xref: /openbmc/linux/security/keys/key.c (revision a1e58bbd)
1 /* Basic authentication token and access key management
2  *
3  * Copyright (C) 2004-2007 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/poison.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/security.h>
18 #include <linux/workqueue.h>
19 #include <linux/random.h>
20 #include <linux/err.h>
21 #include "internal.h"
22 
23 static struct kmem_cache	*key_jar;
24 struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
25 DEFINE_SPINLOCK(key_serial_lock);
26 
27 struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
28 DEFINE_SPINLOCK(key_user_lock);
29 
30 static LIST_HEAD(key_types_list);
31 static DECLARE_RWSEM(key_types_sem);
32 
33 static void key_cleanup(struct work_struct *work);
34 static DECLARE_WORK(key_cleanup_task, key_cleanup);
35 
36 /* we serialise key instantiation and link */
37 DEFINE_MUTEX(key_construction_mutex);
38 
39 /* any key who's type gets unegistered will be re-typed to this */
40 static struct key_type key_type_dead = {
41 	.name		= "dead",
42 };
43 
44 #ifdef KEY_DEBUGGING
45 void __key_check(const struct key *key)
46 {
47 	printk("__key_check: key %p {%08x} should be {%08x}\n",
48 	       key, key->magic, KEY_DEBUG_MAGIC);
49 	BUG();
50 }
51 #endif
52 
53 /*****************************************************************************/
54 /*
55  * get the key quota record for a user, allocating a new record if one doesn't
56  * already exist
57  */
58 struct key_user *key_user_lookup(uid_t uid)
59 {
60 	struct key_user *candidate = NULL, *user;
61 	struct rb_node *parent = NULL;
62 	struct rb_node **p;
63 
64  try_again:
65 	p = &key_user_tree.rb_node;
66 	spin_lock(&key_user_lock);
67 
68 	/* search the tree for a user record with a matching UID */
69 	while (*p) {
70 		parent = *p;
71 		user = rb_entry(parent, struct key_user, node);
72 
73 		if (uid < user->uid)
74 			p = &(*p)->rb_left;
75 		else if (uid > user->uid)
76 			p = &(*p)->rb_right;
77 		else
78 			goto found;
79 	}
80 
81 	/* if we get here, we failed to find a match in the tree */
82 	if (!candidate) {
83 		/* allocate a candidate user record if we don't already have
84 		 * one */
85 		spin_unlock(&key_user_lock);
86 
87 		user = NULL;
88 		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
89 		if (unlikely(!candidate))
90 			goto out;
91 
92 		/* the allocation may have scheduled, so we need to repeat the
93 		 * search lest someone else added the record whilst we were
94 		 * asleep */
95 		goto try_again;
96 	}
97 
98 	/* if we get here, then the user record still hadn't appeared on the
99 	 * second pass - so we use the candidate record */
100 	atomic_set(&candidate->usage, 1);
101 	atomic_set(&candidate->nkeys, 0);
102 	atomic_set(&candidate->nikeys, 0);
103 	candidate->uid = uid;
104 	candidate->qnkeys = 0;
105 	candidate->qnbytes = 0;
106 	spin_lock_init(&candidate->lock);
107 	mutex_init(&candidate->cons_lock);
108 
109 	rb_link_node(&candidate->node, parent, p);
110 	rb_insert_color(&candidate->node, &key_user_tree);
111 	spin_unlock(&key_user_lock);
112 	user = candidate;
113 	goto out;
114 
115 	/* okay - we found a user record for this UID */
116  found:
117 	atomic_inc(&user->usage);
118 	spin_unlock(&key_user_lock);
119 	kfree(candidate);
120  out:
121 	return user;
122 
123 } /* end key_user_lookup() */
124 
125 /*****************************************************************************/
126 /*
127  * dispose of a user structure
128  */
129 void key_user_put(struct key_user *user)
130 {
131 	if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
132 		rb_erase(&user->node, &key_user_tree);
133 		spin_unlock(&key_user_lock);
134 
135 		kfree(user);
136 	}
