1 /* Basic authentication token and access key management 2 * 3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved. 4 * Written by David Howells (dhowells@redhat.com) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/poison.h> 15 #include <linux/sched.h> 16 #include <linux/slab.h> 17 #include <linux/security.h> 18 #include <linux/workqueue.h> 19 #include <linux/random.h> 20 #include <linux/err.h> 21 #include "internal.h" 22 23 struct kmem_cache *key_jar; 24 struct rb_root key_serial_tree; /* tree of keys indexed by serial */ 25 DEFINE_SPINLOCK(key_serial_lock); 26 27 struct rb_root key_user_tree; /* tree of quota records indexed by UID */ 28 DEFINE_SPINLOCK(key_user_lock); 29 30 unsigned int key_quota_root_maxkeys = 200; /* root's key count quota */ 31 unsigned int key_quota_root_maxbytes = 20000; /* root's key space quota */ 32 unsigned int key_quota_maxkeys = 200; /* general key count quota */ 33 unsigned int key_quota_maxbytes = 20000; /* general key space quota */ 34 35 static LIST_HEAD(key_types_list); 36 static DECLARE_RWSEM(key_types_sem); 37 38 /* We serialise key instantiation and link */ 39 DEFINE_MUTEX(key_construction_mutex); 40 41 #ifdef KEY_DEBUGGING 42 void __key_check(const struct key *key) 43 { 44 printk("__key_check: key %p {%08x} should be {%08x}\n", 45 key, key->magic, KEY_DEBUG_MAGIC); 46 BUG(); 47 } 48 #endif 49 50 /* 51 * Get the key quota record for a user, allocating a new record if one doesn't 52 * already exist. 53 */ 54 struct key_user *key_user_lookup(kuid_t uid) 55 { 56 struct key_user *candidate = NULL, *user; 57 struct rb_node *parent = NULL; 58 struct rb_node **p; 59 60 try_again: 61 p = &key_user_tree.rb_node; 62 spin_lock(&key_user_lock); 63 64 /* search the tree for a user record with a matching UID */ 65 while (*p) { 66 parent = *p; 67 user = rb_entry(parent, struct key_user, node); 68 69 if (uid_lt(uid, user->uid)) 70 p = &(*p)->rb_left; 71 else if (uid_gt(uid, user->uid)) 72 p = &(*p)->rb_right; 73 else 74 goto found; 75 } 76 77 /* if we get here, we failed to find a match in the tree */ 78 if (!candidate) { 79 /* allocate a candidate user record if we don't already have 80 * one */ 81 spin_unlock(&key_user_lock); 82 83 user = NULL; 84 candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL); 85 if (unlikely(!candidate)) 86 goto out; 87 88 /* the allocation may have scheduled, so we need to repeat the 89 * search lest someone else added the record whilst we were 90 * asleep */ 91 goto try_again; 92 } 93 94 /* if we get here, then the user record still hadn't appeared on the 95 * second pass - so we use the candidate record */ 96 atomic_set(&candidate->usage, 1); 97 atomic_set(&candidate->nkeys, 0); 98 atomic_set(&candidate->nikeys, 0); 99 candidate->uid = uid; 100 candidate->qnkeys = 0; 101 candidate->qnbytes = 0; 102 spin_lock_init(&candidate->lock); 103 mutex_init(&candidate->cons_lock); 104 105 rb_link_node(&candidate->node, parent, p); 106 rb_insert_color(&candidate->node, &key_user_tree); 107 spin_unlock(&key_user_lock); 108 user = candidate; 109 goto out; 110 111 /* okay - we found a user record for this UID */ 112 found: 113 atomic_inc(&user->usage); 114 spin_unlock(&key_user_lock); 115 kfree(candidate); 116 out: 117 return user; 118 } 119 120 /* 121 * Dispose of a user structure 122 */ 123 void key_user_put(struct key_user *user) 124 { 125 if (atomic_dec_and_lock(&user->usage, &key_user_lock)) { 126 rb_erase(&user->node, &key_user_tree); 127 spin_unlock(&key_user_lock); 128 129 kfree(user); 130 } 131 } 132 133 /* 134 * Allocate a serial number for a key. These are assigned randomly to avoid 135 * security issues through covert channel problems. 