1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* Basic authentication token and access key management 3 * 4 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 8 #include <linux/export.h> 9 #include <linux/init.h> 10 #include <linux/poison.h> 11 #include <linux/sched.h> 12 #include <linux/slab.h> 13 #include <linux/security.h> 14 #include <linux/workqueue.h> 15 #include <linux/random.h> 16 #include <linux/ima.h> 17 #include <linux/err.h> 18 #include "internal.h" 19 20 struct kmem_cache *key_jar; 21 struct rb_root key_serial_tree; /* tree of keys indexed by serial */ 22 DEFINE_SPINLOCK(key_serial_lock); 23 24 struct rb_root key_user_tree; /* tree of quota records indexed by UID */ 25 DEFINE_SPINLOCK(key_user_lock); 26 27 unsigned int key_quota_root_maxkeys = 1000000; /* root's key count quota */ 28 unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */ 29 unsigned int key_quota_maxkeys = 200; /* general key count quota */ 30 unsigned int key_quota_maxbytes = 20000; /* general key space quota */ 31 32 static LIST_HEAD(key_types_list); 33 static DECLARE_RWSEM(key_types_sem); 34 35 /* We serialise key instantiation and link */ 36 DEFINE_MUTEX(key_construction_mutex); 37 38 #ifdef KEY_DEBUGGING 39 void __key_check(const struct key *key) 40 { 41 printk("__key_check: key %p {%08x} should be {%08x}\n", 42 key, key->magic, KEY_DEBUG_MAGIC); 43 BUG(); 44 } 45 #endif 46 47 /* 48 * Get the key quota record for a user, allocating a new record if one doesn't 49 * already exist. 50 */ 51 struct key_user *key_user_lookup(kuid_t uid) 52 { 53 struct key_user *candidate = NULL, *user; 54 struct rb_node *parent, **p; 55 56 try_again: 57 parent = NULL; 58 p = &key_user_tree.rb_node; 59 spin_lock(&key_user_lock); 60 61 /* search the tree for a user record with a matching UID */ 62 while (*p) { 63 parent = *p; 64 user = rb_entry(parent, struct key_user, node); 65 66 if (uid_lt(uid, user->uid)) 67 p = &(*p)->rb_left; 68 else if (uid_gt(uid, user->uid)) 69 p = &(*p)->rb_right; 70 else 71 goto found; 72 } 73 74 /* if we get here, we failed to find a match in the tree */ 75 if (!candidate) { 76 /* allocate a candidate user record if we don't already have 77 * one */ 78 spin_unlock(&key_user_lock); 79 80 user = NULL; 81 candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL); 82 if (unlikely(!candidate)) 83 goto out; 84 85 /* the allocation may have scheduled, so we need to repeat the 86 * search lest someone else added the record whilst we were 87 * asleep */ 88 goto try_again; 89 } 90 91 /* if we get here, then the user record still hadn't appeared on the 92 * second pass - so we use the candidate record */ 93 refcount_set(&candidate->usage, 1); 94 atomic_set(&candidate->nkeys, 0); 95 atomic_set(&candidate->nikeys, 0); 96 candidate->uid = uid; 97 candidate->qnkeys = 0; 98 candidate->qnbytes = 0; 99 spin_lock_init(&candidate->lock); 100 mutex_init(&candidate->cons_lock); 101 102 rb_link_node(&candidate->node, parent, p); 103 rb_insert_color(&candidate->node, &key_user_tree); 104 spin_unlock(&key_user_lock); 105 user = candidate; 106 goto out; 107 108 /* okay - we found a user record for this UID */ 109 found: 110 refcount_inc(&user->usage); 111 spin_unlock(&key_user_lock); 112 kfree(candidate); 113 out: 114 return user; 115 } 116 117 /* 118 * Dispose of a user structure 119 */ 120 void key_user_put(struct key_user *user) 121 { 122 if (refcount_dec_and_lock(&user->usage, &key_user_lock)) { 123 rb_erase(&user->node, &key_user_tree); 124 spin_unlock(&key_user_lock); 125 126 kfree(user); 127 } 128 } 129 130 /* 131 * Allocate a serial number for a key. These are assigned randomly to avoid 132 * security issues through covert channel problems. 133 */ 134 static inline void key_alloc_serial(struct key *key) 135 { 136 struct rb_node *parent, **p; 137 struct key *xkey; 138 139 /* propose a random serial number and look for a hole for it in the 140 * serial number tree */ 141 do { 142 get_random_bytes(&key->serial, sizeof(key->serial)); 143 144 key->serial >>= 1; /* negative numbers are not permitted */ 145 } while (key->serial < 3); 146 147 spin_lock(&key_serial_lock); 148 149 attempt_insertion: 150 parent = NULL; 151 p = &key_serial_tree.rb_node; 152 153 while (*p) { 154 parent = *p; 155 xkey = rb_entry(parent, struct key, serial_node); 156 157 if (key->serial < xkey->serial) 158 p = &(*p)->rb_left; 159 else if (key->serial > xkey->serial) 160 p = &(*p)->rb_right; 161 else 162 goto serial_exists; 163 } 164 165 /* we've found a suitable hole - arrange for this key to occupy it */ 166 rb_link_node(&key->serial_node, parent, p); 167 rb_insert_color(&key->serial_node, &key_serial_tree); 168 169 spin_unlock(&key_serial_lock); 170 return; 171 172 /* we found a key with the proposed serial number - walk the tree from 173 * that point looking for the next unused serial number */ 174 serial_exists: 175 for (;;) { 176 key->serial++; 177 if (key->serial < 3) { 178 key->serial = 3; 179 goto attempt_insertion; 180 } 181 182 parent = rb_next(parent); 183 if (!parent) 184 goto attempt_insertion; 185 186 xkey = rb_entry(parent, struct key, serial_node); 187 if (key->serial < xkey->serial) 188 goto attempt_insertion; 189 } 190 } 191 192 /** 193 * key_alloc - Allocate a key of the specified type. 194 * @type: The type of key to allocate. 