xref: /openbmc/linux/security/keys/key.c (revision abade675e02e1b73da0c20ffaf08fbe309038298)
1 /* Basic authentication token and access key management
2  *
3  * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/export.h>
13 #include <linux/init.h>
14 #include <linux/poison.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/security.h>
18 #include <linux/workqueue.h>
19 #include <linux/random.h>
20 #include <linux/err.h>
21 #include "internal.h"
22 
23 struct kmem_cache *key_jar;
24 struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
25 DEFINE_SPINLOCK(key_serial_lock);
26 
27 struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
28 DEFINE_SPINLOCK(key_user_lock);
29 
30 unsigned int key_quota_root_maxkeys = 1000000;	/* root's key count quota */
31 unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
32 unsigned int key_quota_maxkeys = 200;		/* general key count quota */
33 unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
34 
35 static LIST_HEAD(key_types_list);
36 static DECLARE_RWSEM(key_types_sem);
37 
38 /* We serialise key instantiation and link */
39 DEFINE_MUTEX(key_construction_mutex);
40 
41 #ifdef KEY_DEBUGGING
42 void __key_check(const struct key *key)
43 {
44 	printk("__key_check: key %p {%08x} should be {%08x}\n",
45 	       key, key->magic, KEY_DEBUG_MAGIC);
46 	BUG();
47 }
48 #endif
49 
50 /*
51  * Get the key quota record for a user, allocating a new record if one doesn't
52  * already exist.
53  */
54 struct key_user *key_user_lookup(kuid_t uid)
55 {
56 	struct key_user *candidate = NULL, *user;
57 	struct rb_node *parent, **p;
58 
59 try_again:
60 	parent = NULL;
61 	p = &key_user_tree.rb_node;
62 	spin_lock(&key_user_lock);
63 
64 	/* search the tree for a user record with a matching UID */
65 	while (*p) {
66 		parent = *p;
67 		user = rb_entry(parent, struct key_user, node);
68 
69 		if (uid_lt(uid, user->uid))
70 			p = &(*p)->rb_left;
71 		else if (uid_gt(uid, user->uid))
72 			p = &(*p)->rb_right;
73 		else
74 			goto found;
75 	}
76 
77 	/* if we get here, we failed to find a match in the tree */
78 	if (!candidate) {
79 		/* allocate a candidate user record if we don't already have
80 		 * one */
81 		spin_unlock(&key_user_lock);
82 
83 		user = NULL;
84 		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
85 		if (unlikely(!candidate))
86 			goto out;
87 
88 		/* the allocation may have scheduled, so we need to repeat the
89 		 * search lest someone else added the record whilst we were
90 		 * asleep */
91 		goto try_again;
92 	}
93 
94 	/* if we get here, then the user record still hadn't appeared on the
95 	 * second pass - so we use the candidate record */
96 	refcount_set(&candidate->usage, 1);
97 	atomic_set(&candidate->nkeys, 0);
98 	atomic_set(&candidate->nikeys, 0);
99 	candidate->uid = uid;
100 	candidate->qnkeys = 0;
101 	candidate->qnbytes = 0;
102 	spin_lock_init(&candidate->lock);
103 	mutex_init(&candidate->cons_lock);
104 
105 	rb_link_node(&candidate->node, parent, p);
106 	rb_insert_color(&candidate->node, &key_user_tree);
107 	spin_unlock(&key_user_lock);
108 	user = candidate;
109 	goto out;
110 
111 	/* okay - we found a user record for this UID */
112 found:
113 	refcount_inc(&user->usage);
114 	spin_unlock(&key_user_lock);
115 	kfree(candidate);
116 out:
117 	return user;
118 }
119 
120 /*
121  * Dispose of a user structure
122  */
123 void key_user_put(struct key_user *user)
124 {
125 	if (refcount_dec_and_lock(&user->usage, &key_user_lock)) {
126 		rb_erase(&user->node, &key_user_tree);
127 		spin_unlock(&key_user_lock);
128 
129 		kfree(user);
130 	}
131 }
132 
133 /*
134  * Allocate a serial number for a key.  These are assigned randomly to avoid
135  * security issues through covert channel problems.