136 */ 137 static inline void key_alloc_serial(struct key *key) 138 { 139 struct rb_node *parent, **p; 140 struct key *xkey; 141 142 /* propose a random serial number and look for a hole for it in the 143 * serial number tree */ 144 do { 145 get_random_bytes(&key->serial, sizeof(key->serial)); 146 147 key->serial >>= 1; /* negative numbers are not permitted */ 148 } while (key->serial < 3); 149 150 spin_lock(&key_serial_lock); 151 152 attempt_insertion: 153 parent = NULL; 154 p = &key_serial_tree.rb_node; 155 156 while (*p) { 157 parent = *p; 158 xkey = rb_entry(parent, struct key, serial_node); 159 160 if (key->serial < xkey->serial) 161 p = &(*p)->rb_left; 162 else if (key->serial > xkey->serial) 163 p = &(*p)->rb_right; 164 else 165 goto serial_exists; 166 } 167 168 /* we've found a suitable hole - arrange for this key to occupy it */ 169 rb_link_node(&key->serial_node, parent, p); 170 rb_insert_color(&key->serial_node, &key_serial_tree); 171 172 spin_unlock(&key_serial_lock); 173 return; 174 175 /* we found a key with the proposed serial number - walk the tree from 176 * that point looking for the next unused serial number */ 177 serial_exists: 178 for (;;) { 179 key->serial++; 180 if (key->serial < 3) { 181 key->serial = 3; 182 goto attempt_insertion; 183 } 184 185 parent = rb_next(parent); 186 if (!parent) 187 goto attempt_insertion; 188 189 xkey = rb_entry(parent, struct key, serial_node); 190 if (key->serial < xkey->serial) 191 goto attempt_insertion; 192 } 193 } 194 195 /** 196 * key_alloc - Allocate a key of the specified type. 197 * @type: The type of key to allocate. 198 * @desc: The key description to allow the key to be searched out. 199 * @uid: The owner of the new key. 200 * @gid: The group ID for the new key's group permissions. 201 * @cred: The credentials specifying UID namespace. 202 * @perm: The permissions mask of the new key. 203 * @flags: Flags specifying quota properties. 204 * 205 * Allocate a key of the specified type with the attributes given. The key is 206 * returned in an uninstantiated state and the caller needs to instantiate the 207 * key before returning. 208 * 209 * The user's key count quota is updated to reflect the creation of the key and 210 * the user's key data quota has the default for the key type reserved. The 211 * instantiation function should amend this as necessary. If insufficient 212 * quota is available, -EDQUOT will be returned. 213 * 214 * The LSM security modules can prevent a key being created, in which case 215 * -EACCES will be returned. 216 * 217 * Returns a pointer to the new key if successful and an error code otherwise. 218 * 219 * Note that the caller needs to ensure the key type isn't uninstantiated. 220 * Internally this can be done by locking key_types_sem. Externally, this can 221 * be done by either never unregistering the key type, or making sure 222 * key_alloc() calls don't race with module unloading. 223 */ 224 struct key *key_alloc(struct key_type *type, const char *desc, 225 kuid_t uid, kgid_t gid, const struct cred *cred, 226 key_perm_t perm, unsigned long flags) 227 { 228 struct key_user *user = NULL; 229 struct key *key; 230 size_t desclen, quotalen; 231 int ret; 232 233 key = ERR_PTR(-EINVAL); 234 if (!desc || !*desc) 235 goto error; 236 237 if (type->vet_description) { 238 ret = type->vet_description(desc); 239 if (ret < 0) { 240 key = ERR_PTR(ret); 241 goto error; 242 } 243 } 244 245 desclen = strlen(desc); 246 quotalen = desclen + 1 + type->def_datalen; 247 248 /* get hold of the key tracking for this user */ 249 user = key_user_lookup(uid); 250 if (!user) 251 goto no_memory_1; 252 253 /* check that the user's quota permits allocation of another key and 254 * its description */ 255 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { 256 unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ? 257 key_quota_root_maxkeys : key_quota_maxkeys; 258 unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ? 