195 * @desc: The key description to allow the key to be searched out. 196 * @uid: The owner of the new key. 197 * @gid: The group ID for the new key's group permissions. 198 * @cred: The credentials specifying UID namespace. 199 * @perm: The permissions mask of the new key. 200 * @flags: Flags specifying quota properties. 201 * @restrict_link: Optional link restriction for new keyrings. 202 * 203 * Allocate a key of the specified type with the attributes given. The key is 204 * returned in an uninstantiated state and the caller needs to instantiate the 205 * key before returning. 206 * 207 * The restrict_link structure (if not NULL) will be freed when the 208 * keyring is destroyed, so it must be dynamically allocated. 209 * 210 * The user's key count quota is updated to reflect the creation of the key and 211 * the user's key data quota has the default for the key type reserved. The 212 * instantiation function should amend this as necessary. If insufficient 213 * quota is available, -EDQUOT will be returned. 214 * 215 * The LSM security modules can prevent a key being created, in which case 216 * -EACCES will be returned. 217 * 218 * Returns a pointer to the new key if successful and an error code otherwise. 219 * 220 * Note that the caller needs to ensure the key type isn't uninstantiated. 221 * Internally this can be done by locking key_types_sem. Externally, this can 222 * be done by either never unregistering the key type, or making sure 223 * key_alloc() calls don't race with module unloading. 224 */ 225 struct key *key_alloc(struct key_type *type, const char *desc, 226 kuid_t uid, kgid_t gid, const struct cred *cred, 227 key_perm_t perm, unsigned long flags, 228 struct key_restriction *restrict_link) 229 { 230 struct key_user *user = NULL; 231 struct key *key; 232 size_t desclen, quotalen; 233 int ret; 234 235 key = ERR_PTR(-EINVAL); 236 if (!desc || !*desc) 237 goto error; 238 239 if (type->vet_description) { 240 ret = type->vet_description(desc); 241 if (ret < 0) { 242 key = ERR_PTR(ret); 243 goto error; 244 } 245 } 246 247 desclen = strlen(desc); 248 quotalen = desclen + 1 + type->def_datalen; 249 250 /* get hold of the key tracking for this user */ 251 user = key_user_lookup(uid); 252 if (!user) 253 goto no_memory_1; 254 255 /* check that the user's quota permits allocation of another key and 256 * its description */ 257 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { 258 unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ? 259 key_quota_root_maxkeys : key_quota_maxkeys; 260 unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ? 261 key_quota_root_maxbytes : key_quota_maxbytes; 262 263 spin_lock(&user->lock); 264 if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) { 265 if (user->qnkeys + 1 > maxkeys || 266 user->qnbytes + quotalen > maxbytes || 267 user->qnbytes + quotalen < user->qnbytes) 268 goto no_quota; 269 } 270 271 user->qnkeys++; 272 user->qnbytes += quotalen; 273 spin_unlock(&user->lock); 274 } 275 276 /* allocate and initialise the key and its description */ 277 key = kmem_cache_zalloc(key_jar, GFP_KERNEL); 278 if (!key) 279 goto no_memory_2; 280 281 key->index_key.desc_len = desclen; 282 key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL); 283 if (!key->index_key.description) 284 goto no_memory_3; 285 key->index_key.type = type; 286 key_set_index_key(&key->index_key); 287 288 refcount_set(&key->usage, 1); 289 init_rwsem(&key->sem); 290 lockdep_set_class(&key->sem, &type->lock_class); 291 key->user = user; 292 key->quotalen = quotalen; 293 key->datalen = type->def_datalen; 294 key->uid = uid; 295 key->gid = gid; 296 key->perm = perm; 297 key->expiry = TIME64_MAX; 298 key->restrict_link = restrict_link; 299 key->last_used_at = ktime_get_real_seconds(); 300 301 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) 302 key->flags |= 1 << KEY_FLAG_IN_QUOTA; 303 if (flags & KEY_ALLOC_BUILT_IN) 304 key->flags |= 1 << KEY_FLAG_BUILTIN; 305 if (flags & KEY_ALLOC_UID_KEYRING) 306 key->flags |= 1 << KEY_FLAG_UID_KEYRING; 307 if (flags & KEY_ALLOC_SET_KEEP) 308 