137 
138 } /* end key_user_put() */
139 
140 /*****************************************************************************/
141 /*
142  * insert a key with a fixed serial number
143  */
144 static void __init __key_insert_serial(struct key *key)
145 {
146 	struct rb_node *parent, **p;
147 	struct key *xkey;
148 
149 	parent = NULL;
150 	p = &key_serial_tree.rb_node;
151 
152 	while (*p) {
153 		parent = *p;
154 		xkey = rb_entry(parent, struct key, serial_node);
155 
156 		if (key->serial < xkey->serial)
157 			p = &(*p)->rb_left;
158 		else if (key->serial > xkey->serial)
159 			p = &(*p)->rb_right;
160 		else
161 			BUG();
162 	}
163 
164 	/* we've found a suitable hole - arrange for this key to occupy it */
165 	rb_link_node(&key->serial_node, parent, p);
166 	rb_insert_color(&key->serial_node, &key_serial_tree);
167 
168 } /* end __key_insert_serial() */
169 
170 /*****************************************************************************/
171 /*
172  * assign a key the next unique serial number
173  * - these are assigned randomly to avoid security issues through covert
174  *   channel problems
175  */
176 static inline void key_alloc_serial(struct key *key)
177 {
178 	struct rb_node *parent, **p;
179 	struct key *xkey;
180 
181 	/* propose a random serial number and look for a hole for it in the
182 	 * serial number tree */
183 	do {
184 		get_random_bytes(&key->serial, sizeof(key->serial));
185 
186 		key->serial >>= 1; /* negative numbers are not permitted */
187 	} while (key->serial < 3);
188 
189 	spin_lock(&key_serial_lock);
190 
191 attempt_insertion:
192 	parent = NULL;
193 	p = &key_serial_tree.rb_node;
194 
195 	while (*p) {
196 		parent = *p;
197 		xkey = rb_entry(parent, struct key, serial_node);
198 
199 		if (key->serial < xkey->serial)
200 			p = &(*p)->rb_left;
201 		else if (key->serial > xkey->serial)
202 			p = &(*p)->rb_right;
203 		else
204 			goto serial_exists;
205 	}
206 
207 	/* we've found a suitable hole - arrange for this key to occupy it */
208 	rb_link_node(&key->serial_node, parent, p);
209 	rb_insert_color(&key->serial_node, &key_serial_tree);
210 
211 	spin_unlock(&key_serial_lock);
212 	return;
213 
214 	/* we found a key with the proposed serial number - walk the tree from
215 	 * that point looking for the next unused serial number */
216 serial_exists:
217 	for (;;) {
218 		key->serial++;
219 		if (key->serial < 3) {
220 			key->serial = 3;
221 			goto attempt_insertion;
222 		}
223 
224 		parent = rb_next(parent);
225 		if (!parent)
226 			goto attempt_insertion;
227 
228 		xkey = rb_entry(parent, struct key, serial_node);
229 		if (key->serial < xkey->serial)
230 			goto attempt_insertion;
231 	}
232 
233 } /* end key_alloc_serial() */
234 
235 /*****************************************************************************/
236 /*
237  * allocate a key of the specified type
238  * - update the user's quota to reflect the existence of the key
239  * - called from a key-type operation with key_types_sem read-locked by
240  *   key_create_or_update()
241  *   - this prevents unregistration of the key type
242  * - upon return the key is as yet uninstantiated; the caller needs to either
243  *   instantiate the key or discard it before returning
244  */
245 struct key *key_alloc(struct key_type *type, const char *desc,
246 		      uid_t uid, gid_t gid, struct task_struct *ctx,
247 		      key_perm_t perm, unsigned long flags)
248 {
249 	struct key_user *user = NULL;
250 	struct key *key;
251 	size_t desclen, quotalen;
252 	int ret;
253 
254 	key = ERR_PTR(-EINVAL);
255 	if (!desc || !*desc)
256 		goto error;
257 
258 	desclen = strlen(desc) + 1;
259 	quotalen = desclen + type->def_datalen;
260 