259 key_quota_root_maxbytes : key_quota_maxbytes; 260 261 spin_lock(&user->lock); 262 if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) { 263 if (user->qnkeys + 1 >= maxkeys || 264 user->qnbytes + quotalen >= maxbytes || 265 user->qnbytes + quotalen < user->qnbytes) 266 goto no_quota; 267 } 268 269 user->qnkeys++; 270 user->qnbytes += quotalen; 271 spin_unlock(&user->lock); 272 } 273 274 /* allocate and initialise the key and its description */ 275 key = kmem_cache_zalloc(key_jar, GFP_KERNEL); 276 if (!key) 277 goto no_memory_2; 278 279 if (desc) { 280 key->index_key.desc_len = desclen; 281 key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL); 282 if (!key->description) 283 goto no_memory_3; 284 } 285 286 atomic_set(&key->usage, 1); 287 init_rwsem(&key->sem); 288 lockdep_set_class(&key->sem, &type->lock_class); 289 key->index_key.type = type; 290 key->user = user; 291 key->quotalen = quotalen; 292 key->datalen = type->def_datalen; 293 key->uid = uid; 294 key->gid = gid; 295 key->perm = perm; 296 297 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) 298 key->flags |= 1 << KEY_FLAG_IN_QUOTA; 299 if (flags & KEY_ALLOC_TRUSTED) 300 key->flags |= 1 << KEY_FLAG_TRUSTED; 301 302 #ifdef KEY_DEBUGGING 303 key->magic = KEY_DEBUG_MAGIC; 304 #endif 305 306 /* let the security module know about the key */ 307 ret = security_key_alloc(key, cred, flags); 308 if (ret < 0) 309 goto security_error; 310 311 /* publish the key by giving it a serial number */ 312 atomic_inc(&user->nkeys); 313 key_alloc_serial(key); 314 315 error: 316 return key; 317 318 security_error: 319 kfree(key->description); 320 kmem_cache_free(key_jar, key); 321 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { 322 spin_lock(&user->lock); 323 user->qnkeys--; 324 user->qnbytes -= quotalen; 325 spin_unlock(&user->lock); 326 } 327 key_user_put(user); 328 key = ERR_PTR(ret); 329 goto error; 330 331 no_memory_3: 332 kmem_cache_free(key_jar, key); 333 no_memory_2: 334 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { 335 spin_lock(&user->lock); 336 user->qnkeys--; 337 user->qnbytes -= quotalen; 338 spin_unlock(&user->lock); 339 } 340 key_user_put(user); 341 no_memory_1: 342 key = ERR_PTR(-ENOMEM); 343 goto error; 344 345 no_quota: 346 spin_unlock(&user->lock); 347 key_user_put(user); 348 key = ERR_PTR(-EDQUOT); 349 goto error; 350 } 351 EXPORT_SYMBOL(key_alloc); 352 353 /** 354 * key_payload_reserve - Adjust data quota reservation for the key's payload 355 * @key: The key to make the reservation for. 356 * @datalen: The amount of data payload the caller now wants. 357 * 358 * Adjust the amount of the owning user's key data quota that a key reserves. 359 * If the amount is increased, then -EDQUOT may be returned if there isn't 360 * enough free quota available. 361 * 362 * If successful, 0 is returned. 363 */ 364 int key_payload_reserve(struct key *key, size_t datalen) 365 { 366 int delta = (int)datalen - key->datalen; 367 int ret = 0; 368 369 key_check(key); 370 371 /* contemplate the quota adjustment */ 372 if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) { 373 unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ? 374 key_quota_root_maxbytes : key_quota_maxbytes; 375 376 spin_lock(&key->user->lock); 377 378 if (delta > 0 && 379 (key->user->qnbytes + delta >= maxbytes || 380 key->user->qnbytes + delta < key->user->qnbytes)) { 381 ret = -EDQUOT; 382 } 383 else { 384 key->user->qnbytes += delta; 385 key->quotalen += delta; 386 } 387 spin_unlock(&key->user->lock); 388 } 389 390 /* change the recorded data length if that didn't generate an error */ 391 if (ret == 0) 392 key->datalen = datalen; 393 394 return ret; 395 } 396 EXPORT_SYMBOL(key_payload_reserve); 397 398 /* 399 * Instantiate a key and link it into the target keyring atomically. Must be 400 * called with the target keyring's semaphore writelocked. The target key's 401 * semaphore need not be locked as instantiation is serialised by 402 * key_construction_mutex. 