1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* Basic authentication token and access key management 3 * 4 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 8 #include <linux/export.h> 9 #include <linux/init.h> 10 #include <linux/poison.h> 11 #include <linux/sched.h> 12 #include <linux/slab.h> 13 #include <linux/security.h> 14 #include <linux/workqueue.h> 15 #include <linux/random.h> 16 #include <linux/ima.h> 17 #include <linux/err.h> 18 #include "internal.h" 19 20 struct kmem_cache *key_jar; 21 struct rb_root key_serial_tree; /* tree of keys indexed by serial */ 22 DEFINE_SPINLOCK(key_serial_lock); 23 24 struct rb_root key_user_tree; /* tree of quota records indexed by UID */ 25 DEFINE_SPINLOCK(key_user_lock); 26 27 unsigned int key_quota_root_maxkeys = 1000000; /* root's key count quota */ 28 unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */ 29 unsigned int key_quota_maxkeys = 200; /* general key count quota */ 30 unsigned int key_quota_maxbytes = 20000; /* general key space quota */ 31 32 static LIST_HEAD(key_types_list); 33 static DECLARE_RWSEM(key_types_sem); 34 35 /* We serialise key instantiation and link */ 36 DEFINE_MUTEX(key_construction_mutex); 37 38 #ifdef KEY_DEBUGGING 39 void __key_check(const struct key *key) 40 { 41 printk("__key_check: key %p {%08x} should be {%08x}\n", 42 key, key->magic, KEY_DEBUG_MAGIC); 43 BUG(); 44 } 45 #endif 46 47 /* 48 * Get the key quota record for a user, allocating a new record if one doesn't 49 * already exist. 50 */ 51 struct key_user *key_user_lookup(kuid_t uid) 52 { 53 struct key_user *candidate = NULL, *user; 54 struct rb_node *parent, **p; 55 56 try_again: 57 parent = NULL; 58 p = &key_user_tree.rb_node; 59 spin_lock(&key_user_lock); 60 61 /* search the tree for a user record with a matching UID */ 62 while (*p) { 63 parent = *p; 64 user = rb_entry(parent, struct key_user, node); 65 66 if (uid_lt(uid, user->uid)) 67 p = &(*p)->rb_left; 68 else if (uid_gt(uid, user->uid)) 69 p = &(*p)->rb_right; 70 else 71 goto found; 72 } 73 74 /* if we get here, we failed to find a match in the tree */ 75 if (!candidate) { 76 /* allocate a candidate user record if we don't already have 77 * one */ 78 spin_unlock(&key_user_lock); 79 80 user = NULL; 81 candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL); 82 if (unlikely(!candidate)) 83 goto out; 84 85 /* the allocation may have scheduled, so we need to repeat the 86 * search lest someone else added the record whilst we were 87 * asleep */ 88 goto try_again; 89 } 90 91 /* if we get here, then the user record still hadn't appeared on the 92 * second pass - so we use the candidate record */ 93 refcount_set(&candidate->usage, 1); 94 atomic_set(&candidate->nkeys, 0); 95 atomic_set(&candidate->nikeys, 0); 96 candidate->uid = uid; 97 candidate->qnkeys = 0; 98 candidate->qnbytes = 0; 99 spin_lock_init(&candidate->lock); 100 mutex_init(&candidate->cons_lock); 101 102 rb_link_node(&candidate->node, parent, p); 103 rb_insert_color(&candidate->node, &key_user_tree); 104 spin_unlock(&key_user_lock); 105 user = candidate; 106 goto out; 107 108 /* okay - we found a user record for this UID */ 109 found: 110 refcount_inc(&user->usage); 111 spin_unlock(&key_user_lock); 112 kfree(candidate); 113 out: 114 return user; 115 } 116 117 /* 118 * Dispose of a user structure 119 */ 120 void key_user_put(struct key_user *user) 121 { 122 if (refcount_dec_and_lock(&user->usage, &key_user_lock)) { 123 rb_erase(&user->node, &key_user_tree); 124 spin_unlock(&key_user_lock); 125 126 kfree(user); 127 } 128 } 129 130 /* 131 * Allocate a serial number for a key. These are assigned randomly to avoid 132 * security issues through covert channel problems. 133 */ 134 static inline void key_alloc_serial(struct key *key) 135 { 136 struct rb_node *parent, **p; 137 struct key *xkey; 138 139 /* propose a random serial number and look for a hole for it in the 140 * serial number tree */ 141 do { 142 get_random_bytes(&key->serial, sizeof(key->serial)); 143 144 key->serial >>= 1; /* negative numbers are not permitted */ 145 } while (key->serial < 3); 146 147 spin_lock(&key_serial_lock); 148 149 attempt_insertion: 150 parent = NULL; 151 p = &key_serial_tree.rb_node; 152 153 while (*p) { 154 parent = *p; 155 xkey = rb_entry(parent, struct key, serial_node); 156 157 if (key->serial < xkey->serial) 158 p = &(*p)->rb_left; 159 else if (key->serial > xkey->serial) 160 p = &(*p)->rb_right; 161 else 162 goto serial_exists; 163 } 164 165 /* we've found a suitable hole - arrange for this key to occupy it */ 166 rb_link_node(&key->serial_node, parent, p); 167 rb_insert_color(&key->serial_node, &key_serial_tree); 168 169 spin_unlock(&key_serial_lock); 170 return; 171 172 /* we found a key with the proposed serial number - walk the tree from 173 * that point looking for the next unused serial number */ 174 serial_exists: 175 for (;;) { 176 key->serial++; 177 if (key->serial < 3) { 178 key->serial = 3; 179 goto attempt_insertion; 180 } 181 182 parent = rb_next(parent); 183 if (!parent) 184 goto attempt_insertion; 185 186 xkey = rb_entry(parent, struct key, serial_node); 187 if (key->serial < xkey->serial) 188 goto attempt_insertion; 189 } 190 } 191 192 /** 193 * key_alloc - Allocate a key of the specified type. 194 * @type: The type of key to allocate. 