key->flags |= 1 << KEY_FLAG_KEEP; 309 310 #ifdef KEY_DEBUGGING 311 key->magic = KEY_DEBUG_MAGIC; 312 #endif 313 314 /* let the security module know about the key */ 315 ret = security_key_alloc(key, cred, flags); 316 if (ret < 0) 317 goto security_error; 318 319 /* publish the key by giving it a serial number */ 320 refcount_inc(&key->domain_tag->usage); 321 atomic_inc(&user->nkeys); 322 key_alloc_serial(key); 323 324 error: 325 return key; 326 327 security_error: 328 kfree(key->description); 329 kmem_cache_free(key_jar, key); 330 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { 331 spin_lock(&user->lock); 332 user->qnkeys--; 333 user->qnbytes -= quotalen; 334 spin_unlock(&user->lock); 335 } 336 key_user_put(user); 337 key = ERR_PTR(ret); 338 goto error; 339 340 no_memory_3: 341 kmem_cache_free(key_jar, key); 342 no_memory_2: 343 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { 344 spin_lock(&user->lock); 345 user->qnkeys--; 346 user->qnbytes -= quotalen; 347 spin_unlock(&user->lock); 348 } 349 key_user_put(user); 350 no_memory_1: 351 key = ERR_PTR(-ENOMEM); 352 goto error; 353 354 no_quota: 355 spin_unlock(&user->lock); 356 key_user_put(user); 357 key = ERR_PTR(-EDQUOT); 358 goto error; 359 } 360 EXPORT_SYMBOL(key_alloc); 361 362 /** 363 * key_payload_reserve - Adjust data quota reservation for the key's payload 364 * @key: The key to make the reservation for. 365 * @datalen: The amount of data payload the caller now wants. 366 * 367 * Adjust the amount of the owning user's key data quota that a key reserves. 368 * If the amount is increased, then -EDQUOT may be returned if there isn't 369 * enough free quota available. 370 * 371 * If successful, 0 is returned. 372 */ 373 int key_payload_reserve(struct key *key, size_t datalen) 374 { 375 int delta = (int)datalen - key->datalen; 376 int ret = 0; 377 378 key_check(key); 379 380 /* contemplate the quota adjustment */ 381 if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) { 382 unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ? 383 key_quota_root_maxbytes : key_quota_maxbytes; 384 385 spin_lock(&key->user->lock); 386 387 if (delta > 0 && 388 (key->user->qnbytes + delta > maxbytes || 389 key->user->qnbytes + delta < key->user->qnbytes)) { 390 ret = -EDQUOT; 391 } 392 else { 393 key->user->qnbytes += delta; 394 key->quotalen += delta; 395 } 396 spin_unlock(&key->user->lock); 397 } 398 399 /* change the recorded data length if that didn't generate an error */ 400 if (ret == 0) 401 key->datalen = datalen; 402 403 return ret; 404 } 405 EXPORT_SYMBOL(key_payload_reserve); 406 407 /* 408 * Change the key state to being instantiated. 409 */ 410 static void mark_key_instantiated(struct key *key, int reject_error) 411 { 412 /* Commit the payload before setting the state; barrier versus 413 * key_read_state(). 414 */ 415 smp_store_release(&key->state, 416 (reject_error < 0) ? reject_error : KEY_IS_POSITIVE); 417 } 418 419 /* 420 * Instantiate a key and link it into the target keyring atomically. Must be 421 * called with the target keyring's semaphore writelocked. The target key's 422 * semaphore need not be locked as instantiation is serialised by 423 * key_construction_mutex. 424 */ 425 static int __key_instantiate_and_link(struct key *key, 426 struct key_preparsed_payload *prep, 427 struct key *keyring, 428 struct key *authkey, 429 struct assoc_array_edit **_edit) 430 { 431 int ret, awaken; 432 433 key_check(key); 434 key_check(keyring); 435 436 awaken = 0; 437 ret = -EBUSY; 438 439 mutex_lock(&key_construction_mutex); 440 441 /* can't instantiate twice */ 442 if (key->state == KEY_IS_UNINSTANTIATED) { 443 /* instantiate the key */ 444 ret = key->type->instantiate(key, prep); 445 446 if (ret == 0) { 447 /* mark the key as being instantiated */ 448 atomic_inc(&key->user->nikeys); 449 mark_key_instantiated(key, 0); 450 notify_key(key, NOTIFY_KEY_INSTANTIATED, 0); 451 452 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) 453 awaken = 1; 454 455 /* and link it into the destination keyring */ 456 if (keyring) { 457 if (test_bit(KEY_FLAG_KEEP, &keyring->flags)) 458 set_bit(KEY_FLAG_KEEP, &key->flags); 459 460 __key_link(keyring, key, _edit); 461 } 462 463 /* disable the authorisation key */ 464 if (authkey) 465 key_invalidate(authkey); 466 467 key_set_expiry(key, prep->expiry); 468 } 469 } 470 471 mutex_unlock(&key_construction_mutex); 472 473 /* wake up anyone waiting for a key to be constructed */ 474 if (awaken) 475 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT); 476 477 return ret; 478 } 479 480 /** 481 * key_instantiate_and_link - Instantiate a key and link it into the keyring. 482 * @key: The key to instantiate. 