136  */
137 static inline void key_alloc_serial(struct key *key)
138 {
139 	struct rb_node *parent, **p;
140 	struct key *xkey;
141 
142 	/* propose a random serial number and look for a hole for it in the
143 	 * serial number tree */
144 	do {
145 		get_random_bytes(&key->serial, sizeof(key->serial));
146 
147 		key->serial >>= 1; /* negative numbers are not permitted */
148 	} while (key->serial < 3);
149 
150 	spin_lock(&key_serial_lock);
151 
152 attempt_insertion:
153 	parent = NULL;
154 	p = &key_serial_tree.rb_node;
155 
156 	while (*p) {
157 		parent = *p;
158 		xkey = rb_entry(parent, struct key, serial_node);
159 
160 		if (key->serial < xkey->serial)
161 			p = &(*p)->rb_left;
162 		else if (key->serial > xkey->serial)
163 			p = &(*p)->rb_right;
164 		else
165 			goto serial_exists;
166 	}
167 
168 	/* we've found a suitable hole - arrange for this key to occupy it */
169 	rb_link_node(&key->serial_node, parent, p);
170 	rb_insert_color(&key->serial_node, &key_serial_tree);
171 
172 	spin_unlock(&key_serial_lock);
173 	return;
174 
175 	/* we found a key with the proposed serial number - walk the tree from
176 	 * that point looking for the next unused serial number */
177 serial_exists:
178 	for (;;) {
179 		key->serial++;
180 		if (key->serial < 3) {
181 			key->serial = 3;
182 			goto attempt_insertion;
183 		}
184 
185 		parent = rb_next(parent);
186 		if (!parent)
187 			goto attempt_insertion;
188 
189 		xkey = rb_entry(parent, struct key, serial_node);
190 		if (key->serial < xkey->serial)
191 			goto attempt_insertion;
192 	}
193 }
194 
195 /**
196  * key_alloc - Allocate a key of the specified type.
197  * @type: The type of key to allocate.
198  * @desc: The key description to allow the key to be searched out.
199  * @uid: The owner of the new key.
200  * @gid: The group ID for the new key's group permissions.
201  * @cred: The credentials specifying UID namespace.
202  * @perm: The permissions mask of the new key.
203  * @flags: Flags specifying quota properties.
204  * @restrict_link: Optional link restriction for new keyrings.
205  *
206  * Allocate a key of the specified type with the attributes given.  The key is
207  * returned in an uninstantiated state and the caller needs to instantiate the
208  * key before returning.
209  *
210  * The restrict_link structure (if not NULL) will be freed when the
211  * keyring is destroyed, so it must be dynamically allocated.
212  *
213  * The user's key count quota is updated to reflect the creation of the key and
214  * the user's key data quota has the default for the key type reserved.  The
215  * instantiation function should amend this as necessary.  If insufficient
216  * quota is available, -EDQUOT will be returned.
217  *
218  * The LSM security modules can prevent a key being created, in which case
219  * -EACCES will be returned.
220  *
221  * Returns a pointer to the new key if successful and an error code otherwise.
222  *
223  * Note that the caller needs to ensure the key type isn't uninstantiated.
224  * Internally this can be done by locking key_types_sem.  Externally, this can
225  * be done by either never unregistering the key type, or making sure
226  * key_alloc() calls don't race with module unloading.
227  */
228 struct key *key_alloc(struct key_type *type, const char *desc,
229 		      kuid_t uid, kgid_t gid, const struct cred *cred,
230 		      key_perm_t perm, unsigned long flags,
231 		      struct key_restriction *restrict_link)
232 {
233 	struct key_user *user = NULL;
234 	struct key *key;
235 	size_t desclen, quotalen;
236 	int ret;
237 
238 	key = ERR_PTR(-EINVAL);
239 	if (!desc || !*desc)
240 		goto error;
241 
242 	if (type->vet_description) {
243 		ret = type->vet_description(desc);
244 		if (ret < 0) {
245 			key = ERR_PTR(ret);
246 			goto error;
247 		}
248 	}
249 
250 	desclen = strlen(desc);
251 	quotalen = desclen + 1 + type->def_datalen;
252 
253 	/* get hold of the key tracking for this user */
254 	user = key_user_lookup(uid);
255 	if (!user)
256 		goto no_memory_1;
257 
258 	/* check that the user's quota permits allocation of another key and
259 	 * its description */
260 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
261 		unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
262 			key_quota_root_maxkeys : key_quota_maxkeys;
263 		unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
264 			key_quota_root_maxbytes : key_quota_maxbytes;
265 
266 		spin_lock(&user->lock);
267 		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