195 * @desc: The key description to allow the key to be searched out. 196 * @uid: The owner of the new key. 197 * @gid: The group ID for the new key's group permissions. 198 * @cred: The credentials specifying UID namespace. 199 * @perm: The permissions mask of the new key. 200 * @flags: Flags specifying quota properties. 201 * @restrict_link: Optional link restriction for new keyrings. 202 * 203 * Allocate a key of the specified type with the attributes given. The key is 204 * returned in an uninstantiated state and the caller needs to instantiate the 205 * key before returning. 206 * 207 * The restrict_link structure (if not NULL) will be freed when the 208 * keyring is destroyed, so it must be dynamically allocated. 209 * 210 * The user's key count quota is updated to reflect the creation of the key and 211 * the user's key data quota has the default for the key type reserved. The 212 * instantiation function should amend this as necessary. If insufficient 213 * quota is available, -EDQUOT will be returned. 214 * 215 * The LSM security modules can prevent a key being created, in which case 216 * -EACCES will be returned. 217 * 218 * Returns a pointer to the new key if successful and an error code otherwise. 219 * 220 * Note that the caller needs to ensure the key type isn't uninstantiated. 221 * Internally this can be done by locking key_types_sem. Externally, this can 222 * be done by either never unregistering the key type, or making sure 223 * key_alloc() calls don't race with module unloading. 224 */ 225 struct key *key_alloc(struct key_type *type, const char *desc, 226 kuid_t uid, kgid_t gid, const struct cred *cred, 227 key_perm_t perm, unsigned long flags, 228 struct key_restriction *restrict_link) 229 { 230 struct key_user *user = NULL; 231 struct key *key; 232 size_t desclen, quotalen; 233 int ret; 234 235 key = ERR_PTR(-EINVAL); 236 if (!desc || !*desc) 237 goto error; 238 239 if (type->vet_description) { 240 ret = type->vet_description(desc); 241 if (ret < 0) { 242 key = ERR_PTR(ret); 243 goto error; 244 } 245 } 246 247 desclen = strlen(desc); 248 quotalen = desclen + 1 + type->def_datalen; 249 250 /* get hold of the key tracking for this user */ 251 user = key_user_lookup(uid); 252 if (!user) 253 goto no_memory_1; 254 255 /* check that the user's quota permits allocation of another key and 256 * its description */ 257 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { 258 unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ? 259 key_quota_root_maxkeys : key_quota_maxkeys; 260 unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ? 261 key_quota_root_maxbytes : key_quota_maxbytes; 262 263 spin_lock(&user->lock); 264 if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) { 265 if (user->qnkeys + 1 > maxkeys || 266 user->qnbytes + quotalen > maxbytes || 267 user->qnbytes + quotalen < user->qnbytes) 268 goto no_quota; 269 } 270 271 user->qnkeys++; 272 user->qnbytes += quotalen; 273 spin_unlock(&user->lock); 274 } 275 276 /* allocate and initialise the key and its description */ 277 key = kmem_cache_zalloc(key_jar, GFP_KERNEL); 278 if (!key) 279 goto no_memory_2; 280 281 key->index_key.desc_len = desclen; 282 key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL); 283 if (!key->index_key.description) 284 goto no_memory_3; 285 key->index_key.type = type; 286 key_set_index_key(&key->index_key); 287 288 refcount_set(&key->usage, 1); 289 init_rwsem(&key->sem); 290 lockdep_set_class(&key->sem, &type->lock_class); 291 key->user = user; 292 key->quotalen = quotalen; 293 key->datalen = type->def_datalen; 294 key->uid = uid; 295 key->gid = gid; 296 key->perm = perm; 297 key->expiry = TIME64_MAX; 298 key->restrict_link = restrict_link; 299 key->last_used_at = ktime_get_real_seconds(); 300 301 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) 302 key->flags |= 1 << KEY_FLAG_IN_QUOTA; 303 if (flags & KEY_ALLOC_BUILT_IN) 304 key->flags |= 1 << KEY_FLAG_BUILTIN; 305 if (flags & KEY_ALLOC_UID_KEYRING) 306 key->flags |= 1 << KEY_FLAG_UID_KEYRING; 307 if (flags & KEY_ALLOC_SET_KEEP) 308 key->flags |= 