1 /* Basic authentication token and access key management 2 * 3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved. 4 * Written by David Howells (dhowells@redhat.com) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/poison.h> 15 #include <linux/sched.h> 16 #include <linux/slab.h> 17 #include <linux/security.h> 18 #include <linux/workqueue.h> 19 #include <linux/random.h> 20 #include <linux/err.h> 21 #include "internal.h" 22 23 struct kmem_cache *key_jar; 24 struct rb_root key_serial_tree; /* tree of keys indexed by serial */ 25 DEFINE_SPINLOCK(key_serial_lock); 26 27 struct rb_root key_user_tree; /* tree of quota records indexed by UID */ 28 DEFINE_SPINLOCK(key_user_lock); 29 30 unsigned int key_quota_root_maxkeys = 1000000; /* root's key count quota */ 31 unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */ 32 unsigned int key_quota_maxkeys = 200; /* general key count quota */ 33 unsigned int key_quota_maxbytes = 20000; /* general key space quota */ 34 35 static LIST_HEAD(key_types_list); 36 static DECLARE_RWSEM(key_types_sem); 37 38 /* We serialise key instantiation and link */ 39 DEFINE_MUTEX(key_construction_mutex); 40 41 #ifdef KEY_DEBUGGING 42 void __key_check(const struct key *key) 43 { 44 printk("__key_check: key %p {%08x} should be {%08x}\n", 45 key, key->magic, KEY_DEBUG_MAGIC); 46 BUG(); 47 } 48 #endif 49 50 /* 51 * Get the key quota record for a user, allocating a new record if one doesn't 52 * already exist. 53 */ 54 struct key_user *key_user_lookup(kuid_t uid) 55 { 56 struct key_user *candidate = NULL, *user; 57 struct rb_node *parent = NULL; 58 struct rb_node **p; 59 60 try_again: 61 p = &key_user_tree.rb_node; 62 spin_lock(&key_user_lock); 63 64 /* search the tree for a user record with a matching UID */ 65 while (*p) { 66 parent = *p; 67 user = rb_entry(parent, struct key_user, node); 68 69 if (uid_lt(uid, user->uid)) 70 p = &(*p)->rb_left; 71 else if (uid_gt(uid, user->uid)) 72 p = &(*p)->rb_right; 73 else 74 goto found; 75 } 76 77 /* if we get here, we failed to find a match in the tree */ 78 if (!candidate) { 79 /* allocate a candidate user record if we don't already have 80 * one */ 81 spin_unlock(&key_user_lock); 82 83 user = NULL; 84 candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL); 85 if (unlikely(!candidate)) 86 goto out; 87 88 /* the allocation may have scheduled, so we need to repeat the 89 * search lest someone else added the record whilst we were 90 * asleep */ 91 goto try_again; 92 } 93 94 /* if we get here, then the user record still hadn't appeared on the 95 * second pass - so we use the candidate record */ 96 atomic_set(&candidate->usage, 1); 97 atomic_set(&candidate->nkeys, 0); 98 atomic_set(&candidate->nikeys, 0); 99 candidate->uid = uid; 100 candidate->qnkeys = 0; 101 candidate->qnbytes = 0; 102 spin_lock_init(&candidate->lock); 103 mutex_init(&candidate->cons_lock); 104 105 rb_link_node(&candidate->node, parent, p); 106 rb_insert_color(&candidate->node, &key_user_tree); 107 spin_unlock(&key_user_lock); 108 user = candidate; 109 goto out; 110 111 /* okay - we found a user record for this UID */ 112 found: 113 atomic_inc(&user->usage); 114 spin_unlock(&key_user_lock); 115 kfree(candidate); 116 out: 117 return user; 118 } 119 120 /* 121 * Dispose of a user structure 122 */ 123 void key_user_put(struct key_user *user) 124 { 125 if (atomic_dec_and_lock(&user->usage, &key_user_lock)) { 126 rb_erase(&user->node, &key_user_tree); 127 spin_unlock(&key_user_lock); 128 129 kfree(user); 130 } 131 } 132 133 /* 134 * Allocate a serial number for a key. These are assigned randomly to avoid 135 * security issues through covert channel problems. 