261 	/* get hold of the key tracking for this user */
262 	user = key_user_lookup(uid);
263 	if (!user)
264 		goto no_memory_1;
265 
266 	/* check that the user's quota permits allocation of another key and
267 	 * its description */
268 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
269 		spin_lock(&user->lock);
270 		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
271 			if (user->qnkeys + 1 >= KEYQUOTA_MAX_KEYS ||
272 			    user->qnbytes + quotalen >= KEYQUOTA_MAX_BYTES
273 			    )
274 				goto no_quota;
275 		}
276 
277 		user->qnkeys++;
278 		user->qnbytes += quotalen;
279 		spin_unlock(&user->lock);
280 	}
281 
282 	/* allocate and initialise the key and its description */
283 	key = kmem_cache_alloc(key_jar, GFP_KERNEL);
284 	if (!key)
285 		goto no_memory_2;
286 
287 	if (desc) {
288 		key->description = kmemdup(desc, desclen, GFP_KERNEL);
289 		if (!key->description)
290 			goto no_memory_3;
291 	}
292 
293 	atomic_set(&key->usage, 1);
294 	init_rwsem(&key->sem);
295 	key->type = type;
296 	key->user = user;
297 	key->quotalen = quotalen;
298 	key->datalen = type->def_datalen;
299 	key->uid = uid;
300 	key->gid = gid;
301 	key->perm = perm;
302 	key->flags = 0;
303 	key->expiry = 0;
304 	key->payload.data = NULL;
305 	key->security = NULL;
306 
307 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
308 		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
309 
310 	memset(&key->type_data, 0, sizeof(key->type_data));
311 
312 #ifdef KEY_DEBUGGING
313 	key->magic = KEY_DEBUG_MAGIC;
314 #endif
315 
316 	/* let the security module know about the key */
317 	ret = security_key_alloc(key, ctx, flags);
318 	if (ret < 0)
319 		goto security_error;
320 
321 	/* publish the key by giving it a serial number */
322 	atomic_inc(&user->nkeys);
323 	key_alloc_serial(key);
324 
325 error:
326 	return key;
327 
328 security_error:
329 	kfree(key->description);
330 	kmem_cache_free(key_jar, key);
331 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
332 		spin_lock(&user->lock);
333 		user->qnkeys--;
334 		user->qnbytes -= quotalen;
335 		spin_unlock(&user->lock);
336 	}
337 	key_user_put(user);
338 	key = ERR_PTR(ret);
339 	goto error;
340 
341 no_memory_3:
342 	kmem_cache_free(key_jar, key);
343 no_memory_2:
344 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
345 		spin_lock(&user->lock);
346 		user->qnkeys--;
347 		user->qnbytes -= quotalen;
348 		spin_unlock(&user->lock);
349 	}
350 	key_user_put(user);
351 no_memory_1:
352 	key = ERR_PTR(-ENOMEM);
353 	goto error;
354 
355 no_quota:
356 	spin_unlock(&user->lock);
357 	key_user_put(user);
358 	key = ERR_PTR(-EDQUOT);
359 	goto error;
360 
361 } /* end key_alloc() */
362 
363 EXPORT_SYMBOL(key_alloc);
364 
365 /*****************************************************************************/
366 /*
367  * reserve an amount of quota for the key's payload
368  */
369 int key_payload_reserve(struct key *key, size_t datalen)
370 {
371 	int delta = (int) datalen - key->datalen;
372 	int ret = 0;
373 
374 	key_check(key);
375 
376 	/* contemplate the quota adjustment */
377 	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
378 		spin_lock(&key->user->lock);
379 
380 		if (delta > 0 &&
381 		    key->user->qnbytes + delta > KEYQUOTA_MAX_BYTES
382 		    ) {
383 			ret = -EDQUOT;
384 		}
385 		else {
386 			key->user->qnbytes += delta;
387 			key->quotalen += delta;
388 		}
389 		spin_unlock(&key->user->lock);
390 	}
391 
392 	/* change the recorded data length if that didn't generate an error */
393 	if (ret == 0)
394 		key->datalen = datalen;
395 
396 	return ret;
397 
398 } /* end key_payload_reserve() */
399 
400 EXPORT_SYMBOL(key_payload_reserve);
401 