403 */ 404 static int __key_instantiate_and_link(struct key *key, 405 struct key_preparsed_payload *prep, 406 struct key *keyring, 407 struct key *authkey, 408 struct assoc_array_edit **_edit) 409 { 410 int ret, awaken; 411 412 key_check(key); 413 key_check(keyring); 414 415 awaken = 0; 416 ret = -EBUSY; 417 418 mutex_lock(&key_construction_mutex); 419 420 /* can't instantiate twice */ 421 if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) { 422 /* instantiate the key */ 423 ret = key->type->instantiate(key, prep); 424 425 if (ret == 0) { 426 /* mark the key as being instantiated */ 427 atomic_inc(&key->user->nikeys); 428 set_bit(KEY_FLAG_INSTANTIATED, &key->flags); 429 430 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) 431 awaken = 1; 432 433 /* and link it into the destination keyring */ 434 if (keyring) 435 __key_link(key, _edit); 436 437 /* disable the authorisation key */ 438 if (authkey) 439 key_revoke(authkey); 440 } 441 } 442 443 mutex_unlock(&key_construction_mutex); 444 445 /* wake up anyone waiting for a key to be constructed */ 446 if (awaken) 447 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT); 448 449 return ret; 450 } 451 452 /** 453 * key_instantiate_and_link - Instantiate a key and link it into the keyring. 454 * @key: The key to instantiate. 455 * @data: The data to use to instantiate the keyring. 456 * @datalen: The length of @data. 457 * @keyring: Keyring to create a link in on success (or NULL). 458 * @authkey: The authorisation token permitting instantiation. 459 * 460 * Instantiate a key that's in the uninstantiated state using the provided data 461 * and, if successful, link it in to the destination keyring if one is 462 * supplied. 463 * 464 * If successful, 0 is returned, the authorisation token is revoked and anyone 465 * waiting for the key is woken up. If the key was already instantiated, 466 * -EBUSY will be returned. 467 */ 468 int key_instantiate_and_link(struct key *key, 469 const void *data, 470 size_t datalen, 471 struct key *keyring, 472 struct key *authkey) 473 { 474 struct key_preparsed_payload prep; 475 struct assoc_array_edit *edit; 476 int ret; 477 478 memset(&prep, 0, sizeof(prep)); 479 prep.data = data; 480 prep.datalen = datalen; 481 prep.quotalen = key->type->def_datalen; 482 if (key->type->preparse) { 483 ret = key->type->preparse(&prep); 484 if (ret < 0) 485 goto error; 486 } 487 488 if (keyring) { 489 ret = __key_link_begin(keyring, &key->index_key, &edit); 490 if (ret < 0) 491 goto error_free_preparse; 492 } 493 494 ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit); 495 496 if (keyring) 497 __key_link_end(keyring, &key->index_key, edit); 498 499 error_free_preparse: 500 if (key->type->preparse) 501 key->type->free_preparse(&prep); 502 error: 503 return ret; 504 } 505 506 EXPORT_SYMBOL(key_instantiate_and_link); 507 508 /** 509 * key_reject_and_link - Negatively instantiate a key and link it into the keyring. 510 * @key: The key to instantiate. 511 * @timeout: The timeout on the negative key. 512 * @error: The error to return when the key is hit. 513 * @keyring: Keyring to create a link in on success (or NULL). 514 * @authkey: The authorisation token permitting instantiation. 515 * 516 * Negatively instantiate a key that's in the uninstantiated state and, if 517 * successful, set its timeout and stored error and link it in to the 518 * destination keyring if one is supplied. The key and any links to the key 519 * will be automatically garbage collected after the timeout expires. 520 * 521 * Negative keys are used to rate limit repeated request_key() calls by causing 522 * them to return the stored error code (typically ENOKEY) until the negative 523 * key expires. 524 * 525 * If successful, 0 is returned, the authorisation token is revoked and anyone 526 * waiting for the key is woken up. If the key was already instantiated, 527 * -EBUSY will be returned. 