483 * @data: The data to use to instantiate the keyring. 484 * @datalen: The length of @data. 485 * @keyring: Keyring to create a link in on success (or NULL). 486 * @authkey: The authorisation token permitting instantiation. 487 * 488 * Instantiate a key that's in the uninstantiated state using the provided data 489 * and, if successful, link it in to the destination keyring if one is 490 * supplied. 491 * 492 * If successful, 0 is returned, the authorisation token is revoked and anyone 493 * waiting for the key is woken up. If the key was already instantiated, 494 * -EBUSY will be returned. 495 */ 496 int key_instantiate_and_link(struct key *key, 497 const void *data, 498 size_t datalen, 499 struct key *keyring, 500 struct key *authkey) 501 { 502 struct key_preparsed_payload prep; 503 struct assoc_array_edit *edit = NULL; 504 int ret; 505 506 memset(&prep, 0, sizeof(prep)); 507 prep.orig_description = key->description; 508 prep.data = data; 509 prep.datalen = datalen; 510 prep.quotalen = key->type->def_datalen; 511 prep.expiry = TIME64_MAX; 512 if (key->type->preparse) { 513 ret = key->type->preparse(&prep); 514 if (ret < 0) 515 goto error; 516 } 517 518 if (keyring) { 519 ret = __key_link_lock(keyring, &key->index_key); 520 if (ret < 0) 521 goto error; 522 523 ret = __key_link_begin(keyring, &key->index_key, &edit); 524 if (ret < 0) 525 goto error_link_end; 526 527 if (keyring->restrict_link && keyring->restrict_link->check) { 528 struct key_restriction *keyres = keyring->restrict_link; 529 530 ret = keyres->check(keyring, key->type, &prep.payload, 531 keyres->key); 532 if (ret < 0) 533 goto error_link_end; 534 } 535 } 536 537 ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit); 538 539 error_link_end: 540 if (keyring) 541 __key_link_end(keyring, &key->index_key, edit); 542 543 error: 544 if (key->type->preparse) 545 key->type->free_preparse(&prep); 546 return ret; 547 } 548 549 EXPORT_SYMBOL(key_instantiate_and_link); 550 551 /** 552 * key_reject_and_link - Negatively instantiate a key and link it into the keyring. 553 * @key: The key to instantiate. 554 * @timeout: The timeout on the negative key. 555 * @error: The error to return when the key is hit. 556 * @keyring: Keyring to create a link in on success (or NULL). 557 * @authkey: The authorisation token permitting instantiation. 558 * 559 * Negatively instantiate a key that's in the uninstantiated state and, if 560 * successful, set its timeout and stored error and link it in to the 561 * destination keyring if one is supplied. The key and any links to the key 562 * will be automatically garbage collected after the timeout expires. 563 * 564 * Negative keys are used to rate limit repeated request_key() calls by causing 565 * them to return the stored error code (typically ENOKEY) until the negative 566 * key expires. 567 * 568 * If successful, 0 is returned, the authorisation token is revoked and anyone 569 * waiting for the key is woken up. If the key was already instantiated, 570 * -EBUSY will be returned. 571 */ 572 int key_reject_and_link(struct key *key, 573 unsigned timeout, 574 unsigned error, 575 struct key *keyring, 576 struct key *authkey) 577 { 578 struct assoc_array_edit *edit = NULL; 579 int ret, awaken, link_ret = 0; 580 581 key_check(key); 582 key_check(keyring); 583 584 awaken = 0; 585 ret = -EBUSY; 586 587 if (keyring) { 588 if (keyring->restrict_link) 589 return -EPERM; 590 591 link_ret = __key_link_lock(keyring, &key->index_key); 592 if (link_ret == 0) { 593 link_ret = __key_link_begin(keyring, &key->index_key, &edit); 594 if (link_ret < 0) 595 __key_link_end(keyring, &key->index_key, edit); 596 } 597 } 598 599 mutex_lock(&key_construction_mutex); 600 601 /* can't instantiate twice */ 602 if (key->state == KEY_IS_UNINSTANTIATED) { 603 /* mark the key as being negatively instantiated */ 604 atomic_inc(&key->user->nikeys); 605 mark_key_instantiated(key, -error); 606 notify_key(key, NOTIFY_KEY_INSTANTIATED, -error); 607 key_set_expiry(key, ktime_get_real_seconds() + timeout); 608 609 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) 610 awaken = 1; 611 612 ret = 0; 613 614 /* and link it into the destination keyring */ 615 if (keyring && link_ret == 0) 616 __key_link(keyring, key, &edit); 617 618 /* disable the authorisation key */ 619 if (authkey) 620 key_invalidate(authkey); 621 } 622 623 mutex_unlock(&key_construction_mutex); 624 625 if (keyring && link_ret == 0) 626 __key_link_end(keyring, &key->index_key, edit); 627 628 /* wake up anyone waiting for a key to be constructed */ 629 if (awaken) 630 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT); 631 632 return ret == 0 ? link_ret : ret; 633 } 634 EXPORT_SYMBOL(key_reject_and_link); 635 636 /** 637 * key_put - Discard a reference to a key. 638 * @key: The key to discard a reference from. 639 * 640 * Discard a reference to a key, and when all the references are gone, we 641 * schedule the cleanup task to come and pull it out of the tree in process 642 * context at some later time. 643 */ 644 void key_put(struct key *key) 645 { 646 if (key) { 647 key_check(key); 648 649 if (refcount_dec_and_test(&key->usage)) 650 schedule_work(&key_gc_work); 651 } 652 } 653 EXPORT_SYMBOL(key_put); 654 655 /* 656 * Find a key by its serial number. 