402 /*****************************************************************************/
403 /*
404  * instantiate a key and link it into the target keyring atomically
405  * - called with the target keyring's semaphore writelocked
406  */
407 static int __key_instantiate_and_link(struct key *key,
408 				      const void *data,
409 				      size_t datalen,
410 				      struct key *keyring,
411 				      struct key *instkey)
412 {
413 	int ret, awaken;
414 
415 	key_check(key);
416 	key_check(keyring);
417 
418 	awaken = 0;
419 	ret = -EBUSY;
420 
421 	mutex_lock(&key_construction_mutex);
422 
423 	/* can't instantiate twice */
424 	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
425 		/* instantiate the key */
426 		ret = key->type->instantiate(key, data, datalen);
427 
428 		if (ret == 0) {
429 			/* mark the key as being instantiated */
430 			atomic_inc(&key->user->nikeys);
431 			set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
432 
433 			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
434 				awaken = 1;
435 
436 			/* and link it into the destination keyring */
437 			if (keyring)
438 				ret = __key_link(keyring, key);
439 
440 			/* disable the authorisation key */
441 			if (instkey)
442 				key_revoke(instkey);
443 		}
444 	}
445 
446 	mutex_unlock(&key_construction_mutex);
447 
448 	/* wake up anyone waiting for a key to be constructed */
449 	if (awaken)
450 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
451 
452 	return ret;
453 
454 } /* end __key_instantiate_and_link() */
455 
456 /*****************************************************************************/
457 /*
458  * instantiate a key and link it into the target keyring atomically
459  */
460 int key_instantiate_and_link(struct key *key,
461 			     const void *data,
462 			     size_t datalen,
463 			     struct key *keyring,
464 			     struct key *instkey)
465 {
466 	int ret;
467 
468 	if (keyring)
469 		down_write(&keyring->sem);
470 
471 	ret = __key_instantiate_and_link(key, data, datalen, keyring, instkey);
472 
473 	if (keyring)
474 		up_write(&keyring->sem);
475 
476 	return ret;
477 
478 } /* end key_instantiate_and_link() */
479 
480 EXPORT_SYMBOL(key_instantiate_and_link);
481 
482 /*****************************************************************************/
483 /*
484  * negatively instantiate a key and link it into the target keyring atomically
485  */
486 int key_negate_and_link(struct key *key,
487 			unsigned timeout,
488 			struct key *keyring,
489 			struct key *instkey)
490 {
491 	struct timespec now;
492 	int ret, awaken;
493 
494 	key_check(key);
495 	key_check(keyring);
496 
497 	awaken = 0;
498 	ret = -EBUSY;
499 
500 	if (keyring)
501 		down_write(&keyring->sem);
502 
503 	mutex_lock(&key_construction_mutex);
504 
505 	/* can't instantiate twice */
506 	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
507 		/* mark the key as being negatively instantiated */
508 		atomic_inc(&key->user->nikeys);
509 		set_bit(KEY_FLAG_NEGATIVE, &key->flags);
510 		set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
511 		now = current_kernel_time();
512 		key->expiry = now.tv_sec + timeout;
513 
514 		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
515 			awaken = 1;
516 
517 		ret = 0;
518 
519 		/* and link it into the destination keyring */
520 		if (keyring)
521 			ret = __key_link(keyring, key);
522 
523 		/* disable the authorisation key */
524 		if (instkey)
525 			key_revoke(instkey);
526 	}
527 
528 	mutex_unlock(&key_construction_mutex);
529 
530 	if (keyring)
531 		up_write(&keyring->sem);
532 
533 	/* wake up anyone waiting for a key to be constructed */
534 	if (awaken)
535 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
536 
537 	return ret;