268 			if (user->qnkeys + 1 > maxkeys ||
269 			    user->qnbytes + quotalen > maxbytes ||
270 			    user->qnbytes + quotalen < user->qnbytes)
271 				goto no_quota;
272 		}
273 
274 		user->qnkeys++;
275 		user->qnbytes += quotalen;
276 		spin_unlock(&user->lock);
277 	}
278 
279 	/* allocate and initialise the key and its description */
280 	key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
281 	if (!key)
282 		goto no_memory_2;
283 
284 	key->index_key.desc_len = desclen;
285 	key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
286 	if (!key->index_key.description)
287 		goto no_memory_3;
288 
289 	refcount_set(&key->usage, 1);
290 	init_rwsem(&key->sem);
291 	lockdep_set_class(&key->sem, &type->lock_class);
292 	key->index_key.type = type;
293 	key->user = user;
294 	key->quotalen = quotalen;
295 	key->datalen = type->def_datalen;
296 	key->uid = uid;
297 	key->gid = gid;
298 	key->perm = perm;
299 	key->restrict_link = restrict_link;
300 	key->last_used_at = ktime_get_real_seconds();
301 
302 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
303 		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
304 	if (flags & KEY_ALLOC_BUILT_IN)
305 		key->flags |= 1 << KEY_FLAG_BUILTIN;
306 	if (flags & KEY_ALLOC_UID_KEYRING)
307 		key->flags |= 1 << KEY_FLAG_UID_KEYRING;
308 
309 #ifdef KEY_DEBUGGING
310 	key->magic = KEY_DEBUG_MAGIC;
311 #endif
312 
313 	/* let the security module know about the key */
314 	ret = security_key_alloc(key, cred, flags);
315 	if (ret < 0)
316 		goto security_error;
317 
318 	/* publish the key by giving it a serial number */
319 	atomic_inc(&user->nkeys);
320 	key_alloc_serial(key);
321 
322 error:
323 	return key;
324 
325 security_error:
326 	kfree(key->description);
327 	kmem_cache_free(key_jar, key);
328 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
329 		spin_lock(&user->lock);
330 		user->qnkeys--;
331 		user->qnbytes -= quotalen;
332 		spin_unlock(&user->lock);
333 	}
334 	key_user_put(user);
335 	key = ERR_PTR(ret);
336 	goto error;
337 
338 no_memory_3:
339 	kmem_cache_free(key_jar, key);
340 no_memory_2:
341 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
342 		spin_lock(&user->lock);
343 		user->qnkeys--;
344 		user->qnbytes -= quotalen;
345 		spin_unlock(&user->lock);
346 	}
347 	key_user_put(user);
348 no_memory_1:
349 	key = ERR_PTR(-ENOMEM);
350 	goto error;
351 
352 no_quota:
353 	spin_unlock(&user->lock);
354 	key_user_put(user);
355 	key = ERR_PTR(-EDQUOT);
356 	goto error;
357 }
358 EXPORT_SYMBOL(key_alloc);
359 
360 /**
361  * key_payload_reserve - Adjust data quota reservation for the key's payload
362  * @key: The key to make the reservation for.
363  * @datalen: The amount of data payload the caller now wants.
364  *
365  * Adjust the amount of the owning user's key data quota that a key reserves.
366  * If the amount is increased, then -EDQUOT may be returned if there isn't
367  * enough free quota available.
368  *
369  * If successful, 0 is returned.
370  */
371 int key_payload_reserve(struct key *key, size_t datalen)
372 {
373 	int delta = (int)datalen - key->datalen;
374 	int ret = 0;
375 
376 	key_check(key);
377 
378 	/* contemplate the quota adjustment */
379 	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
380 		unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
381 			key_quota_root_maxbytes : key_quota_maxbytes;
382 
383 		spin_lock(&key->user->lock);
384 
385 		if (delta > 0 &&
386 		    (key->user->qnbytes + delta >= maxbytes ||
387 		     key->user->qnbytes + delta < key->user->qnbytes)) {
388 			ret = -EDQUOT;
389 		}
390 		else {
391 			key->user->qnbytes += delta;
392 			key->quotalen += delta;
393 		}
394 		spin_unlock(&key->user->lock);
395 	}
396 
397 	/* change the recorded data length if that didn't generate an error */
398 	if (ret == 0)
399 		key->datalen = datalen;
400 
401 	return ret;
402 }
403 EXPORT_SYMBOL(key_payload_reserve);
404 
405 /*
406  * Change the key state to being instantiated.
407  */
408 static void mark_key_instantiated(struct key *key, int reject_error)
409 {
410 	/* Commit the payload before setting the state; barrier versus
411 	 * key_read_state().
412 	 */
413 	smp_store_release(&key->state,
414 			  (reject_error < 0) ? reject_error : KEY_IS_POSITIVE);
415 }
416 
417 /*
418  * Instantiate a key and link it into the target keyring atomically.  Must be
419  * called with the target keyring's semaphore writelocked.  The target key's
420  * semaphore need not be locked as instantiation is serialised by
421  * key_construction_mutex.