657 */ 658 struct key *key_lookup(key_serial_t id) 659 { 660 struct rb_node *n; 661 struct key *key; 662 663 spin_lock(&key_serial_lock); 664 665 /* search the tree for the specified key */ 666 n = key_serial_tree.rb_node; 667 while (n) { 668 key = rb_entry(n, struct key, serial_node); 669 670 if (id < key->serial) 671 n = n->rb_left; 672 else if (id > key->serial) 673 n = n->rb_right; 674 else 675 goto found; 676 } 677 678 not_found: 679 key = ERR_PTR(-ENOKEY); 680 goto error; 681 682 found: 683 /* A key is allowed to be looked up only if someone still owns a 684 * reference to it - otherwise it's awaiting the gc. 685 */ 686 if (!refcount_inc_not_zero(&key->usage)) 687 goto not_found; 688 689 error: 690 spin_unlock(&key_serial_lock); 691 return key; 692 } 693 694 /* 695 * Find and lock the specified key type against removal. 696 * 697 * We return with the sem read-locked if successful. If the type wasn't 698 * available -ENOKEY is returned instead. 699 */ 700 struct key_type *key_type_lookup(const char *type) 701 { 702 struct key_type *ktype; 703 704 down_read(&key_types_sem); 705 706 /* look up the key type to see if it's one of the registered kernel 707 * types */ 708 list_for_each_entry(ktype, &key_types_list, link) { 709 if (strcmp(ktype->name, type) == 0) 710 goto found_kernel_type; 711 } 712 713 up_read(&key_types_sem); 714 ktype = ERR_PTR(-ENOKEY); 715 716 found_kernel_type: 717 return ktype; 718 } 719 720 void key_set_timeout(struct key *key, unsigned timeout) 721 { 722 time64_t expiry = TIME64_MAX; 723 724 /* make the changes with the locks held to prevent races */ 725 down_write(&key->sem); 726 727 if (timeout > 0) 728 expiry = ktime_get_real_seconds() + timeout; 729 key_set_expiry(key, expiry); 730 731 up_write(&key->sem); 732 } 733 EXPORT_SYMBOL_GPL(key_set_timeout); 734 735 /* 736 * Unlock a key type locked by key_type_lookup(). 737 */ 738 void key_type_put(struct key_type *ktype) 739 { 740 up_read(&key_types_sem); 741 } 742 743 /* 744 * Attempt to update an existing key. 745 * 746 * The key is given to us with an incremented refcount that we need to discard 747 * if we get an error. 748 */ 749 static inline key_ref_t __key_update(key_ref_t key_ref, 750 struct key_preparsed_payload *prep) 751 { 752 struct key *key = key_ref_to_ptr(key_ref); 753 int ret; 754 755 /* need write permission on the key to update it */ 756 ret = key_permission(key_ref, KEY_NEED_WRITE); 757 if (ret < 0) 758 goto error; 759 760 ret = -EEXIST; 761 if (!key->type->update) 762 goto error; 763 764 down_write(&key->sem); 765 766 ret = key->type->update(key, prep); 767 if (ret == 0) { 768 /* Updating a negative key positively instantiates it */ 769 mark_key_instantiated(key, 0); 770 notify_key(key, NOTIFY_KEY_UPDATED, 0); 771 } 772 773 up_write(&key->sem); 774 775 if (ret < 0) 776 goto error; 777 out: 778 return key_ref; 779 780 error: 781 key_put(key); 782 key_ref = ERR_PTR(ret); 783 goto out; 784 } 785 786 /* 787 * Create or potentially update a key. The combined logic behind 788 * key_create_or_update() and key_create() 789 */ 790 static key_ref_t __key_create_or_update(key_ref_t keyring_ref, 791 const char *type, 792 const char *description, 793 const void *payload, 794 size_t plen, 795 key_perm_t perm, 796 unsigned long flags, 797 bool allow_update) 798 { 799 struct keyring_index_key index_key = { 800 .description = description, 801 }; 802 struct key_preparsed_payload prep; 803 struct assoc_array_edit *edit = NULL; 804 const struct cred *cred = current_cred(); 805 struct key *keyring, *key = NULL; 806 key_ref_t key_ref; 807 int ret; 808 struct key_restriction *restrict_link = NULL; 809 810 /* look up the key type to see if it's one of the registered kernel 811 * types */ 812 index_key.type = key_type_lookup(type); 813 if (IS_ERR(index_key.type)) { 814 key_ref = ERR_PTR(-ENODEV); 815 goto error; 816 } 817 818 key_ref = ERR_PTR(-EINVAL); 819 if (!index_key.type->instantiate || 820 (!index_key.description && !index_key.type->preparse)) 821 goto error_put_type; 822 823 keyring = key_ref_to_ptr(keyring_ref); 824 825 key_check(keyring); 826 827 