538 
539 } /* end key_negate_and_link() */
540 
541 EXPORT_SYMBOL(key_negate_and_link);
542 
543 /*****************************************************************************/
544 /*
545  * do cleaning up in process context so that we don't have to disable
546  * interrupts all over the place
547  */
548 static void key_cleanup(struct work_struct *work)
549 {
550 	struct rb_node *_n;
551 	struct key *key;
552 
553  go_again:
554 	/* look for a dead key in the tree */
555 	spin_lock(&key_serial_lock);
556 
557 	for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
558 		key = rb_entry(_n, struct key, serial_node);
559 
560 		if (atomic_read(&key->usage) == 0)
561 			goto found_dead_key;
562 	}
563 
564 	spin_unlock(&key_serial_lock);
565 	return;
566 
567  found_dead_key:
568 	/* we found a dead key - once we've removed it from the tree, we can
569 	 * drop the lock */
570 	rb_erase(&key->serial_node, &key_serial_tree);
571 	spin_unlock(&key_serial_lock);
572 
573 	key_check(key);
574 
575 	security_key_free(key);
576 
577 	/* deal with the user's key tracking and quota */
578 	if (test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
579 		spin_lock(&key->user->lock);
580 		key->user->qnkeys--;
581 		key->user->qnbytes -= key->quotalen;
582 		spin_unlock(&key->user->lock);
583 	}
584 
585 	atomic_dec(&key->user->nkeys);
586 	if (test_bit(KEY_FLAG_INSTANTIATED, &key->flags))
587 		atomic_dec(&key->user->nikeys);
588 
589 	key_user_put(key->user);
590 
591 	/* now throw away the key memory */
592 	if (key->type->destroy)
593 		key->type->destroy(key);
594 
595 	kfree(key->description);
596 
597 #ifdef KEY_DEBUGGING
598 	key->magic = KEY_DEBUG_MAGIC_X;
599 #endif
600 	kmem_cache_free(key_jar, key);
601 
602 	/* there may, of course, be more than one key to destroy */
603 	goto go_again;
604 
605 } /* end key_cleanup() */
606 
607 /*****************************************************************************/
608 /*
609  * dispose of a reference to a key
610  * - when all the references are gone, we schedule the cleanup task to come and
611  *   pull it out of the tree in definite process context
612  */
613 void key_put(struct key *key)
614 {
615 	if (key) {
616 		key_check(key);
617 
618 		if (atomic_dec_and_test(&key->usage))
619 			schedule_work(&key_cleanup_task);
620 	}
621 
622 } /* end key_put() */
623 
624 EXPORT_SYMBOL(key_put);
625 
626 /*****************************************************************************/
627 /*
628  * find a key by its serial number
629  */
630 struct key *key_lookup(key_serial_t id)
631 {
632 	struct rb_node *n;
633 	struct key *key;
634 
635 	spin_lock(&key_serial_lock);
636 
637 	/* search the tree for the specified key */
638 	n = key_serial_tree.rb_node;
639 	while (n) {
640 		key = rb_entry(n, struct key, serial_node);
641 
642 		if (id < key->serial)
643 			n = n->rb_left;
644 		else if (id > key->serial)
645 			n = n->rb_right;
646 		else
647 			goto found;
648 	}
649 
650  not_found:
651 	key = ERR_PTR(-ENOKEY);
652 	goto error;
653 
654  found:
655 	/* pretend it doesn't exist if it's dead */
656 	if (atomic_read(&key->usage) == 0 ||
657 	    test_bit(KEY_FLAG_DEAD, &key->flags) ||
658 	    key->type == &key_type_dead)
659 		goto not_found;
660 
661 	/* this races with key_put(), but that doesn't matter since key_put()
662 	 * doesn't actually change the key
663 	 */
664 	atomic_inc(&key->usage);
665 
666  error:
667 	spin_unlock(&key_serial_lock);
668 	return key;
669 
670 } /* end key_lookup() */
671 
672 /*****************************************************************************/
673 /*
674  * find and lock the specified key type against removal
675  * - we return with the sem readlocked