422  */
423 static int __key_instantiate_and_link(struct key *key,
424 				      struct key_preparsed_payload *prep,
425 				      struct key *keyring,
426 				      struct key *authkey,
427 				      struct assoc_array_edit **_edit)
428 {
429 	int ret, awaken;
430 
431 	key_check(key);
432 	key_check(keyring);
433 
434 	awaken = 0;
435 	ret = -EBUSY;
436 
437 	mutex_lock(&key_construction_mutex);
438 
439 	/* can't instantiate twice */
440 	if (key->state == KEY_IS_UNINSTANTIATED) {
441 		/* instantiate the key */
442 		ret = key->type->instantiate(key, prep);
443 
444 		if (ret == 0) {
445 			/* mark the key as being instantiated */
446 			atomic_inc(&key->user->nikeys);
447 			mark_key_instantiated(key, 0);
448 
449 			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
450 				awaken = 1;
451 
452 			/* and link it into the destination keyring */
453 			if (keyring) {
454 				if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
455 					set_bit(KEY_FLAG_KEEP, &key->flags);
456 
457 				__key_link(key, _edit);
458 			}
459 
460 			/* disable the authorisation key */
461 			if (authkey)
462 				key_revoke(authkey);
463 
464 			if (prep->expiry != TIME64_MAX) {
465 				key->expiry = prep->expiry;
466 				key_schedule_gc(prep->expiry + key_gc_delay);
467 			}
468 		}
469 	}
470 
471 	mutex_unlock(&key_construction_mutex);
472 
473 	/* wake up anyone waiting for a key to be constructed */
474 	if (awaken)
475 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
476 
477 	return ret;
478 }
479 
480 /**
481  * key_instantiate_and_link - Instantiate a key and link it into the keyring.
482  * @key: The key to instantiate.
483  * @data: The data to use to instantiate the keyring.
484  * @datalen: The length of @data.
485  * @keyring: Keyring to create a link in on success (or NULL).
486  * @authkey: The authorisation token permitting instantiation.
487  *
488  * Instantiate a key that's in the uninstantiated state using the provided data
489  * and, if successful, link it in to the destination keyring if one is
490  * supplied.
491  *
492  * If successful, 0 is returned, the authorisation token is revoked and anyone
493  * waiting for the key is woken up.  If the key was already instantiated,
494  * -EBUSY will be returned.
495  */
496 int key_instantiate_and_link(struct key *key,
497 			     const void *data,
498 			     size_t datalen,
499 			     struct key *keyring,
500 			     struct key *authkey)
501 {
502 	struct key_preparsed_payload prep;
503 	struct assoc_array_edit *edit;
504 	int ret;
505 
506 	memset(&prep, 0, sizeof(prep));
507 	prep.data = data;
508 	prep.datalen = datalen;
509 	prep.quotalen = key->type->def_datalen;
510 	prep.expiry = TIME64_MAX;
511 	if (key->type->preparse) {
512 		ret = key->type->preparse(&prep);
513 		if (ret < 0)
514 			goto error;
515 	}
516 
517 	if (keyring) {
518 		ret = __key_link_begin(keyring, &key->index_key, &edit);
519 		if (ret < 0)
520 			goto error;
521 
522 		if (keyring->restrict_link && keyring->restrict_link->check) {
523 			struct key_restriction *keyres = keyring->restrict_link;
524 
525 			ret = keyres->check(keyring, key->type, &prep.payload,
526 					    keyres->key);
527 			if (ret < 0)
528 				goto error_link_end;
529 		}
530 	}
531 
532 	ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
533 
534 error_link_end:
535 	if (keyring)
536 		__key_link_end(keyring, &key->index_key, edit);
537 
538 error:
539 	if (key->type->preparse)
540 		key->type->free_preparse(&prep);
541 	return ret;
542 }
543 
544 EXPORT_SYMBOL(key_instantiate_and_link);
545 
546 /**
547  * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
548  * @key: The key to instantiate.
549  * @timeout: The timeout on the negative key.
550  * @error: The error to return when the key is hit.
551  * @keyring: Keyring to create a link in on success (or NULL).
552  * @authkey: The authorisation token permitting instantiation.
553  *
554  * Negatively instantiate a key that's in the uninstantiated state and, if
555  * successful, set its timeout and stored error and link it in to the
556  * destination keyring if one is supplied.  The key and any links to the key
557  * will be automatically garbage collected after the timeout expires.
558  *
559  * Negative keys are used to rate limit repeated request_key() calls by causing
560  * them to return the stored error code (typically ENOKEY) until the negative
561  * key expires.
562  *
563  * If successful, 0 is returned, the authorisation token is revoked and anyone
564  * waiting for the key is woken up.  If the key was already instantiated,
565  * -EBUSY will be returned.