136 */ 137 static inline void key_alloc_serial(struct key *key) 138 { 139 struct rb_node *parent, **p; 140 struct key *xkey; 141 142 /* propose a random serial number and look for a hole for it in the 143 * serial number tree */ 144 do { 145 get_random_bytes(&key->serial, sizeof(key->serial)); 146 147 key->serial >>= 1; /* negative numbers are not permitted */ 148 } while (key->serial < 3); 149 150 spin_lock(&key_serial_lock); 151 152 attempt_insertion: 153 parent = NULL; 154 p = &key_serial_tree.rb_node; 155 156 while (*p) { 157 parent = *p; 158 xkey = rb_entry(parent, struct key, serial_node); 159 160 if (key->serial < xkey->serial) 161 p = &(*p)->rb_left; 162 else if (key->serial > xkey->serial) 163 p = &(*p)->rb_right; 164 else 165 goto serial_exists; 166 } 167 168 /* we've found a suitable hole - arrange for this key to occupy it */ 169 rb_link_node(&key->serial_node, parent, p); 170 rb_insert_color(&key->serial_node, &key_serial_tree); 171 172 spin_unlock(&key_serial_lock); 173 return; 174 175 /* we found a key with the proposed serial number - walk the tree from 176 * that point looking for the next unused serial number */ 177 serial_exists: 178 for (;;) { 179 key->serial++; 180 if (key->serial < 3) { 181 key->serial = 3; 182 goto attempt_insertion; 183 } 184 185 parent = rb_next(parent); 186 if (!parent) 187 goto attempt_insertion; 188 189 xkey = rb_entry(parent, struct key, serial_node); 190 if (key->serial < xkey->serial) 191 goto attempt_insertion; 192 } 193 } 194 195 /** 196 * key_alloc - Allocate a key of the specified type. 197 * @type: The type of key to allocate. 198 * @desc: The key description to allow the key to be searched out. 199 * @uid: The owner of the new key. 200 * @gid: The group ID for the new key's group permissions. 201 * @cred: The credentials specifying UID namespace. 202 * @perm: The permissions mask of the new key. 203 * @flags: Flags specifying quota properties. 204 * 205 * Allocate a key of the specified type with the attributes given. The key is 206 * returned in an uninstantiated state and the caller needs to instantiate the 207 * key before returning. 208 * 209 * The user's key count quota is updated to reflect the creation of the key and 210 * the user's key data quota has the default for the key type reserved. The 211 * instantiation function should amend this as necessary. If insufficient 212 * quota is available, -EDQUOT will be returned. 213 * 214 * The LSM security modules can prevent a key being created, in which case 215 * -EACCES will be returned. 216 * 217 * Returns a pointer to the new key if successful and an error code otherwise. 218 * 219 * Note that the caller needs to ensure the key type isn't uninstantiated. 220 * Internally this can be done by locking key_types_sem. Externally, this can 221 * be done by either never unregistering the key type, or making sure 222 * key_alloc() calls don't race with module unloading. 223 */ 224 struct key *key_alloc(struct key_type *type, const char *desc, 225 kuid_t uid, kgid_t gid, const struct cred *cred, 226 key_perm_t perm, unsigned long flags) 227 { 228 struct key_user *user = NULL; 229 struct key *key; 230 size_t desclen, quotalen; 231 int ret; 232 233 key = ERR_PTR(-EINVAL); 234 if (!desc || !*desc) 235 goto error; 236 237 if (type->vet_description) { 238 ret = type->vet_description(desc); 239 if (ret < 0) { 240 key = ERR_PTR(ret); 241 goto error; 242 } 243 } 244 245 desclen = strlen(desc); 246 quotalen = desclen + 1 + type->def_datalen; 247 248 /* get hold of the key tracking for this user */ 249 user = key_user_lookup(uid); 250 if (!user) 251 goto no_memory_1; 252 253 /* check that the user's quota permits allocation of another key and 254 * its description */ 255 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { 256 unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ? 257 key_quota_root_maxkeys : key_quota_maxkeys; 258 unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ? 