if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION)) 828 restrict_link = keyring->restrict_link; 829 830 key_ref = ERR_PTR(-ENOTDIR); 831 if (keyring->type != &key_type_keyring) 832 goto error_put_type; 833 834 memset(&prep, 0, sizeof(prep)); 835 prep.orig_description = description; 836 prep.data = payload; 837 prep.datalen = plen; 838 prep.quotalen = index_key.type->def_datalen; 839 prep.expiry = TIME64_MAX; 840 if (index_key.type->preparse) { 841 ret = index_key.type->preparse(&prep); 842 if (ret < 0) { 843 key_ref = ERR_PTR(ret); 844 goto error_free_prep; 845 } 846 if (!index_key.description) 847 index_key.description = prep.description; 848 key_ref = ERR_PTR(-EINVAL); 849 if (!index_key.description) 850 goto error_free_prep; 851 } 852 index_key.desc_len = strlen(index_key.description); 853 key_set_index_key(&index_key); 854 855 ret = __key_link_lock(keyring, &index_key); 856 if (ret < 0) { 857 key_ref = ERR_PTR(ret); 858 goto error_free_prep; 859 } 860 861 ret = __key_link_begin(keyring, &index_key, &edit); 862 if (ret < 0) { 863 key_ref = ERR_PTR(ret); 864 goto error_link_end; 865 } 866 867 if (restrict_link && restrict_link->check) { 868 ret = restrict_link->check(keyring, index_key.type, 869 &prep.payload, restrict_link->key); 870 if (ret < 0) { 871 key_ref = ERR_PTR(ret); 872 goto error_link_end; 873 } 874 } 875 876 /* if we're going to allocate a new key, we're going to have 877 * to modify the keyring */ 878 ret = key_permission(keyring_ref, KEY_NEED_WRITE); 879 if (ret < 0) { 880 key_ref = ERR_PTR(ret); 881 goto error_link_end; 882 } 883 884 /* if it's requested and possible to update this type of key, search 885 * for an existing key of the same type and description in the 886 * destination keyring and update that instead if possible 887 */ 888 if (allow_update) { 889 if (index_key.type->update) { 890 key_ref = find_key_to_update(keyring_ref, &index_key); 891 if (key_ref) 892 goto found_matching_key; 893 } 894 } else { 895 key_ref = find_key_to_update(keyring_ref, &index_key); 896 if (key_ref) { 897 key_ref_put(key_ref); 898 key_ref = ERR_PTR(-EEXIST); 899 goto error_link_end; 900 } 901 } 902 903 /* if the client doesn't provide, decide on the permissions we want */ 904 if (perm == KEY_PERM_UNDEF) { 905 perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR; 906 perm |= KEY_USR_VIEW; 907 908 if (index_key.type->read) 909 perm |= KEY_POS_READ; 910 911 if (index_key.type == &key_type_keyring || 912 index_key.type->update) 913 perm |= KEY_POS_WRITE; 914 } 915 916 /* allocate a new key */ 917 key = key_alloc(index_key.type, index_key.description, 918 cred->fsuid, cred->fsgid, cred, perm, flags, NULL); 919 if (IS_ERR(key)) { 920 key_ref = ERR_CAST(key); 921 goto error_link_end; 922 } 923 924 /* instantiate it and link it into the target keyring */ 925 ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit); 926 if (ret < 0) { 927 key_put(key); 928 key_ref = ERR_PTR(ret); 929 goto error_link_end; 930 } 931 932 ima_post_key_create_or_update(keyring, key, payload, plen, 933 flags, true); 934 935 key_ref = make_key_ref(key, is_key_possessed(keyring_ref)); 936 937 error_link_end: 938 __key_link_end(keyring, &index_key, edit); 939 error_free_prep: 940 if (index_key.type->preparse) 941 index_key.type->free_preparse(&prep); 942 error_put_type: 943 key_type_put(index_key.type); 944 error: 945 return key_ref; 946 947 found_matching_key: 948 /* we found a matching key, so we're going to try to update it 949 * - we can drop the locks first as we have the key pinned 950 */ 951 __key_link_end(keyring, &index_key, edit); 952 953 key = key_ref_to_ptr(key_ref); 954 if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) { 955 ret = wait_for_key_construction(key, true); 956 if (ret < 0) { 957 key_ref_put(key_ref); 958 key_ref = ERR_PTR(ret); 959 goto error_free_prep; 960 } 961 } 962 963 key_ref = __key_update(key_ref, &prep); 964 965 if (!IS_ERR(key_ref)) 966 ima_post_key_create_or_update(keyring, key, 967 payload, plen, 968 flags, false); 969 970 goto error_free_prep; 971 } 972 973 /** 974 * key_create_or_update - Update or create and instantiate a key. 975 * @keyring_ref: A pointer to the destination keyring with possession flag. 976 * @type: The type of key. 977 * @description: The searchable description for the key. 978 * @payload: The data to use to instantiate or update the key. 979 * @plen: The length of @payload. 980 * @perm: The permissions mask for a new key. 981 * @flags: The quota flags for a new key. 982 * 983 * Search the destination keyring for a key of the same description and if one 984 * is found, update it, otherwise create and instantiate a new one and create a 985 * link to it from that keyring. 