566  */
567 int key_reject_and_link(struct key *key,
568 			unsigned timeout,
569 			unsigned error,
570 			struct key *keyring,
571 			struct key *authkey)
572 {
573 	struct assoc_array_edit *edit;
574 	int ret, awaken, link_ret = 0;
575 
576 	key_check(key);
577 	key_check(keyring);
578 
579 	awaken = 0;
580 	ret = -EBUSY;
581 
582 	if (keyring) {
583 		if (keyring->restrict_link)
584 			return -EPERM;
585 
586 		link_ret = __key_link_begin(keyring, &key->index_key, &edit);
587 	}
588 
589 	mutex_lock(&key_construction_mutex);
590 
591 	/* can't instantiate twice */
592 	if (key->state == KEY_IS_UNINSTANTIATED) {
593 		/* mark the key as being negatively instantiated */
594 		atomic_inc(&key->user->nikeys);
595 		mark_key_instantiated(key, -error);
596 		key->expiry = ktime_get_real_seconds() + timeout;
597 		key_schedule_gc(key->expiry + key_gc_delay);
598 
599 		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
600 			awaken = 1;
601 
602 		ret = 0;
603 
604 		/* and link it into the destination keyring */
605 		if (keyring && link_ret == 0)
606 			__key_link(key, &edit);
607 
608 		/* disable the authorisation key */
609 		if (authkey)
610 			key_revoke(authkey);
611 	}
612 
613 	mutex_unlock(&key_construction_mutex);
614 
615 	if (keyring && link_ret == 0)
616 		__key_link_end(keyring, &key->index_key, edit);
617 
618 	/* wake up anyone waiting for a key to be constructed */
619 	if (awaken)
620 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
621 
622 	return ret == 0 ? link_ret : ret;
623 }
624 EXPORT_SYMBOL(key_reject_and_link);
625 
626 /**
627  * key_put - Discard a reference to a key.
628  * @key: The key to discard a reference from.
629  *
630  * Discard a reference to a key, and when all the references are gone, we
631  * schedule the cleanup task to come and pull it out of the tree in process
632  * context at some later time.
633  */
634 void key_put(struct key *key)
635 {
636 	if (key) {
637 		key_check(key);
638 
639 		if (refcount_dec_and_test(&key->usage))
640 			schedule_work(&key_gc_work);
641 	}
642 }
643 EXPORT_SYMBOL(key_put);
644 
645 /*
646  * Find a key by its serial number.
647  */
648 struct key *key_lookup(key_serial_t id)
649 {
650 	struct rb_node *n;
651 	struct key *key;
652 
653 	spin_lock(&key_serial_lock);
654 
655 	/* search the tree for the specified key */
656 	n = key_serial_tree.rb_node;
657 	while (n) {
658 		key = rb_entry(n, struct key, serial_node);
659 
660 		if (id < key->serial)
661 			n = n->rb_left;
662 		else if (id > key->serial)
663 			n = n->rb_right;
664 		else
665 			goto found;
666 	}
667 
668 not_found:
669 	key = ERR_PTR(-ENOKEY);
670 	goto error;
671 
672 found:
673 	/* A key is allowed to be looked up only if someone still owns a
674 	 * reference to it - otherwise it's awaiting the gc.
675 	 */
676 	if (!refcount_inc_not_zero(&key->usage))
677 		goto not_found;
678 
679 error:
680 	spin_unlock(&key_serial_lock);
681 	return key;
682 }
683 
684 /*
685  * Find and lock the specified key type against removal.
686  *
687  * We return with the sem read-locked if successful.  If the type wasn't
688  * available -ENOKEY is returned instead.
689  */
690 struct key_type *key_type_lookup(const char *type)
691 {
692 	struct key_type *ktype;
693 
694 	down_read(&key_types_sem);
695 
696 	/* look up the key type to see if it's one of the registered kernel
697 	 * types */
698 	list_for_each_entry(ktype, &key_types_list, link) {
699 		if (strcmp(ktype->name, type) == 0)
700 			goto found_kernel_type;
701 	}
702 
703 	up_read(&key_types_sem);
704 	ktype = ERR_PTR(-ENOKEY);
705 
706 found_kernel_type:
707 	return ktype;
708 }
709 
710 void key_set_timeout(struct key *key, unsigned timeout)
711 {
712 	time64_t expiry = 0;
713 
714 	/* make the changes with the locks held to prevent races */
715 	down_write(&key->sem);
716 
717 	if (timeout > 0)
718 		expiry = ktime_get_real_seconds() + timeout;
719 
720 	key->expiry = expiry;
721 	key_schedule_gc(key->expiry + key_gc_delay);
722 
723 	up_write(&key->sem);
724 }
725 EXPORT_SYMBOL_GPL(key_set_timeout);
726 
727 /*
728  * Unlock a key type locked by key_type_lookup().
729  */
730 void key_type_put(struct key_type *ktype)
731 {
732 	up_read(&key_types_sem);
733 }
734 
735 /*
736  * Attempt to update an existing key.
737  *
738  * The key is given to us with an incremented refcount that we need to discard
739  * if we get an error.