259 key_quota_root_maxbytes : key_quota_maxbytes; 260 261 spin_lock(&user->lock); 262 if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) { 263 if (user->qnkeys + 1 >= maxkeys || 264 user->qnbytes + quotalen >= maxbytes || 265 user->qnbytes + quotalen < user->qnbytes) 266 goto no_quota; 267 } 268 269 user->qnkeys++; 270 user->qnbytes += quotalen; 271 spin_unlock(&user->lock); 272 } 273 274 /* allocate and initialise the key and its description */ 275 key = kmem_cache_zalloc(key_jar, GFP_KERNEL); 276 if (!key) 277 goto no_memory_2; 278 279 if (desc) { 280 key->index_key.desc_len = desclen; 281 key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL); 282 if (!key->description) 283 goto no_memory_3; 284 } 285 286 atomic_set(&key->usage, 1); 287 init_rwsem(&key->sem); 288 lockdep_set_class(&key->sem, &type->lock_class); 289 key->index_key.type = type; 290 key->user = user; 291 key->quotalen = quotalen; 292 key->datalen = type->def_datalen; 293 key->uid = uid; 294 key->gid = gid; 295 key->perm = perm; 296 297 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) 298 key->flags |= 1 << KEY_FLAG_IN_QUOTA; 299 if (flags & KEY_ALLOC_TRUSTED) 300 key->flags |= 1 << KEY_FLAG_TRUSTED; 301 302 #ifdef KEY_DEBUGGING 303 key->magic = KEY_DEBUG_MAGIC; 304 #endif 305 306 /* let the security module know about the key */ 307 ret = security_key_alloc(key, cred, flags); 308 if (ret < 0) 309 goto security_error; 310 311 /* publish the key by giving it a serial number */ 312 atomic_inc(&user->nkeys); 313 key_alloc_serial(key); 314 315 error: 316 return key; 317 318 security_error: 319 kfree(key->description); 320 kmem_cache_free(key_jar, key); 321 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { 322 spin_lock(&user->lock); 323 user->qnkeys--; 324 user->qnbytes -= quotalen; 325 spin_unlock(&user->lock); 326 } 327 key_user_put(user); 328 key = ERR_PTR(ret); 329 goto error; 330 331 no_memory_3: 332 kmem_cache_free(key_jar, key); 333 no_memory_2: 334 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { 335 spin_lock(&user->lock); 336 user->qnkeys--; 337 user->qnbytes -= quotalen; 338 spin_unlock(&user->lock); 339 } 340 key_user_put(user); 341 no_memory_1: 342 key = ERR_PTR(-ENOMEM); 343 goto error; 344 345 no_quota: 346 spin_unlock(&user->lock); 347 key_user_put(user); 348 key = ERR_PTR(-EDQUOT); 349 goto error; 350 } 351 EXPORT_SYMBOL(key_alloc); 352 353 /** 354 * key_payload_reserve - Adjust data quota reservation for the key's payload 355 * @key: The key to make the reservation for. 356 * @datalen: The amount of data payload the caller now wants. 357 * 358 * Adjust the amount of the owning user's key data quota that a key reserves. 359 * If the amount is increased, then -EDQUOT may be returned if there isn't 360 * enough free quota available. 361 * 362 * If successful, 0 is returned. 363 */ 364 int key_payload_reserve(struct key *key, size_t datalen) 365 { 366 int delta = (int)datalen - key->datalen; 367 int ret = 0; 368 369 key_check(key); 370 371 /* contemplate the quota adjustment */ 372 if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) { 373 unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ? 374 key_quota_root_maxbytes : key_quota_maxbytes; 375 376 spin_lock(&key->user->lock); 377 378 if (delta > 0 && 379 (key->user->qnbytes + delta >= maxbytes || 380 key->user->qnbytes + delta < key->user->qnbytes)) { 381 ret = -EDQUOT; 382 } 383 else { 384 key->user->qnbytes += delta; 385 key->quotalen += delta; 386 } 387 spin_unlock(&key->user->lock); 388 } 389 390 /* change the recorded data length if that didn't generate an error */ 391 if (ret == 0) 392 key->datalen = datalen; 393 394 return ret; 395 } 396 EXPORT_SYMBOL(key_payload_reserve); 397 398 /* 399 * Instantiate a key and link it into the target keyring atomically. Must be 400 * called with the target keyring's semaphore writelocked. The target key's 401 * semaphore need not be locked as instantiation is serialised by 402 * key_construction_mutex. 403 */ 404 static int __key_instantiate_and_link(struct key *key, 405 struct key_preparsed_payload *prep, 406 struct key *keyring, 407 struct key *authkey, 408 struct assoc_array_edit **_edit) 409 { 410 int ret, awaken; 411 412 key_check(key); 413 key_check(keyring); 414 415 awaken = 0; 416 ret = -EBUSY; 417 418 mutex_lock(&key_construction_mutex); 419 420 /* can't instantiate twice */ 421 if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) { 422 /* instantiate the key */ 423 ret = key->type->instantiate(key, prep); 424 425 if (ret == 0) { 426 /* mark the key as being instantiated */ 427 atomic_inc(&key->user->nikeys); 428 set_bit(KEY_FLAG_INSTANTIATED, &key->flags); 429 430 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) 