1 << KEY_FLAG_KEEP; 309 310 #ifdef KEY_DEBUGGING 311 key->magic = KEY_DEBUG_MAGIC; 312 #endif 313 314 /* let the security module know about the key */ 315 ret = security_key_alloc(key, cred, flags); 316 if (ret < 0) 317 goto security_error; 318 319 /* publish the key by giving it a serial number */ 320 refcount_inc(&key->domain_tag->usage); 321 atomic_inc(&user->nkeys); 322 key_alloc_serial(key); 323 324 error: 325 return key; 326 327 security_error: 328 kfree(key->description); 329 kmem_cache_free(key_jar, key); 330 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { 331 spin_lock(&user->lock); 332 user->qnkeys--; 333 user->qnbytes -= quotalen; 334 spin_unlock(&user->lock); 335 } 336 key_user_put(user); 337 key = ERR_PTR(ret); 338 goto error; 339 340 no_memory_3: 341 kmem_cache_free(key_jar, key); 342 no_memory_2: 343 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { 344 spin_lock(&user->lock); 345 user->qnkeys--; 346 user->qnbytes -= quotalen; 347 spin_unlock(&user->lock); 348 } 349 key_user_put(user); 350 no_memory_1: 351 key = ERR_PTR(-ENOMEM); 352 goto error; 353 354 no_quota: 355 spin_unlock(&user->lock); 356 key_user_put(user); 357 key = ERR_PTR(-EDQUOT); 358 goto error; 359 } 360 EXPORT_SYMBOL(key_alloc); 361 362 /** 363 * key_payload_reserve - Adjust data quota reservation for the key's payload 364 * @key: The key to make the reservation for. 365 * @datalen: The amount of data payload the caller now wants. 366 * 367 * Adjust the amount of the owning user's key data quota that a key reserves. 368 * If the amount is increased, then -EDQUOT may be returned if there isn't 369 * enough free quota available. 370 * 371 * If successful, 0 is returned. 372 */ 373 int key_payload_reserve(struct key *key, size_t datalen) 374 { 375 int delta = (int)datalen - key->datalen; 376 int ret = 0; 377 378 key_check(key); 379 380 /* contemplate the quota adjustment */ 381 if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) { 382 unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ? 383 key_quota_root_maxbytes : key_quota_maxbytes; 384 385 spin_lock(&key->user->lock); 386 387 if (delta > 0 && 388 (key->user->qnbytes + delta > maxbytes || 389 key->user->qnbytes + delta < key->user->qnbytes)) { 390 ret = -EDQUOT; 391 } 392 else { 393 key->user->qnbytes += delta; 394 key->quotalen += delta; 395 } 396 spin_unlock(&key->user->lock); 397 } 398 399 /* change the recorded data length if that didn't generate an error */ 400 if (ret == 0) 401 key->datalen = datalen; 402 403 return ret; 404 } 405 EXPORT_SYMBOL(key_payload_reserve); 406 407 /* 408 * Change the key state to being instantiated. 409 */ 410 static void mark_key_instantiated(struct key *key, int reject_error) 411 { 412 /* Commit the payload before setting the state; barrier versus 413 * key_read_state(). 414 */ 415 smp_store_release(&key->state, 416 (reject_error < 0) ? reject_error : KEY_IS_POSITIVE); 417 } 418 419 /* 420 * Instantiate a key and link it into the target keyring atomically. Must be 421 * called with the target keyring's semaphore writelocked. The target key's 422 * semaphore need not be locked as instantiation is serialised by 423 * key_construction_mutex. 424 */ 425 static int __key_instantiate_and_link(struct key *key, 426 struct key_preparsed_payload *prep, 427 struct key *keyring, 428 struct key *authkey, 429 struct assoc_array_edit **_edit) 430 { 431 int ret, awaken; 432 433 key_check(key); 434 key_check(keyring); 435 436 awaken = 0; 437 ret = -EBUSY; 438 439 mutex_lock(&key_construction_mutex); 440 441 /* can't instantiate twice */ 442 if (key->state == KEY_IS_UNINSTANTIATED) { 443 /* instantiate the key */ 444 ret = key->type->instantiate(key, prep); 445 446 if (ret == 0) { 447 /* mark the key as being instantiated */ 448 atomic_inc(&key->user->nikeys); 449 mark_key_instantiated(key, 0); 450 notify_key(key, NOTIFY_KEY_INSTANTIATED, 0); 451 452 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) 453 awaken = 1; 454 455 /* and link it into the destination keyring */ 456 if (keyring) { 457 if (test_bit(KEY_FLAG_KEEP, &keyring->flags)) 458 set_bit(KEY_FLAG_KEEP, &key->flags); 459 460 __key_link(keyring, key, _edit); 461 } 462 463 /* disable the authorisation key */ 464 if (authkey) 465 key_invalidate(authkey); 466 467 if (prep->expiry != TIME64_MAX) 468 key_set_expiry(key, prep->expiry); 469 } 470 } 471 472 mutex_unlock(&key_construction_mutex); 473 474 /* wake up anyone waiting for a key to be constructed */ 475 if (awaken) 476 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT); 477 478 return ret; 479 } 480 481 /** 482 * key_instantiate_and_link - Instantiate a key and link it into the keyring. 483 * @key: The key to instantiate. 