740  */
741 static inline key_ref_t __key_update(key_ref_t key_ref,
742 				     struct key_preparsed_payload *prep)
743 {
744 	struct key *key = key_ref_to_ptr(key_ref);
745 	int ret;
746 
747 	/* need write permission on the key to update it */
748 	ret = key_permission(key_ref, KEY_NEED_WRITE);
749 	if (ret < 0)
750 		goto error;
751 
752 	ret = -EEXIST;
753 	if (!key->type->update)
754 		goto error;
755 
756 	down_write(&key->sem);
757 
758 	ret = key->type->update(key, prep);
759 	if (ret == 0)
760 		/* Updating a negative key positively instantiates it */
761 		mark_key_instantiated(key, 0);
762 
763 	up_write(&key->sem);
764 
765 	if (ret < 0)
766 		goto error;
767 out:
768 	return key_ref;
769 
770 error:
771 	key_put(key);
772 	key_ref = ERR_PTR(ret);
773 	goto out;
774 }
775 
776 /**
777  * key_create_or_update - Update or create and instantiate a key.
778  * @keyring_ref: A pointer to the destination keyring with possession flag.
779  * @type: The type of key.
780  * @description: The searchable description for the key.
781  * @payload: The data to use to instantiate or update the key.
782  * @plen: The length of @payload.
783  * @perm: The permissions mask for a new key.
784  * @flags: The quota flags for a new key.
785  *
786  * Search the destination keyring for a key of the same description and if one
787  * is found, update it, otherwise create and instantiate a new one and create a
788  * link to it from that keyring.
789  *
790  * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
791  * concocted.
792  *
793  * Returns a pointer to the new key if successful, -ENODEV if the key type
794  * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
795  * caller isn't permitted to modify the keyring or the LSM did not permit
796  * creation of the key.
797  *
798  * On success, the possession flag from the keyring ref will be tacked on to
799  * the key ref before it is returned.
800  */
801 key_ref_t key_create_or_update(key_ref_t keyring_ref,
802 			       const char *type,
803 			       const char *description,
804 			       const void *payload,
805 			       size_t plen,
806 			       key_perm_t perm,
807 			       unsigned long flags)
808 {
809 	struct keyring_index_key index_key = {
810 		.description	= description,
811 	};
812 	struct key_preparsed_payload prep;
813 	struct assoc_array_edit *edit;
814 	const struct cred *cred = current_cred();
815 	struct key *keyring, *key = NULL;
816 	key_ref_t key_ref;
817 	int ret;
818 	struct key_restriction *restrict_link = NULL;
819 
820 	/* look up the key type to see if it's one of the registered kernel
821 	 * types */
822 	index_key.type = key_type_lookup(type);
823 	if (IS_ERR(index_key.type)) {
824 		key_ref = ERR_PTR(-ENODEV);
825 		goto error;
826 	}
827 
828 	key_ref = ERR_PTR(-EINVAL);
829 	if (!index_key.type->instantiate ||
830 	    (!index_key.description && !index_key.type->preparse))
831 		goto error_put_type;
832 
833 	keyring = key_ref_to_ptr(keyring_ref);
834 
835 	key_check(keyring);
836 
837 	if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
838 		restrict_link = keyring->restrict_link;
839 
840 	key_ref = ERR_PTR(-ENOTDIR);
841 	if (keyring->type != &key_type_keyring)
842 		goto error_put_type;
843 
844 	memset(&prep, 0, sizeof(prep));
845 	prep.data = payload;
846 	prep.datalen = plen;
847 	prep.quotalen = index_key.type->def_datalen;
848 	prep.expiry = TIME64_MAX;
849 	if (index_key.type->preparse) {
850 		ret = index_key.type->preparse(&prep);
851 		if (ret < 0) {
852 			key_ref = ERR_PTR(ret);
853 			goto error_free_prep;
854 		}
855 		if (!index_key.description)
856 			index_key.description = prep.description;
857 		key_ref = ERR_PTR(-EINVAL);
858 		if (!index_key.description)
859 			goto error_free_prep;
860 	}
861 	index_key.desc_len = strlen(index_key.description);
862 
863 	ret = __key_link_begin(keyring, &index_key, &edit);
864 	if (ret < 0) {
865 		key_ref = ERR_PTR(ret);
866 		goto error_free_prep;
867 	}
868 
869 	if (restrict_link && restrict_link->check) {
870 		ret = restrict_link->check(keyring, index_key.type,
871 					   &prep.payload, restrict_link->key);
872 		if (ret < 0) {
873 			key_ref = ERR_PTR(ret);
874 			goto error_link_end;
875 		}
876 	}
877 
878 	/* if we're going to allocate a new key, we're going to have
879 	 * to modify the keyring */
880 	ret = key_permission(keyring_ref, KEY_NEED_WRITE);
881 	if (ret < 0) {
882 		key_ref = ERR_PTR(ret);
883 		goto error_link_end;
884 	}
885 
886 	/* if it's possible to update this type of key, search for an existing
887 	 * key of the same type and description in the destination keyring and
888 	 * update that instead if possible
889 	 */
890 	if (index_key.type->update) {
891 		key_ref = find_key_to_update(keyring_ref, &index_key);
892 		if (key_ref)