431 awaken = 1; 432 433 /* and link it into the destination keyring */ 434 if (keyring) 435 __key_link(key, _edit); 436 437 /* disable the authorisation key */ 438 if (authkey) 439 key_revoke(authkey); 440 441 if (prep->expiry != TIME_T_MAX) { 442 key->expiry = prep->expiry; 443 key_schedule_gc(prep->expiry + key_gc_delay); 444 } 445 } 446 } 447 448 mutex_unlock(&key_construction_mutex); 449 450 /* wake up anyone waiting for a key to be constructed */ 451 if (awaken) 452 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT); 453 454 return ret; 455 } 456 457 /** 458 * key_instantiate_and_link - Instantiate a key and link it into the keyring. 459 * @key: The key to instantiate. 460 * @data: The data to use to instantiate the keyring. 461 * @datalen: The length of @data. 462 * @keyring: Keyring to create a link in on success (or NULL). 463 * @authkey: The authorisation token permitting instantiation. 464 * 465 * Instantiate a key that's in the uninstantiated state using the provided data 466 * and, if successful, link it in to the destination keyring if one is 467 * supplied. 468 * 469 * If successful, 0 is returned, the authorisation token is revoked and anyone 470 * waiting for the key is woken up. If the key was already instantiated, 471 * -EBUSY will be returned. 472 */ 473 int key_instantiate_and_link(struct key *key, 474 const void *data, 475 size_t datalen, 476 struct key *keyring, 477 struct key *authkey) 478 { 479 struct key_preparsed_payload prep; 480 struct assoc_array_edit *edit; 481 int ret; 482 483 memset(&prep, 0, sizeof(prep)); 484 prep.data = data; 485 prep.datalen = datalen; 486 prep.quotalen = key->type->def_datalen; 487 prep.expiry = TIME_T_MAX; 488 if (key->type->preparse) { 489 ret = key->type->preparse(&prep); 490 if (ret < 0) 491 goto error; 492 } 493 494 if (keyring) { 495 ret = __key_link_begin(keyring, &key->index_key, &edit); 496 if (ret < 0) 497 goto error; 498 } 499 500 ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit); 501 502 if (keyring) 503 __key_link_end(keyring, &key->index_key, edit); 504 505 error: 506 if (key->type->preparse) 507 key->type->free_preparse(&prep); 508 return ret; 509 } 510 511 EXPORT_SYMBOL(key_instantiate_and_link); 512 513 /** 514 * key_reject_and_link - Negatively instantiate a key and link it into the keyring. 515 * @key: The key to instantiate. 516 * @timeout: The timeout on the negative key. 517 * @error: The error to return when the key is hit. 518 * @keyring: Keyring to create a link in on success (or NULL). 519 * @authkey: The authorisation token permitting instantiation. 520 * 521 * Negatively instantiate a key that's in the uninstantiated state and, if 522 * successful, set its timeout and stored error and link it in to the 523 * destination keyring if one is supplied. The key and any links to the key 524 * will be automatically garbage collected after the timeout expires. 525 * 526 * Negative keys are used to rate limit repeated request_key() calls by causing 527 * them to return the stored error code (typically ENOKEY) until the negative 528 * key expires. 529 * 530 * If successful, 0 is returned, the authorisation token is revoked and anyone 531 * waiting for the key is woken up. If the key was already instantiated, 532 * -EBUSY will be returned. 533 */ 534 int key_reject_and_link(struct key *key, 535 unsigned timeout, 536 unsigned error, 537 struct key *keyring, 538 struct key *authkey) 539 { 540 struct assoc_array_edit *edit; 541 struct timespec now; 542 int ret, awaken, link_ret = 0; 543 544 key_check(key); 545 key_check(keyring); 546 547 awaken = 0; 548 ret = -EBUSY; 549 550 if (keyring) 551 link_ret = __key_link_begin(keyring, &key->index_key, &edit); 552 553 mutex_lock(&key_construction_mutex); 554 555 /* can't instantiate twice */ 556 if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) { 557 /* mark the key as being negatively instantiated */ 558 atomic_inc(&key->user->nikeys); 559 key->type_data.reject_error = -error; 560 smp_wmb(); 561 set_bit(KEY_FLAG_NEGATIVE, &key->flags); 562 set_bit(KEY_FLAG_INSTANTIATED, &key->flags); 