676  */
677 struct key_type *key_type_lookup(const char *type)
678 {
679 	struct key_type *ktype;
680 
681 	down_read(&key_types_sem);
682 
683 	/* look up the key type to see if it's one of the registered kernel
684 	 * types */
685 	list_for_each_entry(ktype, &key_types_list, link) {
686 		if (strcmp(ktype->name, type) == 0)
687 			goto found_kernel_type;
688 	}
689 
690 	up_read(&key_types_sem);
691 	ktype = ERR_PTR(-ENOKEY);
692 
693  found_kernel_type:
694 	return ktype;
695 
696 } /* end key_type_lookup() */
697 
698 /*****************************************************************************/
699 /*
700  * unlock a key type
701  */
702 void key_type_put(struct key_type *ktype)
703 {
704 	up_read(&key_types_sem);
705 
706 } /* end key_type_put() */
707 
708 /*****************************************************************************/
709 /*
710  * attempt to update an existing key
711  * - the key has an incremented refcount
712  * - we need to put the key if we get an error
713  */
714 static inline key_ref_t __key_update(key_ref_t key_ref,
715 				     const void *payload, size_t plen)
716 {
717 	struct key *key = key_ref_to_ptr(key_ref);
718 	int ret;
719 
720 	/* need write permission on the key to update it */
721 	ret = key_permission(key_ref, KEY_WRITE);
722 	if (ret < 0)
723 		goto error;
724 
725 	ret = -EEXIST;
726 	if (!key->type->update)
727 		goto error;
728 
729 	down_write(&key->sem);
730 
731 	ret = key->type->update(key, payload, plen);
732 	if (ret == 0)
733 		/* updating a negative key instantiates it */
734 		clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
735 
736 	up_write(&key->sem);
737 
738 	if (ret < 0)
739 		goto error;
740 out:
741 	return key_ref;
742 
743 error:
744 	key_put(key);
745 	key_ref = ERR_PTR(ret);
746 	goto out;
747 
748 } /* end __key_update() */
749 
750 /*****************************************************************************/
751 /*
752  * search the specified keyring for a key of the same description; if one is
753  * found, update it, otherwise add a new one
754  */
755 key_ref_t key_create_or_update(key_ref_t keyring_ref,
756 			       const char *type,
757 			       const char *description,
758 			       const void *payload,
759 			       size_t plen,
760 			       unsigned long flags)
761 {
762 	struct key_type *ktype;
763 	struct key *keyring, *key = NULL;
764 	key_perm_t perm;
765 	key_ref_t key_ref;
766 	int ret;
767 
768 	/* look up the key type to see if it's one of the registered kernel
769 	 * types */
770 	ktype = key_type_lookup(type);
771 	if (IS_ERR(ktype)) {
772 		key_ref = ERR_PTR(-ENODEV);
773 		goto error;
774 	}
775 
776 	key_ref = ERR_PTR(-EINVAL);
777 	if (!ktype->match || !ktype->instantiate)
778 		goto error_2;
779 
780 	keyring = key_ref_to_ptr(keyring_ref);
781 
782 	key_check(keyring);
783 
784 	key_ref = ERR_PTR(-ENOTDIR);
785 	if (keyring->type != &key_type_keyring)
786 		goto error_2;
787 
788 	down_write(&keyring->sem);
789 
790 	/* if we're going to allocate a new key, we're going to have
791 	 * to modify the keyring */
792 	ret = key_permission(keyring_ref, KEY_WRITE);
793 	if (ret < 0) {
794 		key_ref = ERR_PTR(ret);
795 		goto error_3;
796 	}
797 
798 	/* if it's possible to update this type of key, search for an existing
799 	 * key of the same type and description in the destination keyring and
800 	 * update that instead if possible
801 	 */
802 	if (ktype->update) {
803 		key_ref = __keyring_search_one(keyring_ref, ktype, description,
804 					       0);
805 		if (!IS_ERR(key_ref))
806 			goto found_matching_key;
807 	}
808 
809 	/* decide on the permissions we want */
810 	perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