893 			goto found_matching_key;
894 	}
895 
896 	/* if the client doesn't provide, decide on the permissions we want */
897 	if (perm == KEY_PERM_UNDEF) {
898 		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
899 		perm |= KEY_USR_VIEW;
900 
901 		if (index_key.type->read)
902 			perm |= KEY_POS_READ;
903 
904 		if (index_key.type == &key_type_keyring ||
905 		    index_key.type->update)
906 			perm |= KEY_POS_WRITE;
907 	}
908 
909 	/* allocate a new key */
910 	key = key_alloc(index_key.type, index_key.description,
911 			cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
912 	if (IS_ERR(key)) {
913 		key_ref = ERR_CAST(key);
914 		goto error_link_end;
915 	}
916 
917 	/* instantiate it and link it into the target keyring */
918 	ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
919 	if (ret < 0) {
920 		key_put(key);
921 		key_ref = ERR_PTR(ret);
922 		goto error_link_end;
923 	}
924 
925 	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
926 
927 error_link_end:
928 	__key_link_end(keyring, &index_key, edit);
929 error_free_prep:
930 	if (index_key.type->preparse)
931 		index_key.type->free_preparse(&prep);
932 error_put_type:
933 	key_type_put(index_key.type);
934 error:
935 	return key_ref;
936 
937  found_matching_key:
938 	/* we found a matching key, so we're going to try to update it
939 	 * - we can drop the locks first as we have the key pinned
940 	 */
941 	__key_link_end(keyring, &index_key, edit);
942 
943 	key = key_ref_to_ptr(key_ref);
944 	if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) {
945 		ret = wait_for_key_construction(key, true);
946 		if (ret < 0) {
947 			key_ref_put(key_ref);
948 			key_ref = ERR_PTR(ret);
949 			goto error_free_prep;
950 		}
951 	}
952 
953 	key_ref = __key_update(key_ref, &prep);
954 	goto error_free_prep;
955 }
956 EXPORT_SYMBOL(key_create_or_update);
957 
958 /**
959  * key_update - Update a key's contents.
960  * @key_ref: The pointer (plus possession flag) to the key.
961  * @payload: The data to be used to update the key.
962  * @plen: The length of @payload.
963  *
964  * Attempt to update the contents of a key with the given payload data.  The
965  * caller must be granted Write permission on the key.  Negative keys can be
966  * instantiated by this method.
967  *
968  * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
969  * type does not support updating.  The key type may return other errors.
970  */
971 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
972 {
973 	struct key_preparsed_payload prep;
974 	struct key *key = key_ref_to_ptr(key_ref);
975 	int ret;
976 
977 	key_check(key);
978 
979 	/* the key must be writable */
980 	ret = key_permission(key_ref, KEY_NEED_WRITE);
981 	if (ret < 0)
982 		return ret;
983 
984 	/* attempt to update it if supported */
985 	if (!key->type->update)
986 		return -EOPNOTSUPP;
987 
988 	memset(&prep, 0, sizeof(prep));
989 	prep.data = payload;
990 	prep.datalen = plen;
991 	prep.quotalen = key->type->def_datalen;
992 	prep.expiry = TIME64_MAX;
993 	if (key->type->preparse) {
994 		ret = key->type->preparse(&prep);
995 		if (ret < 0)
996 			goto error;
997 	}
998 
999 	down_write(&key->sem);
1000 
1001 	ret = key->type->update(key, &prep);
1002 	if (ret == 0)
1003 		/* Updating a negative key positively instantiates it */
1004 		mark_key_instantiated(key, 0);
1005 
1006 	up_write(&key->sem);
1007 
1008 error:
1009 	if (key->type->preparse)
1010 		key->type->free_preparse(&prep);
1011 	return ret;
1012 }
1013 EXPORT_SYMBOL(key_update);
1014 
1015 /**
1016  * key_revoke - Revoke a key.
1017  * @key: The key to be revoked.
1018  *
1019  * Mark a key as being revoked and ask the type to free up its resources.  The
1020  * revocation timeout is set and the key and all its links will be
1021  * automatically garbage collected after key_gc_delay amount of time if they
1022  * are not manually dealt with first.
1023  */
1024 void key_revoke(struct key *key)
1025 {
1026 	time64_t time;
1027 
1028 	key_check(key);
1029 
1030 	/* make sure no one's trying to change or use the key when we mark it
1031 	 * - we tell lockdep that we might nest because we might be revoking an
1032 	 *   authorisation key whilst holding the sem on a key we've just
1033 	 *   instantiated
1034 	 */
1035 	down_write_nested(&key->sem, 1);
1036 	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
1037 	    key->type->revoke)
1038 		key->type->revoke(key);
1039 
1040 	/* set the death time to no more than the expiry time */
1041 	time = ktime_get_real_seconds();
1042 	if (key->revoked_at == 0 || key->revoked_at > time) {
1043 		key->revoked_at = time;
1044 		key_schedule_gc(key->revoked_at + key_gc_delay);
1045 	}
1046 
1047 	up_write(&key->sem);
1048 }
1049 EXPORT_SYMBOL(key_revoke);
1050 
1051 /**
1052  * key_invalidate - Invalidate a key.