563 now = current_kernel_time(); 564 key->expiry = now.tv_sec + timeout; 565 key_schedule_gc(key->expiry + key_gc_delay); 566 567 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) 568 awaken = 1; 569 570 ret = 0; 571 572 /* and link it into the destination keyring */ 573 if (keyring && link_ret == 0) 574 __key_link(key, &edit); 575 576 /* disable the authorisation key */ 577 if (authkey) 578 key_revoke(authkey); 579 } 580 581 mutex_unlock(&key_construction_mutex); 582 583 if (keyring) 584 __key_link_end(keyring, &key->index_key, edit); 585 586 /* wake up anyone waiting for a key to be constructed */ 587 if (awaken) 588 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT); 589 590 return ret == 0 ? link_ret : ret; 591 } 592 EXPORT_SYMBOL(key_reject_and_link); 593 594 /** 595 * key_put - Discard a reference to a key. 596 * @key: The key to discard a reference from. 597 * 598 * Discard a reference to a key, and when all the references are gone, we 599 * schedule the cleanup task to come and pull it out of the tree in process 600 * context at some later time. 601 */ 602 void key_put(struct key *key) 603 { 604 if (key) { 605 key_check(key); 606 607 if (atomic_dec_and_test(&key->usage)) 608 schedule_work(&key_gc_work); 609 } 610 } 611 EXPORT_SYMBOL(key_put); 612 613 /* 614 * Find a key by its serial number. 615 */ 616 struct key *key_lookup(key_serial_t id) 617 { 618 struct rb_node *n; 619 struct key *key; 620 621 spin_lock(&key_serial_lock); 622 623 /* search the tree for the specified key */ 624 n = key_serial_tree.rb_node; 625 while (n) { 626 key = rb_entry(n, struct key, serial_node); 627 628 if (id < key->serial) 629 n = n->rb_left; 630 else if (id > key->serial) 631 n = n->rb_right; 632 else 633 goto found; 634 } 635 636 not_found: 637 key = ERR_PTR(-ENOKEY); 638 goto error; 639 640 found: 641 /* pretend it doesn't exist if it is awaiting deletion */ 642 if (atomic_read(&key->usage) == 0) 643 goto not_found; 644 645 /* this races with key_put(), but that doesn't matter since key_put() 646 * doesn't actually change the key 647 */ 648 __key_get(key); 649 650 error: 651 spin_unlock(&key_serial_lock); 652 return key; 653 } 654 655 /* 656 * Find and lock the specified key type against removal. 657 * 658 * We return with the sem read-locked if successful. If the type wasn't 659 * available -ENOKEY is returned instead. 660 */ 661 struct key_type *key_type_lookup(const char *type) 662 { 663 struct key_type *ktype; 664 665 down_read(&key_types_sem); 666 667 /* look up the key type to see if it's one of the registered kernel 668 * types */ 669 list_for_each_entry(ktype, &key_types_list, link) { 670 if (strcmp(ktype->name, type) == 0) 671 goto found_kernel_type; 672 } 673 674 up_read(&key_types_sem); 675 ktype = ERR_PTR(-ENOKEY); 676 677 found_kernel_type: 678 return ktype; 679 } 680 681 void key_set_timeout(struct key *key, unsigned timeout) 682 { 683 struct timespec now; 684 time_t expiry = 0; 685 686 /* make the changes with the locks held to prevent races */ 687 down_write(&key->sem); 688 689 if (timeout > 0) { 690 now = current_kernel_time(); 691 expiry = now.tv_sec + timeout; 692 } 693 694 key->expiry = expiry; 695 key_schedule_gc(key->expiry + key_gc_delay); 696 697 up_write(&key->sem); 698 } 699 EXPORT_SYMBOL_GPL(key_set_timeout); 700 701 /* 702 * Unlock a key type locked by key_type_lookup(). 703 */ 704 void key_type_put(struct key_type *ktype) 705 { 706 up_read(&key_types_sem); 707 } 708 709 /* 710 * Attempt to update an existing key. 711 * 712 * The key is given to us with an incremented refcount that we need to discard 713 * if we get an error. 