484 * @data: The data to use to instantiate the keyring. 485 * @datalen: The length of @data. 486 * @keyring: Keyring to create a link in on success (or NULL). 487 * @authkey: The authorisation token permitting instantiation. 488 * 489 * Instantiate a key that's in the uninstantiated state using the provided data 490 * and, if successful, link it in to the destination keyring if one is 491 * supplied. 492 * 493 * If successful, 0 is returned, the authorisation token is revoked and anyone 494 * waiting for the key is woken up. If the key was already instantiated, 495 * -EBUSY will be returned. 496 */ 497 int key_instantiate_and_link(struct key *key, 498 const void *data, 499 size_t datalen, 500 struct key *keyring, 501 struct key *authkey) 502 { 503 struct key_preparsed_payload prep; 504 struct assoc_array_edit *edit = NULL; 505 int ret; 506 507 memset(&prep, 0, sizeof(prep)); 508 prep.orig_description = key->description; 509 prep.data = data; 510 prep.datalen = datalen; 511 prep.quotalen = key->type->def_datalen; 512 prep.expiry = TIME64_MAX; 513 if (key->type->preparse) { 514 ret = key->type->preparse(&prep); 515 if (ret < 0) 516 goto error; 517 } 518 519 if (keyring) { 520 ret = __key_link_lock(keyring, &key->index_key); 521 if (ret < 0) 522 goto error; 523 524 ret = __key_link_begin(keyring, &key->index_key, &edit); 525 if (ret < 0) 526 goto error_link_end; 527 528 if (keyring->restrict_link && keyring->restrict_link->check) { 529 struct key_restriction *keyres = keyring->restrict_link; 530 531 ret = keyres->check(keyring, key->type, &prep.payload, 532 keyres->key); 533 if (ret < 0) 534 goto error_link_end; 535 } 536 } 537 538 ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit); 539 540 error_link_end: 541 if (keyring) 542 __key_link_end(keyring, &key->index_key, edit); 543 544 error: 545 if (key->type->preparse) 546 key->type->free_preparse(&prep); 547 return ret; 548 } 549 550 EXPORT_SYMBOL(key_instantiate_and_link); 551 552 /** 553 * key_reject_and_link - Negatively instantiate a key and link it into the keyring. 554 * @key: The key to instantiate. 555 * @timeout: The timeout on the negative key. 556 * @error: The error to return when the key is hit. 557 * @keyring: Keyring to create a link in on success (or NULL). 558 * @authkey: The authorisation token permitting instantiation. 559 * 560 * Negatively instantiate a key that's in the uninstantiated state and, if 561 * successful, set its timeout and stored error and link it in to the 562 * destination keyring if one is supplied. The key and any links to the key 563 * will be automatically garbage collected after the timeout expires. 564 * 565 * Negative keys are used to rate limit repeated request_key() calls by causing 566 * them to return the stored error code (typically ENOKEY) until the negative 567 * key expires. 568 * 569 * If successful, 0 is returned, the authorisation token is revoked and anyone 570 * waiting for the key is woken up. If the key was already instantiated, 571 * -EBUSY will be returned. 572 */ 573 int key_reject_and_link(struct key *key, 574 unsigned timeout, 575 unsigned error, 576 struct key *keyring, 577 struct key *authkey) 578 { 579 struct assoc_array_edit *edit = NULL; 580 int ret, awaken, link_ret = 0; 581 582 key_check(key); 583 key_check(keyring); 584 585 awaken = 0; 586 ret = -EBUSY; 587 588 if (keyring) { 589 if (keyring->restrict_link) 590 return -EPERM; 591 592 link_ret = __key_link_lock(keyring, &key->index_key); 593 if (link_ret == 0) { 594 link_ret = __key_link_begin(keyring, &key->index_key, &edit); 595 if (link_ret < 0) 596 __key_link_end(keyring, &key->index_key, edit); 597 } 598 } 599 600 mutex_lock(&key_construction_mutex); 601 602 /* can't instantiate twice */ 603 if (key->state == KEY_IS_UNINSTANTIATED) { 604 /* mark the key as being negatively instantiated */ 605 atomic_inc(&key->user->nikeys); 606 mark_key_instantiated(key, -error); 607 notify_key(key, NOTIFY_KEY_INSTANTIATED, -error); 608 key_set_expiry(key, ktime_get_real_seconds() + timeout); 609 610 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) 611 awaken = 1; 612 613 ret = 0; 614 615 /* and link it into the destination keyring */ 616 if (keyring && link_ret == 0) 617 __key_link(keyring, key, &edit); 618 619 /* disable the authorisation key */ 620 if (authkey) 621 key_invalidate(authkey); 622 } 623 624 mutex_unlock(&key_construction_mutex); 625 626 if (keyring && link_ret == 0) 627 __key_link_end(keyring, &key->index_key, edit); 628 629 /* wake up anyone waiting for a key to be constructed */ 630 if (awaken) 631 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT); 632 633 return ret == 0 ? link_ret : ret; 634 } 635 EXPORT_SYMBOL(key_reject_and_link); 636 637 /** 638 * key_put - Discard a reference to a key. 639 * @key: The key to discard a reference from. 640 * 641 * Discard a reference to a key, and when all the references are gone, we 642 * schedule the cleanup task to come and pull it out of the tree in process 643 * context at some later time. 644 */ 645 void key_put(struct key *key) 646 { 647 if (key) { 648 key_check(key); 649 650 if (refcount_dec_and_test(&key->usage)) 651 schedule_work(&key_gc_work); 652 } 653 } 654 EXPORT_SYMBOL(key_put); 655 656 /* 657 * Find a key by its serial number. 