1053  * @key: The key to be invalidated.
1054  *
1055  * Mark a key as being invalidated and have it cleaned up immediately.  The key
1056  * is ignored by all searches and other operations from this point.
1057  */
1058 void key_invalidate(struct key *key)
1059 {
1060 	kenter("%d", key_serial(key));
1061 
1062 	key_check(key);
1063 
1064 	if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1065 		down_write_nested(&key->sem, 1);
1066 		if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
1067 			key_schedule_gc_links();
1068 		up_write(&key->sem);
1069 	}
1070 }
1071 EXPORT_SYMBOL(key_invalidate);
1072 
1073 /**
1074  * generic_key_instantiate - Simple instantiation of a key from preparsed data
1075  * @key: The key to be instantiated
1076  * @prep: The preparsed data to load.
1077  *
1078  * Instantiate a key from preparsed data.  We assume we can just copy the data
1079  * in directly and clear the old pointers.
1080  *
1081  * This can be pointed to directly by the key type instantiate op pointer.
1082  */
1083 int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1084 {
1085 	int ret;
1086 
1087 	pr_devel("==>%s()\n", __func__);
1088 
1089 	ret = key_payload_reserve(key, prep->quotalen);
1090 	if (ret == 0) {
1091 		rcu_assign_keypointer(key, prep->payload.data[0]);
1092 		key->payload.data[1] = prep->payload.data[1];
1093 		key->payload.data[2] = prep->payload.data[2];
1094 		key->payload.data[3] = prep->payload.data[3];
1095 		prep->payload.data[0] = NULL;
1096 		prep->payload.data[1] = NULL;
1097 		prep->payload.data[2] = NULL;
1098 		prep->payload.data[3] = NULL;
1099 	}
1100 	pr_devel("<==%s() = %d\n", __func__, ret);
1101 	return ret;
1102 }
1103 EXPORT_SYMBOL(generic_key_instantiate);
1104 
1105 /**
1106  * register_key_type - Register a type of key.
1107  * @ktype: The new key type.
1108  *
1109  * Register a new key type.
1110  *
1111  * Returns 0 on success or -EEXIST if a type of this name already exists.
1112  */
1113 int register_key_type(struct key_type *ktype)
1114 {
1115 	struct key_type *p;
1116 	int ret;
1117 
1118 	memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1119 
1120 	ret = -EEXIST;
1121 	down_write(&key_types_sem);
1122 
1123 	/* disallow key types with the same name */
1124 	list_for_each_entry(p, &key_types_list, link) {
1125 		if (strcmp(p->name, ktype->name) == 0)
1126 			goto out;
1127 	}
1128 
1129 	/* store the type */
1130 	list_add(&ktype->link, &key_types_list);
1131 
1132 	pr_notice("Key type %s registered\n", ktype->name);
1133 	ret = 0;
1134 
1135 out:
1136 	up_write(&key_types_sem);
1137 	return ret;
1138 }
1139 EXPORT_SYMBOL(register_key_type);
1140 
1141 /**
1142  * unregister_key_type - Unregister a type of key.
1143  * @ktype: The key type.
1144  *
1145  * Unregister a key type and mark all the extant keys of this type as dead.
1146  * Those keys of this type are then destroyed to get rid of their payloads and
1147  * they and their links will be garbage collected as soon as possible.
1148  */
1149 void unregister_key_type(struct key_type *ktype)
1150 {
1151 	down_write(&key_types_sem);
1152 	list_del_init(&ktype->link);
1153 	downgrade_write(&key_types_sem);
1154 	key_gc_keytype(ktype);
1155 	pr_notice("Key type %s unregistered\n", ktype->name);
1156 	up_read(&key_types_sem);
1157 }
1158 EXPORT_SYMBOL(unregister_key_type);
1159 
1160 /*
1161  * Initialise the key management state.
1162  */
1163 void __init key_init(void)
1164 {
1165 	/* allocate a slab in which we can store keys */
1166 	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1167 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1168 
1169 	/* add the special key types */
1170 	list_add_tail(&key_type_keyring.link, &key_types_list);
1171 	list_add_tail(&key_type_dead.link, &key_types_list);
1172 	list_add_tail(&key_type_user.link, &key_types_list);
1173 	list_add_tail(&key_type_logon.link, &key_types_list);
1174 
1175 	/* record the root user tracking */
1176 	rb_link_node(&root_key_user.node,
1177 		     NULL,
1178 		     &key_user_tree.rb_node);
1179 
1180 	rb_insert_color(&root_key_user.node,
1181 			&key_user_tree);
1182 }
1183