714 */ 715 static inline key_ref_t __key_update(key_ref_t key_ref, 716 struct key_preparsed_payload *prep) 717 { 718 struct key *key = key_ref_to_ptr(key_ref); 719 int ret; 720 721 /* need write permission on the key to update it */ 722 ret = key_permission(key_ref, KEY_NEED_WRITE); 723 if (ret < 0) 724 goto error; 725 726 ret = -EEXIST; 727 if (!key->type->update) 728 goto error; 729 730 down_write(&key->sem); 731 732 ret = key->type->update(key, prep); 733 if (ret == 0) 734 /* updating a negative key instantiates it */ 735 clear_bit(KEY_FLAG_NEGATIVE, &key->flags); 736 737 up_write(&key->sem); 738 739 if (ret < 0) 740 goto error; 741 out: 742 return key_ref; 743 744 error: 745 key_put(key); 746 key_ref = ERR_PTR(ret); 747 goto out; 748 } 749 750 /** 751 * key_create_or_update - Update or create and instantiate a key. 752 * @keyring_ref: A pointer to the destination keyring with possession flag. 753 * @type: The type of key. 754 * @description: The searchable description for the key. 755 * @payload: The data to use to instantiate or update the key. 756 * @plen: The length of @payload. 757 * @perm: The permissions mask for a new key. 758 * @flags: The quota flags for a new key. 759 * 760 * Search the destination keyring for a key of the same description and if one 761 * is found, update it, otherwise create and instantiate a new one and create a 762 * link to it from that keyring. 763 * 764 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be 765 * concocted. 766 * 767 * Returns a pointer to the new key if successful, -ENODEV if the key type 768 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the 769 * caller isn't permitted to modify the keyring or the LSM did not permit 770 * creation of the key. 771 * 772 * On success, the possession flag from the keyring ref will be tacked on to 773 * the key ref before it is returned. 774 */ 775 key_ref_t key_create_or_update(key_ref_t keyring_ref, 776 const char *type, 777 const char *description, 778 const void *payload, 779 size_t plen, 780 key_perm_t perm, 781 unsigned long flags) 782 { 783 struct keyring_index_key index_key = { 784 .description = description, 785 }; 786 struct key_preparsed_payload prep; 787 struct assoc_array_edit *edit; 788 const struct cred *cred = current_cred(); 789 struct key *keyring, *key = NULL; 790 key_ref_t key_ref; 791 int ret; 792 793 /* look up the key type to see if it's one of the registered kernel 794 * types */ 795 index_key.type = key_type_lookup(type); 796 if (IS_ERR(index_key.type)) { 797 key_ref = ERR_PTR(-ENODEV); 798 goto error; 799 } 800 801 key_ref = ERR_PTR(-EINVAL); 802 if (!index_key.type->instantiate || 803 (!index_key.description && !index_key.type->preparse)) 804 goto error_put_type; 805 806 keyring = key_ref_to_ptr(keyring_ref); 807 808 key_check(keyring); 809 810 key_ref = ERR_PTR(-ENOTDIR); 811 if (keyring->type != &key_type_keyring) 812 goto error_put_type; 813 814 memset(&prep, 0, sizeof(prep)); 815 prep.data = payload; 816 prep.datalen = plen; 817 prep.quotalen = index_key.type->def_datalen; 818 prep.trusted = flags & KEY_ALLOC_TRUSTED; 819 prep.expiry = TIME_T_MAX; 820 if (index_key.type->preparse) { 821 ret = index_key.type->preparse(&prep); 822 if (ret < 0) { 823 key_ref = ERR_PTR(ret); 824 goto error_free_prep; 825 } 826 if (!index_key.description) 827 index_key.description = prep.description; 828 key_ref = ERR_PTR(-EINVAL); 829 if (!index_key.description) 830 goto error_free_prep; 831 } 832 index_key.desc_len = strlen(index_key.description); 833 834 key_ref = ERR_PTR(-EPERM); 835 if (!prep.trusted && test_bit(KEY_FLAG_TRUSTED_ONLY, &keyring->flags)) 836 goto error_free_prep; 837 flags |= prep.trusted ? KEY_ALLOC_TRUSTED : 0; 838 839 ret = __key_link_begin(keyring, &index_key, &edit); 840 if (ret < 0) { 841 key_ref = ERR_PTR(ret); 842 goto error_free_prep; 843 } 844 845 /* if we're going to allocate a new key, we're going to have 846 * to modify the keyring */ 847 ret = key_permission(keyring_ref, KEY_NEED_WRITE); 848 if (ret < 0) { 849 key_ref = ERR_PTR(ret); 850 goto error_link_end; 851 } 852 853 /* if it's possible to update this type of key, search for an existing 854 * key of the same type and description in the destination keyring and 855 * update that instead if possible 856 */ 857 if (index_key.type->update) { 858 key_ref = find_key_to_update(keyring_ref, &index_key); 859 if (key_ref) 860 goto found_matching_key; 861 } 862 863 /* if the client doesn't provide, decide on the permissions we want */ 864 if (perm == KEY_PERM_UNDEF) { 865 perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR; 