658 */ 659 struct key *key_lookup(key_serial_t id) 660 { 661 struct rb_node *n; 662 struct key *key; 663 664 spin_lock(&key_serial_lock); 665 666 /* search the tree for the specified key */ 667 n = key_serial_tree.rb_node; 668 while (n) { 669 key = rb_entry(n, struct key, serial_node); 670 671 if (id < key->serial) 672 n = n->rb_left; 673 else if (id > key->serial) 674 n = n->rb_right; 675 else 676 goto found; 677 } 678 679 not_found: 680 key = ERR_PTR(-ENOKEY); 681 goto error; 682 683 found: 684 /* A key is allowed to be looked up only if someone still owns a 685 * reference to it - otherwise it's awaiting the gc. 686 */ 687 if (!refcount_inc_not_zero(&key->usage)) 688 goto not_found; 689 690 error: 691 spin_unlock(&key_serial_lock); 692 return key; 693 } 694 695 /* 696 * Find and lock the specified key type against removal. 697 * 698 * We return with the sem read-locked if successful. If the type wasn't 699 * available -ENOKEY is returned instead. 700 */ 701 struct key_type *key_type_lookup(const char *type) 702 { 703 struct key_type *ktype; 704 705 down_read(&key_types_sem); 706 707 /* look up the key type to see if it's one of the registered kernel 708 * types */ 709 list_for_each_entry(ktype, &key_types_list, link) { 710 if (strcmp(ktype->name, type) == 0) 711 goto found_kernel_type; 712 } 713 714 up_read(&key_types_sem); 715 ktype = ERR_PTR(-ENOKEY); 716 717 found_kernel_type: 718 return ktype; 719 } 720 721 void key_set_timeout(struct key *key, unsigned timeout) 722 { 723 time64_t expiry = TIME64_MAX; 724 725 /* make the changes with the locks held to prevent races */ 726 down_write(&key->sem); 727 728 if (timeout > 0) 729 expiry = ktime_get_real_seconds() + timeout; 730 key_set_expiry(key, expiry); 731 732 up_write(&key->sem); 733 } 734 EXPORT_SYMBOL_GPL(key_set_timeout); 735 736 /* 737 * Unlock a key type locked by key_type_lookup(). 738 */ 739 void key_type_put(struct key_type *ktype) 740 { 741 up_read(&key_types_sem); 742 } 743 744 /* 745 * Attempt to update an existing key. 746 * 747 * The key is given to us with an incremented refcount that we need to discard 748 * if we get an error. 749 */ 750 static inline key_ref_t __key_update(key_ref_t key_ref, 751 struct key_preparsed_payload *prep) 752 { 753 struct key *key = key_ref_to_ptr(key_ref); 754 int ret; 755 756 /* need write permission on the key to update it */ 757 ret = key_permission(key_ref, KEY_NEED_WRITE); 758 if (ret < 0) 759 goto error; 760 761 ret = -EEXIST; 762 if (!key->type->update) 763 goto error; 764 765 down_write(&key->sem); 766 767 ret = key->type->update(key, prep); 768 if (ret == 0) { 769 /* Updating a negative key positively instantiates it */ 770 mark_key_instantiated(key, 0); 771 notify_key(key, NOTIFY_KEY_UPDATED, 0); 772 } 773 774 up_write(&key->sem); 775 776 if (ret < 0) 777 goto error; 778 out: 779 return key_ref; 780 781 error: 782 key_put(key); 783 key_ref = ERR_PTR(ret); 784 goto out; 785 } 786 787 /* 788 * Create or potentially update a key. The combined logic behind 789 * key_create_or_update() and key_create() 790 */ 791 static key_ref_t __key_create_or_update(key_ref_t keyring_ref, 792 const char *type, 793 const char *description, 794 const void *payload, 795 size_t plen, 796 key_perm_t perm, 797 unsigned long flags, 798 bool allow_update) 799 { 800 struct keyring_index_key index_key = { 801 .description = description, 802 }; 803 struct key_preparsed_payload prep; 804 struct assoc_array_edit *edit = NULL; 805 const struct cred *cred = current_cred(); 806 struct key *keyring, *key = NULL; 807 key_ref_t key_ref; 808 int ret; 809 struct key_restriction *restrict_link = NULL; 810 811 /* look up the key type to see if it's one of the registered kernel 812 * types */ 813 index_key.type = key_type_lookup(type); 814 if (IS_ERR(index_key.type)) { 815 key_ref = ERR_PTR(-ENODEV); 816 goto error; 817 } 818 819 key_ref = ERR_PTR(-EINVAL); 820 if (!index_key.type->instantiate || 821 (!index_key.description && !index_key.type->preparse)) 822 goto error_put_type; 823 824 keyring = key_ref_to_ptr(keyring_ref); 825 826 key_check(keyring); 827 828 