528 */ 529 int key_reject_and_link(struct key *key, 530 unsigned timeout, 531 unsigned error, 532 struct key *keyring, 533 struct key *authkey) 534 { 535 struct assoc_array_edit *edit; 536 struct timespec now; 537 int ret, awaken, link_ret = 0; 538 539 key_check(key); 540 key_check(keyring); 541 542 awaken = 0; 543 ret = -EBUSY; 544 545 if (keyring) 546 link_ret = __key_link_begin(keyring, &key->index_key, &edit); 547 548 mutex_lock(&key_construction_mutex); 549 550 /* can't instantiate twice */ 551 if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) { 552 /* mark the key as being negatively instantiated */ 553 atomic_inc(&key->user->nikeys); 554 key->type_data.reject_error = -error; 555 smp_wmb(); 556 set_bit(KEY_FLAG_NEGATIVE, &key->flags); 557 set_bit(KEY_FLAG_INSTANTIATED, &key->flags); 558 now = current_kernel_time(); 559 key->expiry = now.tv_sec + timeout; 560 key_schedule_gc(key->expiry + key_gc_delay); 561 562 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) 563 awaken = 1; 564 565 ret = 0; 566 567 /* and link it into the destination keyring */ 568 if (keyring && link_ret == 0) 569 __key_link(key, &edit); 570 571 /* disable the authorisation key */ 572 if (authkey) 573 key_revoke(authkey); 574 } 575 576 mutex_unlock(&key_construction_mutex); 577 578 if (keyring) 579 __key_link_end(keyring, &key->index_key, edit); 580 581 /* wake up anyone waiting for a key to be constructed */ 582 if (awaken) 583 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT); 584 585 return ret == 0 ? link_ret : ret; 586 } 587 EXPORT_SYMBOL(key_reject_and_link); 588 589 /** 590 * key_put - Discard a reference to a key. 591 * @key: The key to discard a reference from. 592 * 593 * Discard a reference to a key, and when all the references are gone, we 594 * schedule the cleanup task to come and pull it out of the tree in process 595 * context at some later time. 596 */ 597 void key_put(struct key *key) 598 { 599 if (key) { 600 key_check(key); 601 602 if (atomic_dec_and_test(&key->usage)) 603 schedule_work(&key_gc_work); 604 } 605 } 606 EXPORT_SYMBOL(key_put); 607 608 /* 609 * Find a key by its serial number. 610 */ 611 struct key *key_lookup(key_serial_t id) 612 { 613 struct rb_node *n; 614 struct key *key; 615 616 spin_lock(&key_serial_lock); 617 618 /* search the tree for the specified key */ 619 n = key_serial_tree.rb_node; 620 while (n) { 621 key = rb_entry(n, struct key, serial_node); 622 623 if (id < key->serial) 624 n = n->rb_left; 625 else if (id > key->serial) 626 n = n->rb_right; 627 else 628 goto found; 629 } 630 631 not_found: 632 key = ERR_PTR(-ENOKEY); 633 goto error; 634 635 found: 636 /* pretend it doesn't exist if it is awaiting deletion */ 637 if (atomic_read(&key->usage) == 0) 638 goto not_found; 639 640 /* this races with key_put(), but that doesn't matter since key_put() 641 * doesn't actually change the key 642 */ 643 __key_get(key); 644 645 error: 646 spin_unlock(&key_serial_lock); 647 return key; 648 } 649 650 /* 651 * Find and lock the specified key type against removal. 652 * 653 * We return with the sem read-locked if successful. If the type wasn't 654 * available -ENOKEY is returned instead. 655 */ 656 struct key_type *key_type_lookup(const char *type) 657 { 658 struct key_type *ktype; 659 660 down_read(&key_types_sem); 661 662 /* look up the key type to see if it's one of the registered kernel 663 * types */ 664 list_for_each_entry(ktype, &key_types_list, link) { 665 if (strcmp(ktype->name, type) == 0) 666 goto found_kernel_type; 667 } 668 669 up_read(&key_types_sem); 670 ktype = ERR_PTR(-ENOKEY); 671 672 found_kernel_type: 673 return ktype; 674 } 675 676 void key_set_timeout(struct key *key, unsigned timeout) 677 { 678 struct timespec now; 679 time_t expiry = 0; 680 681 /* make the changes with the locks held to prevent races */ 682 down_write(&key->sem); 683 684 if (timeout > 0) { 685 now = current_kernel_time(); 686 expiry = now.tv_sec + timeout; 687 } 688 689 key->expiry = expiry; 690 key_schedule_gc(key->expiry + key_gc_delay); 691 692 up_write(&key->sem); 693 } 694 EXPORT_SYMBOL_GPL(key_set_timeout); 695 696 /* 697 * Unlock a key type locked by key_type_lookup(). 