866 perm |= KEY_USR_VIEW; 867 868 if (index_key.type->read) 869 perm |= KEY_POS_READ; 870 871 if (index_key.type == &key_type_keyring || 872 index_key.type->update) 873 perm |= KEY_POS_WRITE; 874 } 875 876 /* allocate a new key */ 877 key = key_alloc(index_key.type, index_key.description, 878 cred->fsuid, cred->fsgid, cred, perm, flags); 879 if (IS_ERR(key)) { 880 key_ref = ERR_CAST(key); 881 goto error_link_end; 882 } 883 884 /* instantiate it and link it into the target keyring */ 885 ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit); 886 if (ret < 0) { 887 key_put(key); 888 key_ref = ERR_PTR(ret); 889 goto error_link_end; 890 } 891 892 key_ref = make_key_ref(key, is_key_possessed(keyring_ref)); 893 894 error_link_end: 895 __key_link_end(keyring, &index_key, edit); 896 error_free_prep: 897 if (index_key.type->preparse) 898 index_key.type->free_preparse(&prep); 899 error_put_type: 900 key_type_put(index_key.type); 901 error: 902 return key_ref; 903 904 found_matching_key: 905 /* we found a matching key, so we're going to try to update it 906 * - we can drop the locks first as we have the key pinned 907 */ 908 __key_link_end(keyring, &index_key, edit); 909 910 key_ref = __key_update(key_ref, &prep); 911 goto error_free_prep; 912 } 913 EXPORT_SYMBOL(key_create_or_update); 914 915 /** 916 * key_update - Update a key's contents. 917 * @key_ref: The pointer (plus possession flag) to the key. 918 * @payload: The data to be used to update the key. 919 * @plen: The length of @payload. 920 * 921 * Attempt to update the contents of a key with the given payload data. The 922 * caller must be granted Write permission on the key. Negative keys can be 923 * instantiated by this method. 924 * 925 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key 926 * type does not support updating. The key type may return other errors. 927 */ 928 int key_update(key_ref_t key_ref, const void *payload, size_t plen) 929 { 930 struct key_preparsed_payload prep; 931 struct key *key = key_ref_to_ptr(key_ref); 932 int ret; 933 934 key_check(key); 935 936 /* the key must be writable */ 937 ret = key_permission(key_ref, KEY_NEED_WRITE); 938 if (ret < 0) 939 goto error; 940 941 /* attempt to update it if supported */ 942 ret = -EOPNOTSUPP; 943 if (!key->type->update) 944 goto error; 945 946 memset(&prep, 0, sizeof(prep)); 947 prep.data = payload; 948 prep.datalen = plen; 949 prep.quotalen = key->type->def_datalen; 950 prep.expiry = TIME_T_MAX; 951 if (key->type->preparse) { 952 ret = key->type->preparse(&prep); 953 if (ret < 0) 954 goto error; 955 } 956 957 down_write(&key->sem); 958 959 ret = key->type->update(key, &prep); 960 if (ret == 0) 961 /* updating a negative key instantiates it */ 962 clear_bit(KEY_FLAG_NEGATIVE, &key->flags); 963 964 up_write(&key->sem); 965 966 error: 967 if (key->type->preparse) 968 key->type->free_preparse(&prep); 969 return ret; 970 } 971 EXPORT_SYMBOL(key_update); 972 973 /** 974 * key_revoke - Revoke a key. 975 * @key: The key to be revoked. 976 * 977 * Mark a key as being revoked and ask the type to free up its resources. The 978 * revocation timeout is set and the key and all its links will be 979 * automatically garbage collected after key_gc_delay amount of time if they 980 * are not manually dealt with first. 981 */ 982 void key_revoke(struct key *key) 983 { 984 struct timespec now; 985 time_t time; 986 987 key_check(key); 988 989 /* make sure no one's trying to change or use the key when we mark it 990 * - we tell lockdep that we might nest because we might be revoking an 991 * authorisation key whilst holding the sem on a key we've just 992 * instantiated 993 */ 994 down_write_nested(&key->sem, 1); 995 if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) && 996 key->type->revoke) 997 key->type->revoke(key); 998 999 /* set the death time to no more than the expiry time */ 1000 now = current_kernel_time(); 1001 time = now.tv_sec; 1002 if (key->revoked_at == 0 || key->revoked_at > time) { 1003 key->revoked_at = time; 1004 key_schedule_gc(key->revoked_at + key_gc_delay); 1005 } 1006 1007 up_write(&key->sem); 1008 } 1009 EXPORT_SYMBOL(key_revoke); 1010 1011 /** 1012 * key_invalidate - Invalidate a key. 1013 * @key: The key to be invalidated. 