if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION)) 829 restrict_link = keyring->restrict_link; 830 831 key_ref = ERR_PTR(-ENOTDIR); 832 if (keyring->type != &key_type_keyring) 833 goto error_put_type; 834 835 memset(&prep, 0, sizeof(prep)); 836 prep.orig_description = description; 837 prep.data = payload; 838 prep.datalen = plen; 839 prep.quotalen = index_key.type->def_datalen; 840 prep.expiry = TIME64_MAX; 841 if (index_key.type->preparse) { 842 ret = index_key.type->preparse(&prep); 843 if (ret < 0) { 844 key_ref = ERR_PTR(ret); 845 goto error_free_prep; 846 } 847 if (!index_key.description) 848 index_key.description = prep.description; 849 key_ref = ERR_PTR(-EINVAL); 850 if (!index_key.description) 851 goto error_free_prep; 852 } 853 index_key.desc_len = strlen(index_key.description); 854 key_set_index_key(&index_key); 855 856 ret = __key_link_lock(keyring, &index_key); 857 if (ret < 0) { 858 key_ref = ERR_PTR(ret); 859 goto error_free_prep; 860 } 861 862 ret = __key_link_begin(keyring, &index_key, &edit); 863 if (ret < 0) { 864 key_ref = ERR_PTR(ret); 865 goto error_link_end; 866 } 867 868 if (restrict_link && restrict_link->check) { 869 ret = restrict_link->check(keyring, index_key.type, 870 &prep.payload, restrict_link->key); 871 if (ret < 0) { 872 key_ref = ERR_PTR(ret); 873 goto error_link_end; 874 } 875 } 876 877 /* if we're going to allocate a new key, we're going to have 878 * to modify the keyring */ 879 ret = key_permission(keyring_ref, KEY_NEED_WRITE); 880 if (ret < 0) { 881 key_ref = ERR_PTR(ret); 882 goto error_link_end; 883 } 884 885 /* if it's requested and possible to update this type of key, search 886 * for an existing key of the same type and description in the 887 * destination keyring and update that instead if possible 888 */ 889 if (allow_update) { 890 if (index_key.type->update) { 891 key_ref = find_key_to_update(keyring_ref, &index_key); 892 if (key_ref) 893 goto found_matching_key; 894 } 895 } else { 896 key_ref = find_key_to_update(keyring_ref, &index_key); 897 if (key_ref) { 898 key_ref_put(key_ref); 899 key_ref = ERR_PTR(-EEXIST); 900 goto error_link_end; 901 } 902 } 903 904 /* if the client doesn't provide, decide on the permissions we want */ 905 if (perm == KEY_PERM_UNDEF) { 906 perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR; 907 perm |= KEY_USR_VIEW; 908 909 if (index_key.type->read) 910 perm |= KEY_POS_READ; 911 912 if (index_key.type == &key_type_keyring || 913 index_key.type->update) 914 perm |= KEY_POS_WRITE; 915 } 916 917 /* allocate a new key */ 918 key = key_alloc(index_key.type, index_key.description, 919 cred->fsuid, cred->fsgid, cred, perm, flags, NULL); 920 if (IS_ERR(key)) { 921 key_ref = ERR_CAST(key); 922 goto error_link_end; 923 } 924 925 /* instantiate it and link it into the target keyring */ 926 ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit); 927 if (ret < 0) { 928 key_put(key); 929 key_ref = ERR_PTR(ret); 930 goto error_link_end; 931 } 932 933 ima_post_key_create_or_update(keyring, key, payload, plen, 934 flags, true); 935 936 key_ref = make_key_ref(key, is_key_possessed(keyring_ref)); 937 938 error_link_end: 939 __key_link_end(keyring, &index_key, edit); 940 error_free_prep: 941 if (index_key.type->preparse) 942 index_key.type->free_preparse(&prep); 943 error_put_type: 944 key_type_put(index_key.type); 945 error: 946 return key_ref; 947 948 found_matching_key: 949 /* we found a matching key, so we're going to try to update it 950 * - we can drop the locks first as we have the key pinned 951 */ 952 __key_link_end(keyring, &index_key, edit); 953 954 key = key_ref_to_ptr(key_ref); 955 if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) { 956 ret = wait_for_key_construction(key, true); 957 if (ret < 0) { 958 key_ref_put(key_ref); 959 key_ref = ERR_PTR(ret); 960 goto error_free_prep; 961 } 962 } 963 964 key_ref = __key_update(key_ref, &prep); 965 966 if (!IS_ERR(key_ref)) 967 ima_post_key_create_or_update(keyring, key, 968 payload, plen, 969 flags, false); 970 971 goto error_free_prep; 972 } 973 974 /** 975 * key_create_or_update - Update or create and instantiate a key. 976 * @keyring_ref: A pointer to the destination keyring with possession flag. 977 * @type: The type of key. 978 * @description: The searchable description for the key. 979 * @payload: The data to use to instantiate or update the key. 980 * @plen: The length of @payload. 981 * @perm: The permissions mask for a new key. 982 * @flags: The quota flags for a new key. 983 * 984 * Search the destination keyring for a key of the same description and if one 985 * is found, update it, otherwise create and instantiate a new one and create a 986 * link to it from that keyring. 