698 */ 699 void key_type_put(struct key_type *ktype) 700 { 701 up_read(&key_types_sem); 702 } 703 704 /* 705 * Attempt to update an existing key. 706 * 707 * The key is given to us with an incremented refcount that we need to discard 708 * if we get an error. 709 */ 710 static inline key_ref_t __key_update(key_ref_t key_ref, 711 struct key_preparsed_payload *prep) 712 { 713 struct key *key = key_ref_to_ptr(key_ref); 714 int ret; 715 716 /* need write permission on the key to update it */ 717 ret = key_permission(key_ref, KEY_NEED_WRITE); 718 if (ret < 0) 719 goto error; 720 721 ret = -EEXIST; 722 if (!key->type->update) 723 goto error; 724 725 down_write(&key->sem); 726 727 ret = key->type->update(key, prep); 728 if (ret == 0) 729 /* updating a negative key instantiates it */ 730 clear_bit(KEY_FLAG_NEGATIVE, &key->flags); 731 732 up_write(&key->sem); 733 734 if (ret < 0) 735 goto error; 736 out: 737 return key_ref; 738 739 error: 740 key_put(key); 741 key_ref = ERR_PTR(ret); 742 goto out; 743 } 744 745 /** 746 * key_create_or_update - Update or create and instantiate a key. 747 * @keyring_ref: A pointer to the destination keyring with possession flag. 748 * @type: The type of key. 749 * @description: The searchable description for the key. 750 * @payload: The data to use to instantiate or update the key. 751 * @plen: The length of @payload. 752 * @perm: The permissions mask for a new key. 753 * @flags: The quota flags for a new key. 754 * 755 * Search the destination keyring for a key of the same description and if one 756 * is found, update it, otherwise create and instantiate a new one and create a 757 * link to it from that keyring. 758 * 759 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be 760 * concocted. 761 * 762 * Returns a pointer to the new key if successful, -ENODEV if the key type 763 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the 764 * caller isn't permitted to modify the keyring or the LSM did not permit 765 * creation of the key. 766 * 767 * On success, the possession flag from the keyring ref will be tacked on to 768 * the key ref before it is returned. 769 */ 770 key_ref_t key_create_or_update(key_ref_t keyring_ref, 771 const char *type, 772 const char *description, 773 const void *payload, 774 size_t plen, 775 key_perm_t perm, 776 unsigned long flags) 777 { 778 struct keyring_index_key index_key = { 779 .description = description, 780 }; 781 struct key_preparsed_payload prep; 782 struct assoc_array_edit *edit; 783 const struct cred *cred = current_cred(); 784 struct key *keyring, *key = NULL; 785 key_ref_t key_ref; 786 int ret; 787 788 /* look up the key type to see if it's one of the registered kernel 789 * types */ 790 index_key.type = key_type_lookup(type); 791 if (IS_ERR(index_key.type)) { 792 key_ref = ERR_PTR(-ENODEV); 793 goto error; 794 } 795 796 key_ref = ERR_PTR(-EINVAL); 797 if (!index_key.type->match || !index_key.type->instantiate || 798 (!index_key.description && !index_key.type->preparse)) 799 goto error_put_type; 800 801 keyring = key_ref_to_ptr(keyring_ref); 802 803 key_check(keyring); 804 805 key_ref = ERR_PTR(-ENOTDIR); 806 if (keyring->type != &key_type_keyring) 807 goto error_put_type; 808 809 memset(&prep, 0, sizeof(prep)); 810 prep.data = payload; 811 prep.datalen = plen; 812 prep.quotalen = index_key.type->def_datalen; 813 prep.trusted = flags & KEY_ALLOC_TRUSTED; 814 if (index_key.type->preparse) { 815 ret = index_key.type->preparse(&prep); 816 if (ret < 0) { 817 key_ref = ERR_PTR(ret); 818 goto error_put_type; 819 } 820 if (!index_key.description) 821 index_key.description = prep.description; 822 key_ref = ERR_PTR(-EINVAL); 823 if (!index_key.description) 824 goto error_free_prep; 825 } 826 index_key.desc_len = strlen(index_key.description); 827 828 key_ref = ERR_PTR(-EPERM); 829 if (!prep.trusted && test_bit(KEY_FLAG_TRUSTED_ONLY, &keyring->flags)) 830 goto error_free_prep; 831 flags |= prep.trusted ? KEY_ALLOC_TRUSTED : 0; 832 833 ret = __key_link_begin(keyring, &index_key, &edit); 834 if (ret < 0) { 