986 * 987 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be 988 * concocted. 989 * 990 * Returns a pointer to the new key if successful, -ENODEV if the key type 991 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the 992 * caller isn't permitted to modify the keyring or the LSM did not permit 993 * creation of the key. 994 * 995 * On success, the possession flag from the keyring ref will be tacked on to 996 * the key ref before it is returned. 997 */ 998 key_ref_t key_create_or_update(key_ref_t keyring_ref, 999 const char *type, 1000 const char *description, 1001 const void *payload, 1002 size_t plen, 1003 key_perm_t perm, 1004 unsigned long flags) 1005 { 1006 return __key_create_or_update(keyring_ref, type, description, payload, 1007 plen, perm, flags, true); 1008 } 1009 EXPORT_SYMBOL(key_create_or_update); 1010 1011 /** 1012 * key_create - Create and instantiate a key. 1013 * @keyring_ref: A pointer to the destination keyring with possession flag. 1014 * @type: The type of key. 1015 * @description: The searchable description for the key. 1016 * @payload: The data to use to instantiate or update the key. 1017 * @plen: The length of @payload. 1018 * @perm: The permissions mask for a new key. 1019 * @flags: The quota flags for a new key. 1020 * 1021 * Create and instantiate a new key and link to it from the destination keyring. 1022 * 1023 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be 1024 * concocted. 1025 * 1026 * Returns a pointer to the new key if successful, -EEXIST if a key with the 1027 * same description already exists, -ENODEV if the key type wasn't available, 1028 * -ENOTDIR if the keyring wasn't a keyring, -EACCES if the caller isn't 1029 * permitted to modify the keyring or the LSM did not permit creation of the 1030 * key. 1031 * 1032 * On success, the possession flag from the keyring ref will be tacked on to 1033 * the key ref before it is returned. 1034 */ 1035 key_ref_t key_create(key_ref_t keyring_ref, 1036 const char *type, 1037 const char *description, 1038 const void *payload, 1039 size_t plen, 1040 key_perm_t perm, 1041 unsigned long flags) 1042 { 1043 return __key_create_or_update(keyring_ref, type, description, payload, 1044 plen, perm, flags, false); 1045 } 1046 EXPORT_SYMBOL(key_create); 1047 1048 /** 1049 * key_update - Update a key's contents. 1050 * @key_ref: The pointer (plus possession flag) to the key. 1051 * @payload: The data to be used to update the key. 1052 * @plen: The length of @payload. 1053 * 1054 * Attempt to update the contents of a key with the given payload data. The 1055 * caller must be granted Write permission on the key. Negative keys can be 1056 * instantiated by this method. 1057 * 1058 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key 1059 * type does not support updating. The key type may return other errors. 1060 */ 1061 int key_update(key_ref_t key_ref, const void *payload, size_t plen) 1062 { 1063 struct key_preparsed_payload prep; 1064 struct key *key = key_ref_to_ptr(key_ref); 1065 int ret; 1066 1067 key_check(key); 1068 1069 /* the key must be writable */ 1070 ret = key_permission(key_ref, KEY_NEED_WRITE); 1071 if (ret < 0) 1072 return ret; 1073 1074 /* attempt to update it if supported */ 1075 if (!key->type->update) 1076 return -EOPNOTSUPP; 1077 1078 memset(&prep, 0, sizeof(prep)); 1079 prep.data = payload; 1080 prep.datalen = plen; 1081 prep.quotalen = key->type->def_datalen; 1082 prep.expiry = TIME64_MAX; 1083 if (key->type->preparse) { 1084 ret = key->type->preparse(&prep); 1085 if (ret < 0) 1086 goto error; 1087 } 1088 1089 down_write(&key->sem); 1090 1091 ret = key->type->update(key, &prep); 1092 if (ret == 0) { 1093 /* Updating a negative key positively instantiates it */ 1094 mark_key_instantiated(key, 0); 1095 notify_key(key, NOTIFY_KEY_UPDATED, 0); 1096 } 1097 1098 up_write(&key->sem); 1099 1100 error: 1101 if (key->type->preparse) 1102 key->type->free_preparse(&prep); 1103 return ret; 1104 } 1105 EXPORT_SYMBOL(key_update); 1106 1107 /** 1108 * key_revoke - Revoke a key. 1109 * @key: The key to be revoked. 1110 * 1111 * Mark a key as being revoked and ask the type to free up its resources. The 1112 * revocation timeout is set and the key and all its links will be 1113 * automatically garbage collected after key_gc_delay amount of time if they 1114 * are not manually dealt with first. 