987 * 988 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be 989 * concocted. 990 * 991 * Returns a pointer to the new key if successful, -ENODEV if the key type 992 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the 993 * caller isn't permitted to modify the keyring or the LSM did not permit 994 * creation of the key. 995 * 996 * On success, the possession flag from the keyring ref will be tacked on to 997 * the key ref before it is returned. 998 */ 999 key_ref_t key_create_or_update(key_ref_t keyring_ref, 1000 const char *type, 1001 const char *description, 1002 const void *payload, 1003 size_t plen, 1004 key_perm_t perm, 1005 unsigned long flags) 1006 { 1007 return __key_create_or_update(keyring_ref, type, description, payload, 1008 plen, perm, flags, true); 1009 } 1010 EXPORT_SYMBOL(key_create_or_update); 1011 1012 /** 1013 * key_create - Create and instantiate a key. 1014 * @keyring_ref: A pointer to the destination keyring with possession flag. 1015 * @type: The type of key. 1016 * @description: The searchable description for the key. 1017 * @payload: The data to use to instantiate or update the key. 1018 * @plen: The length of @payload. 1019 * @perm: The permissions mask for a new key. 1020 * @flags: The quota flags for a new key. 1021 * 1022 * Create and instantiate a new key and link to it from the destination keyring. 1023 * 1024 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be 1025 * concocted. 1026 * 1027 * Returns a pointer to the new key if successful, -EEXIST if a key with the 1028 * same description already exists, -ENODEV if the key type wasn't available, 1029 * -ENOTDIR if the keyring wasn't a keyring, -EACCES if the caller isn't 1030 * permitted to modify the keyring or the LSM did not permit creation of the 1031 * key. 1032 * 1033 * On success, the possession flag from the keyring ref will be tacked on to 1034 * the key ref before it is returned. 1035 */ 1036 key_ref_t key_create(key_ref_t keyring_ref, 1037 const char *type, 1038 const char *description, 1039 const void *payload, 1040 size_t plen, 1041 key_perm_t perm, 1042 unsigned long flags) 1043 { 1044 return __key_create_or_update(keyring_ref, type, description, payload, 1045 plen, perm, flags, false); 1046 } 1047 EXPORT_SYMBOL(key_create); 1048 1049 /** 1050 * key_update - Update a key's contents. 1051 * @key_ref: The pointer (plus possession flag) to the key. 1052 * @payload: The data to be used to update the key. 1053 * @plen: The length of @payload. 1054 * 1055 * Attempt to update the contents of a key with the given payload data. The 1056 * caller must be granted Write permission on the key. Negative keys can be 1057 * instantiated by this method. 1058 * 1059 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key 1060 * type does not support updating. The key type may return other errors. 1061 */ 1062 int key_update(key_ref_t key_ref, const void *payload, size_t plen) 1063 { 1064 struct key_preparsed_payload prep; 1065 struct key *key = key_ref_to_ptr(key_ref); 1066 int ret; 1067 1068 key_check(key); 1069 1070 /* the key must be writable */ 1071 ret = key_permission(key_ref, KEY_NEED_WRITE); 1072 if (ret < 0) 1073 return ret; 1074 1075 /* attempt to update it if supported */ 1076 if (!key->type->update) 1077 return -EOPNOTSUPP; 1078 1079 memset(&prep, 0, sizeof(prep)); 1080 prep.data = payload; 1081 prep.datalen = plen; 1082 prep.quotalen = key->type->def_datalen; 1083 prep.expiry = TIME64_MAX; 1084 if (key->type->preparse) { 1085 ret = key->type->preparse(&prep); 1086 if (ret < 0) 1087 goto error; 1088 } 1089 1090 down_write(&key->sem); 1091 1092 ret = key->type->update(key, &prep); 1093 if (ret == 0) { 1094 /* Updating a negative key positively instantiates it */ 1095 mark_key_instantiated(key, 0); 1096 notify_key(key, NOTIFY_KEY_UPDATED, 0); 1097 } 1098 1099 up_write(&key->sem); 1100 1101 error: 1102 if (key->type->preparse) 1103 key->type->free_preparse(&prep); 1104 return ret; 1105 } 1106 EXPORT_SYMBOL(key_update); 1107 1108 /** 1109 * key_revoke - Revoke a key. 1110 * @key: The key to be revoked. 1111 * 1112 * Mark a key as being revoked and ask the type to free up its resources. The 1113 * revocation timeout is set and the key and all its links will be 1114 * automatically garbage collected after key_gc_delay amount of time if they 1115 * are not manually dealt with first. 