835 key_ref = ERR_PTR(ret); 836 goto error_free_prep; 837 } 838 839 /* if we're going to allocate a new key, we're going to have 840 * to modify the keyring */ 841 ret = key_permission(keyring_ref, KEY_NEED_WRITE); 842 if (ret < 0) { 843 key_ref = ERR_PTR(ret); 844 goto error_link_end; 845 } 846 847 /* if it's possible to update this type of key, search for an existing 848 * key of the same type and description in the destination keyring and 849 * update that instead if possible 850 */ 851 if (index_key.type->update) { 852 key_ref = find_key_to_update(keyring_ref, &index_key); 853 if (key_ref) 854 goto found_matching_key; 855 } 856 857 /* if the client doesn't provide, decide on the permissions we want */ 858 if (perm == KEY_PERM_UNDEF) { 859 perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR; 860 perm |= KEY_USR_VIEW; 861 862 if (index_key.type->read) 863 perm |= KEY_POS_READ; 864 865 if (index_key.type == &key_type_keyring || 866 index_key.type->update) 867 perm |= KEY_POS_WRITE; 868 } 869 870 /* allocate a new key */ 871 key = key_alloc(index_key.type, index_key.description, 872 cred->fsuid, cred->fsgid, cred, perm, flags); 873 if (IS_ERR(key)) { 874 key_ref = ERR_CAST(key); 875 goto error_link_end; 876 } 877 878 /* instantiate it and link it into the target keyring */ 879 ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit); 880 if (ret < 0) { 881 key_put(key); 882 key_ref = ERR_PTR(ret); 883 goto error_link_end; 884 } 885 886 key_ref = make_key_ref(key, is_key_possessed(keyring_ref)); 887 888 error_link_end: 889 __key_link_end(keyring, &index_key, edit); 890 error_free_prep: 891 if (index_key.type->preparse) 892 index_key.type->free_preparse(&prep); 893 error_put_type: 894 key_type_put(index_key.type); 895 error: 896 return key_ref; 897 898 found_matching_key: 899 /* we found a matching key, so we're going to try to update it 900 * - we can drop the locks first as we have the key pinned 901 */ 902 __key_link_end(keyring, &index_key, edit); 903 904 key_ref = __key_update(key_ref, &prep); 905 goto error_free_prep; 906 } 907 EXPORT_SYMBOL(key_create_or_update); 908 909 /** 910 * key_update - Update a key's contents. 911 * @key_ref: The pointer (plus possession flag) to the key. 912 * @payload: The data to be used to update the key. 913 * @plen: The length of @payload. 914 * 915 * Attempt to update the contents of a key with the given payload data. The 916 * caller must be granted Write permission on the key. Negative keys can be 917 * instantiated by this method. 918 * 919 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key 920 * type does not support updating. The key type may return other errors. 921 */ 922 int key_update(key_ref_t key_ref, const void *payload, size_t plen) 923 { 924 struct key_preparsed_payload prep; 925 struct key *key = key_ref_to_ptr(key_ref); 926 int ret; 927 928 key_check(key); 929 930 /* the key must be writable */ 931 ret = key_permission(key_ref, KEY_NEED_WRITE); 932 if (ret < 0) 933 goto error; 934 935 /* attempt to update it if supported */ 936 ret = -EOPNOTSUPP; 937 if (!key->type->update) 938 goto error; 939 940 memset(&prep, 0, sizeof(prep)); 941 prep.data = payload; 942 prep.datalen = plen; 943 prep.quotalen = key->type->def_datalen; 944 if (key->type->preparse) { 945 ret = key->type->preparse(&prep); 946 if (ret < 0) 947 goto error; 948 } 949 950 down_write(&key->sem); 951 952 ret = key->type->update(key, &prep); 953 if (ret == 0) 954 /* updating a negative key instantiates it */ 955 clear_bit(KEY_FLAG_NEGATIVE, &key->flags); 956 957 up_write(&key->sem); 958 959 if (key->type->preparse) 960 key->type->free_preparse(&prep); 961 error: 962 return ret; 963 } 964 EXPORT_SYMBOL(key_update); 965 966 /** 967 * key_revoke - Revoke a key. 968 * @key: The key to be revoked. 969 * 970 * Mark a key as being revoked and ask the type to free up its resources. The 971 * revocation timeout is set and the key and all its links will be 972 * automatically garbage collected after key_gc_delay amount of time if they 973 * are not manually dealt with first. 