revoke(key);
998 
999 	/* set the death time to no more than the expiry time */
1000 	now = current_kernel_time();
1001 	time = now.tv_sec;
1002 	if (key->revoked_at == 0 || key->revoked_at > time) {
1003 		key->revoked_at = time;
1004 		key_schedule_gc(key->revoked_at + key_gc_delay);
1005 	}
1006 
1007 	up_write(&key->sem);
1008 }
1009 EXPORT_SYMBOL(key_revoke);
1010 
1011 /**
1012  * key_invalidate - Invalidate a key.
1013  * @key: The key to be invalidated.
1014  *
1015  * Mark a key as being invalidated and have it cleaned up immediately.  The key
1016  * is ignored by all searches and other operations from this point.
1017  */
1018 void key_invalidate(struct key *key)
1019 {
1020 	kenter("%d", key_serial(key));
1021 
1022 	key_check(key);
1023 
1024 	if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1025 		down_write_nested(&key->sem, 1);
1026 		if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
1027 			key_schedule_gc_links();
1028 		up_write(&key->sem);
1029 	}
1030 }
1031 EXPORT_SYMBOL(key_invalidate);
1032 
1033 /**
1034  * generic_key_instantiate - Simple instantiation of a key from preparsed data
1035  * @key: The key to be instantiated
1036  * @prep: The preparsed data to load.
1037  *
1038  * Instantiate a key from preparsed data.  We assume we can just copy the data
1039  * in directly and clear the old pointers.
1040  *
1041  * This can be pointed to directly by the key type instantiate op pointer.
1042  */
1043 int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1044 {
1045 	int ret;
1046 
1047 	pr_devel("==>%s()\n", __func__);
1048 
1049 	ret = key_payload_reserve(key, prep->quotalen);
1050 	if (ret == 0) {
1051 		key->type_data.p[0] = prep->type_data[0];
1052 		key->type_data.p[1] = prep->type_data[1];
1053 		rcu_assign_keypointer(key, prep->payload[0]);
1054 		key->payload.data2[1] = prep->payload[1];
1055 		prep->type_data[0] = NULL;
1056 		prep->type_data[1] = NULL;
1057 		prep->payload[0] = NULL;
1058 		prep->payload[1] = NULL;
1059 	}
1060 	pr_devel("<==%s() = %d\n", __func__, ret);
1061 	return ret;
1062 }
1063 EXPORT_SYMBOL(generic_key_instantiate);
1064 
1065 /**
1066  * register_key_type - Register a type of key.
1067  * @ktype: The new key type.
1068  *
1069  * Register a new key type.
1070  *
1071  * Returns 0 on success or -EEXIST if a type of this name already exists.
1072  */
1073 int register_key_type(struct key_type *ktype)
1074 {
1075 	struct key_type *p;
1076 	int ret;
1077 
1078 	memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1079 
1080 	ret = -EEXIST;
1081 	down_write(&key_types_sem);
1082 
1083 	/* disallow key types with the same name */
1084 	list_for_each_entry(p, &key_types_list, link) {
1085 		if (strcmp(p->name, ktype->name) == 0)
1086 			goto out;
1087 	}
1088 
1089 	/* store the type */
1090 	list_add(&ktype->link, &key_types_list);
1091 
1092 	pr_notice("Key type %s registered\n", ktype->name);
1093 	ret = 0;
1094 
1095 out:
1096 	up_write(&key_types_sem);
1097 	return ret;
1098 }
1099 EXPORT_SYMBOL(register_key_type);
1100 
1101 /**
1102  * unregister_key_type - Unregister a type of key.
1103  * @ktype: The key type.
1104  *
1105  * Unregister a key type and mark all the extant keys of this type as dead.
1106  * Those keys of this type are then destroyed to get rid of their payloads and
1107  * they and their links will be garbage collected as soon as possible.
1108  */
1109 void unregister_key_type(struct key_type *ktype)
1110 {
1111 	down_write(&key_types_sem);
1112 	list_del_init(&ktype->link);
1113 	downgrade_write(&key_types_sem);
1114 	key_gc_keytype(ktype);
1115 	pr_notice("Key type %s unregistered\n", ktype->name);
1116 	up_read(&key_types_sem);
1117 }
1118 EXPORT_SYMBOL(unregister_key_type);
1119 
1120 /*
1121  * Initialise the key management state.
1122  */
1123 void __init key_init(void)
1124 {
1125 	/* allocate a slab in which we can store keys */
1126 	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1127 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1128 
1129 	/* add the special key types */
1130 	list_add_tail(&key_type_keyring.link, &key_types_list);
1131 	list_add_tail(&key_type_dead.link, &key_types_list);
1132 	list_add_tail(&key_type_user.link, &key_types_list);
1133 	list_add_tail(&key_type_logon.link, &key_types_list);
1134 
1135 	/* record the root user tracking */
1136 	rb_link_node(&root_key_user.node,
1137 		     NULL,
1138 		     &key_user_tree.rb_node);
1139 
1140 	rb_insert_color(&root_key_user.node,
1141 			&key_user_tree);
1142 }
1143