1116 */ 1117 void key_revoke(struct key *key) 1118 { 1119 time64_t time; 1120 1121 key_check(key); 1122 1123 /* make sure no one's trying to change or use the key when we mark it 1124 * - we tell lockdep that we might nest because we might be revoking an 1125 * authorisation key whilst holding the sem on a key we've just 1126 * instantiated 1127 */ 1128 down_write_nested(&key->sem, 1); 1129 if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags)) { 1130 notify_key(key, NOTIFY_KEY_REVOKED, 0); 1131 if (key->type->revoke) 1132 key->type->revoke(key); 1133 1134 /* set the death time to no more than the expiry time */ 1135 time = ktime_get_real_seconds(); 1136 if (key->revoked_at == 0 || key->revoked_at > time) { 1137 key->revoked_at = time; 1138 key_schedule_gc(key->revoked_at + key_gc_delay); 1139 } 1140 } 1141 1142 up_write(&key->sem); 1143 } 1144 EXPORT_SYMBOL(key_revoke); 1145 1146 /** 1147 * key_invalidate - Invalidate a key. 1148 * @key: The key to be invalidated. 1149 * 1150 * Mark a key as being invalidated and have it cleaned up immediately. The key 1151 * is ignored by all searches and other operations from this point. 1152 */ 1153 void key_invalidate(struct key *key) 1154 { 1155 kenter("%d", key_serial(key)); 1156 1157 key_check(key); 1158 1159 if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) { 1160 down_write_nested(&key->sem, 1); 1161 if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags)) { 1162 notify_key(key, NOTIFY_KEY_INVALIDATED, 0); 1163 key_schedule_gc_links(); 1164 } 1165 up_write(&key->sem); 1166 } 1167 } 1168 EXPORT_SYMBOL(key_invalidate); 1169 1170 /** 1171 * generic_key_instantiate - Simple instantiation of a key from preparsed data 1172 * @key: The key to be instantiated 1173 * @prep: The preparsed data to load. 1174 * 1175 * Instantiate a key from preparsed data. We assume we can just copy the data 1176 * in directly and clear the old pointers. 1177 * 1178 * This can be pointed to directly by the key type instantiate op pointer. 1179 */ 1180 int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep) 1181 { 1182 int ret; 1183 1184 pr_devel("==>%s()\n", __func__); 1185 1186 ret = key_payload_reserve(key, prep->quotalen); 1187 if (ret == 0) { 1188 rcu_assign_keypointer(key, prep->payload.data[0]); 1189 key->payload.data[1] = prep->payload.data[1]; 1190 key->payload.data[2] = prep->payload.data[2]; 1191 key->payload.data[3] = prep->payload.data[3]; 1192 prep->payload.data[0] = NULL; 1193 prep->payload.data[1] = NULL; 1194 prep->payload.data[2] = NULL; 1195 prep->payload.data[3] = NULL; 1196 } 1197 pr_devel("<==%s() = %d\n", __func__, ret); 1198 return ret; 1199 } 1200 EXPORT_SYMBOL(generic_key_instantiate); 1201 1202 /** 1203 * register_key_type - Register a type of key. 1204 * @ktype: The new key type. 1205 * 1206 * Register a new key type. 1207 * 1208 * Returns 0 on success or -EEXIST if a type of this name already exists. 1209 */ 1210 int register_key_type(struct key_type *ktype) 1211 { 1212 struct key_type *p; 1213 int ret; 1214 1215 memset(&ktype->lock_class, 0, sizeof(ktype->lock_class)); 1216 1217 ret = -EEXIST; 1218 down_write(&key_types_sem); 1219 1220 /* disallow key types with the same name */ 1221 list_for_each_entry(p, &key_types_list, link) { 1222 if (strcmp(p->name, ktype->name) == 0) 1223 goto out; 1224 } 1225 1226 /* store the type */ 1227 list_add(&ktype->link, &key_types_list); 1228 1229 pr_notice("Key type %s registered\n", ktype->name); 1230 ret = 0; 1231 1232 out: 1233 up_write(&key_types_sem); 1234 return ret; 1235 } 1236 EXPORT_SYMBOL(register_key_type); 1237 1238 /** 1239 * unregister_key_type - Unregister a type of key. 1240 * @ktype: The key type. 1241 * 1242 * Unregister a key type and mark all the extant keys of this type as dead. 1243 * Those keys of this type are then destroyed to get rid of their payloads and 1244 * they and their links will be garbage collected as soon as possible. 1245 */ 1246 void unregister_key_type(struct key_type *ktype) 1247 { 1248 down_write(&key_types_sem); 1249 list_del_init(&ktype->link); 1250 downgrade_write(&key_types_sem); 1251 key_gc_keytype(ktype); 1252 pr_notice("Key type %s unregistered\n", ktype->name); 1253 up_read(&key_types_sem); 1254 } 1255 EXPORT_SYMBOL(unregister_key_type); 1256 1257 /* 1258 * Initialise the key management state. 1259 */ 1260 void __init key_init(void) 1261 { 1262 /* allocate a slab in which we can store keys */ 1263 key_jar = kmem_cache_create("key_jar", sizeof(struct key), 1264 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 1265 1266 /* add the special key types */ 1267 list_add_tail(&key_type_keyring.link, &key_types_list); 1268 list_add_tail(&key_type_dead.link, &key_types_list); 1269 list_add_tail(&key_type_user.link, &key_types_list); 1270 list_add_tail(&key_type_logon.link, &key_types_list); 1271 1272 /* record the root user tracking */ 1273 rb_link_node(&root_key_user.node, 1274 NULL, 1275 &key_user_tree.rb_node); 1276 1277 rb_insert_color(&root_key_user.node, 1278 &key_user_tree); 1279 } 1280