1115 */ 1116 void key_revoke(struct key *key) 1117 { 1118 time64_t time; 1119 1120 key_check(key); 1121 1122 /* make sure no one's trying to change or use the key when we mark it 1123 * - we tell lockdep that we might nest because we might be revoking an 1124 * authorisation key whilst holding the sem on a key we've just 1125 * instantiated 1126 */ 1127 down_write_nested(&key->sem, 1); 1128 if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags)) { 1129 notify_key(key, NOTIFY_KEY_REVOKED, 0); 1130 if (key->type->revoke) 1131 key->type->revoke(key); 1132 1133 /* set the death time to no more than the expiry time */ 1134 time = ktime_get_real_seconds(); 1135 if (key->revoked_at == 0 || key->revoked_at > time) { 1136 key->revoked_at = time; 1137 key_schedule_gc(key->revoked_at + key_gc_delay); 1138 } 1139 } 1140 1141 up_write(&key->sem); 1142 } 1143 EXPORT_SYMBOL(key_revoke); 1144 1145 /** 1146 * key_invalidate - Invalidate a key. 1147 * @key: The key to be invalidated. 1148 * 1149 * Mark a key as being invalidated and have it cleaned up immediately. The key 1150 * is ignored by all searches and other operations from this point. 1151 */ 1152 void key_invalidate(struct key *key) 1153 { 1154 kenter("%d", key_serial(key)); 1155 1156 key_check(key); 1157 1158 if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) { 1159 down_write_nested(&key->sem, 1); 1160 if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags)) { 1161 notify_key(key, NOTIFY_KEY_INVALIDATED, 0); 1162 key_schedule_gc_links(); 1163 } 1164 up_write(&key->sem); 1165 } 1166 } 1167 EXPORT_SYMBOL(key_invalidate); 1168 1169 /** 1170 * generic_key_instantiate - Simple instantiation of a key from preparsed data 1171 * @key: The key to be instantiated 1172 * @prep: The preparsed data to load. 1173 * 1174 * Instantiate a key from preparsed data. We assume we can just copy the data 1175 * in directly and clear the old pointers. 1176 * 1177 * This can be pointed to directly by the key type instantiate op pointer. 1178 */ 1179 int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep) 1180 { 1181 int ret; 1182 1183 pr_devel("==>%s()\n", __func__); 1184 1185 ret = key_payload_reserve(key, prep->quotalen); 1186 if (ret == 0) { 1187 rcu_assign_keypointer(key, prep->payload.data[0]); 1188 key->payload.data[1] = prep->payload.data[1]; 1189 key->payload.data[2] = prep->payload.data[2]; 1190 key->payload.data[3] = prep->payload.data[3]; 1191 prep->payload.data[0] = NULL; 1192 prep->payload.data[1] = NULL; 1193 prep->payload.data[2] = NULL; 1194 prep->payload.data[3] = NULL; 1195 } 1196 pr_devel("<==%s() = %d\n", __func__, ret); 1197 return ret; 1198 } 1199 EXPORT_SYMBOL(generic_key_instantiate); 1200 1201 /** 1202 * register_key_type - Register a type of key. 1203 * @ktype: The new key type. 1204 * 1205 * Register a new key type. 1206 * 1207 * Returns 0 on success or -EEXIST if a type of this name already exists. 1208 */ 1209 int register_key_type(struct key_type *ktype) 1210 { 1211 struct key_type *p; 1212 int ret; 1213 1214 memset(&ktype->lock_class, 0, sizeof(ktype->lock_class)); 1215 1216 ret = -EEXIST; 1217 down_write(&key_types_sem); 1218 1219 /* disallow key types with the same name */ 1220 list_for_each_entry(p, &key_types_list, link) { 1221 if (strcmp(p->name, ktype->name) == 0) 1222 goto out; 1223 } 1224 1225 /* store the type */ 1226 list_add(&ktype->link, &key_types_list); 1227 1228 pr_notice("Key type %s registered\n", ktype->name); 1229 ret = 0; 1230 1231 out: 1232 up_write(&key_types_sem); 1233 return ret; 1234 } 1235 EXPORT_SYMBOL(register_key_type); 1236 1237 /** 1238 * unregister_key_type - Unregister a type of key. 1239 * @ktype: The key type. 1240 * 1241 * Unregister a key type and mark all the extant keys of this type as dead. 1242 * Those keys of this type are then destroyed to get rid of their payloads and 1243 * they and their links will be garbage collected as soon as possible. 1244 */ 1245 void unregister_key_type(struct key_type *ktype) 1246 { 1247 down_write(&key_types_sem); 1248 list_del_init(&ktype->link); 1249 downgrade_write(&key_types_sem); 1250 key_gc_keytype(ktype); 1251 pr_notice("Key type %s unregistered\n", ktype->name); 1252 up_read(&key_types_sem); 1253 } 1254 EXPORT_SYMBOL(unregister_key_type); 1255 1256 /* 1257 * Initialise the key management state. 1258 */ 1259 void __init key_init(void) 1260 { 1261 /* allocate a slab in which we can store keys */ 1262 key_jar = kmem_cache_create("key_jar", sizeof(struct key), 1263 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 1264 1265 /* add the special key types */ 1266 list_add_tail(&key_type_keyring.link, &key_types_list); 1267 list_add_tail(&key_type_dead.link, &key_types_list); 1268 list_add_tail(&key_type_user.link, &key_types_list); 1269 list_add_tail(&key_type_logon.link, &key_types_list); 1270 1271 /* record the root user tracking */ 1272 rb_link_node(&root_key_user.node, 1273 NULL, 1274 &key_user_tree.rb_node); 1275 1276 rb_insert_color(&root_key_user.node, 1277 &key_user_tree); 1278 } 1279