1014 * 1015 * Mark a key as being invalidated and have it cleaned up immediately. The key 1016 * is ignored by all searches and other operations from this point. 1017 */ 1018 void key_invalidate(struct key *key) 1019 { 1020 kenter("%d", key_serial(key)); 1021 1022 key_check(key); 1023 1024 if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) { 1025 down_write_nested(&key->sem, 1); 1026 if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags)) 1027 key_schedule_gc_links(); 1028 up_write(&key->sem); 1029 } 1030 } 1031 EXPORT_SYMBOL(key_invalidate); 1032 1033 /** 1034 * generic_key_instantiate - Simple instantiation of a key from preparsed data 1035 * @key: The key to be instantiated 1036 * @prep: The preparsed data to load. 1037 * 1038 * Instantiate a key from preparsed data. We assume we can just copy the data 1039 * in directly and clear the old pointers. 1040 * 1041 * This can be pointed to directly by the key type instantiate op pointer. 1042 */ 1043 int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep) 1044 { 1045 int ret; 1046 1047 pr_devel("==>%s()\n", __func__); 1048 1049 ret = key_payload_reserve(key, prep->quotalen); 1050 if (ret == 0) { 1051 key->type_data.p[0] = prep->type_data[0]; 1052 key->type_data.p[1] = prep->type_data[1]; 1053 rcu_assign_keypointer(key, prep->payload[0]); 1054 key->payload.data2[1] = prep->payload[1]; 1055 prep->type_data[0] = NULL; 1056 prep->type_data[1] = NULL; 1057 prep->payload[0] = NULL; 1058 prep->payload[1] = NULL; 1059 } 1060 pr_devel("<==%s() = %d\n", __func__, ret); 1061 return ret; 1062 } 1063 EXPORT_SYMBOL(generic_key_instantiate); 1064 1065 /** 1066 * register_key_type - Register a type of key. 1067 * @ktype: The new key type. 1068 * 1069 * Register a new key type. 1070 * 1071 * Returns 0 on success or -EEXIST if a type of this name already exists. 1072 */ 1073 int register_key_type(struct key_type *ktype) 1074 { 1075 struct key_type *p; 1076 int ret; 1077 1078 memset(&ktype->lock_class, 0, sizeof(ktype->lock_class)); 1079 1080 ret = -EEXIST; 1081 down_write(&key_types_sem); 1082 1083 /* disallow key types with the same name */ 1084 list_for_each_entry(p, &key_types_list, link) { 1085 if (strcmp(p->name, ktype->name) == 0) 1086 goto out; 1087 } 1088 1089 /* store the type */ 1090 list_add(&ktype->link, &key_types_list); 1091 1092 pr_notice("Key type %s registered\n", ktype->name); 1093 ret = 0; 1094 1095 out: 1096 up_write(&key_types_sem); 1097 return ret; 1098 } 1099 EXPORT_SYMBOL(register_key_type); 1100 1101 /** 1102 * unregister_key_type - Unregister a type of key. 1103 * @ktype: The key type. 1104 * 1105 * Unregister a key type and mark all the extant keys of this type as dead. 1106 * Those keys of this type are then destroyed to get rid of their payloads and 1107 * they and their links will be garbage collected as soon as possible. 1108 */ 1109 void unregister_key_type(struct key_type *ktype) 1110 { 1111 down_write(&key_types_sem); 1112 list_del_init(&ktype->link); 1113 downgrade_write(&key_types_sem); 1114 key_gc_keytype(ktype); 1115 pr_notice("Key type %s unregistered\n", ktype->name); 1116 up_read(&key_types_sem); 1117 } 1118 EXPORT_SYMBOL(unregister_key_type); 1119 1120 /* 1121 * Initialise the key management state. 1122 */ 1123 void __init key_init(void) 1124 { 1125 /* allocate a slab in which we can store keys */ 1126 key_jar = kmem_cache_create("key_jar", sizeof(struct key), 1127 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 1128 1129 /* add the special key types */ 1130 list_add_tail(&key_type_keyring.link, &key_types_list); 1131 list_add_tail(&key_type_dead.link, &key_types_list); 1132 list_add_tail(&key_type_user.link, &key_types_list); 1133 list_add_tail(&key_type_logon.link, &key_types_list); 1134 1135 /* record the root user tracking */ 1136 rb_link_node(&root_key_user.node, 1137 NULL, 1138 &key_user_tree.rb_node); 1139 1140 rb_insert_color(&root_key_user.node, 1141 &key_user_tree); 1142 } 1143