974 */ 975 void key_revoke(struct key *key) 976 { 977 struct timespec now; 978 time_t time; 979 980 key_check(key); 981 982 /* make sure no one's trying to change or use the key when we mark it 983 * - we tell lockdep that we might nest because we might be revoking an 984 * authorisation key whilst holding the sem on a key we've just 985 * instantiated 986 */ 987 down_write_nested(&key->sem, 1); 988 if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) && 989 key->type->revoke) 990 key->type->revoke(key); 991 992 /* set the death time to no more than the expiry time */ 993 now = current_kernel_time(); 994 time = now.tv_sec; 995 if (key->revoked_at == 0 || key->revoked_at > time) { 996 key->revoked_at = time; 997 key_schedule_gc(key->revoked_at + key_gc_delay); 998 } 999 1000 up_write(&key->sem); 1001 } 1002 EXPORT_SYMBOL(key_revoke); 1003 1004 /** 1005 * key_invalidate - Invalidate a key. 1006 * @key: The key to be invalidated. 1007 * 1008 * Mark a key as being invalidated and have it cleaned up immediately. The key 1009 * is ignored by all searches and other operations from this point. 1010 */ 1011 void key_invalidate(struct key *key) 1012 { 1013 kenter("%d", key_serial(key)); 1014 1015 key_check(key); 1016 1017 if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) { 1018 down_write_nested(&key->sem, 1); 1019 if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags)) 1020 key_schedule_gc_links(); 1021 up_write(&key->sem); 1022 } 1023 } 1024 EXPORT_SYMBOL(key_invalidate); 1025 1026 /** 1027 * register_key_type - Register a type of key. 1028 * @ktype: The new key type. 1029 * 1030 * Register a new key type. 1031 * 1032 * Returns 0 on success or -EEXIST if a type of this name already exists. 1033 */ 1034 int register_key_type(struct key_type *ktype) 1035 { 1036 struct key_type *p; 1037 int ret; 1038 1039 memset(&ktype->lock_class, 0, sizeof(ktype->lock_class)); 1040 1041 ret = -EEXIST; 1042 down_write(&key_types_sem); 1043 1044 /* disallow key types with the same name */ 1045 list_for_each_entry(p, &key_types_list, link) { 1046 if (strcmp(p->name, ktype->name) == 0) 1047 goto out; 1048 } 1049 1050 /* store the type */ 1051 list_add(&ktype->link, &key_types_list); 1052 1053 pr_notice("Key type %s registered\n", ktype->name); 1054 ret = 0; 1055 1056 out: 1057 up_write(&key_types_sem); 1058 return ret; 1059 } 1060 EXPORT_SYMBOL(register_key_type); 1061 1062 /** 1063 * unregister_key_type - Unregister a type of key. 1064 * @ktype: The key type. 1065 * 1066 * Unregister a key type and mark all the extant keys of this type as dead. 1067 * Those keys of this type are then destroyed to get rid of their payloads and 1068 * they and their links will be garbage collected as soon as possible. 1069 */ 1070 void unregister_key_type(struct key_type *ktype) 1071 { 1072 down_write(&key_types_sem); 1073 list_del_init(&ktype->link); 1074 downgrade_write(&key_types_sem); 1075 key_gc_keytype(ktype); 1076 pr_notice("Key type %s unregistered\n", ktype->name); 1077 up_read(&key_types_sem); 1078 } 1079 EXPORT_SYMBOL(unregister_key_type); 1080 1081 /* 1082 * Initialise the key management state. 1083 */ 1084 void __init key_init(void) 1085 { 1086 /* allocate a slab in which we can store keys */ 1087 key_jar = kmem_cache_create("key_jar", sizeof(struct key), 1088 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 1089 1090 /* add the special key types */ 1091 list_add_tail(&key_type_keyring.link, &key_types_list); 1092 list_add_tail(&key_type_dead.link, &key_types_list); 1093 list_add_tail(&key_type_user.link, &key_types_list); 1094 list_add_tail(&key_type_logon.link, &key_types_list); 1095 1096 /* record the root user tracking */ 1097 rb_link_node(&root_key_user.node, 1098 NULL, 1099 &key_user_tree.rb_node); 1100 1101 rb_insert_color(&root_key_user.node, 1102 &key_user_tree); 1103 } 1104