811 	perm |= KEY_USR_VIEW | KEY_USR_SEARCH | KEY_USR_LINK | KEY_USR_SETATTR;
812 
813 	if (ktype->read)
814 		perm |= KEY_POS_READ | KEY_USR_READ;
815 
816 	if (ktype == &key_type_keyring || ktype->update)
817 		perm |= KEY_USR_WRITE;
818 
819 	/* allocate a new key */
820 	key = key_alloc(ktype, description, current->fsuid, current->fsgid,
821 			current, perm, flags);
822 	if (IS_ERR(key)) {
823 		key_ref = ERR_CAST(key);
824 		goto error_3;
825 	}
826 
827 	/* instantiate it and link it into the target keyring */
828 	ret = __key_instantiate_and_link(key, payload, plen, keyring, NULL);
829 	if (ret < 0) {
830 		key_put(key);
831 		key_ref = ERR_PTR(ret);
832 		goto error_3;
833 	}
834 
835 	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
836 
837  error_3:
838 	up_write(&keyring->sem);
839  error_2:
840 	key_type_put(ktype);
841  error:
842 	return key_ref;
843 
844  found_matching_key:
845 	/* we found a matching key, so we're going to try to update it
846 	 * - we can drop the locks first as we have the key pinned
847 	 */
848 	up_write(&keyring->sem);
849 	key_type_put(ktype);
850 
851 	key_ref = __key_update(key_ref, payload, plen);
852 	goto error;
853 
854 } /* end key_create_or_update() */
855 
856 EXPORT_SYMBOL(key_create_or_update);
857 
858 /*****************************************************************************/
859 /*
860  * update a key
861  */
862 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
863 {
864 	struct key *key = key_ref_to_ptr(key_ref);
865 	int ret;
866 
867 	key_check(key);
868 
869 	/* the key must be writable */
870 	ret = key_permission(key_ref, KEY_WRITE);
871 	if (ret < 0)
872 		goto error;
873 
874 	/* attempt to update it if supported */
875 	ret = -EOPNOTSUPP;
876 	if (key->type->update) {
877 		down_write(&key->sem);
878 
879 		ret = key->type->update(key, payload, plen);
880 		if (ret == 0)
881 			/* updating a negative key instantiates it */
882 			clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
883 
884 		up_write(&key->sem);
885 	}
886 
887  error:
888 	return ret;
889 
890 } /* end key_update() */
891 
892 EXPORT_SYMBOL(key_update);
893 
894 /*****************************************************************************/
895 /*
896  * revoke a key
897  */
898 void key_revoke(struct key *key)
899 {
900 	key_check(key);
901 
902 	/* make sure no one's trying to change or use the key when we mark it
903 	 * - we tell lockdep that we might nest because we might be revoking an
904 	 *   authorisation key whilst holding the sem on a key we've just
905 	 *   instantiated
906 	 */
907 	down_write_nested(&key->sem, 1);
908 	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
909 	    key->type->revoke)
910 		key->type->revoke(key);
911 
912 	up_write(&key->sem);
913 
914 } /* end key_revoke() */
915 
916 EXPORT_SYMBOL(key_revoke);
917 
918 /*****************************************************************************/
919 /*
920  * register a type of key
921  */
922 int register_key_type(struct key_type *ktype)
923 {
924 	struct key_type *p;
925 	int ret;
926 
927 	ret = -EEXIST;
928 	down_write(&key_types_sem);
929 
930 	/* disallow key types with the same name */
931 	list_for_each_entry(p, &key_types_list, link) {
932 		if (strcmp(p->name, ktype->name) == 0)
933 			goto out;
934 	}
935 
936 	/* store the type */
937 	list_add(&ktype->link, &key_types_list);
938 	ret = 0;
939 
940  out:
941 	up_write(&key_types_sem);
942 	return ret;
943 
944 } /* end register_key_type() */
945 
946 EXPORT_SYMBOL(register_key_type);
947 
948 /*****************************************************************************/
949 /*
950  * unregister a type of key
951  */
952 void unregister_key_type(struct key_type *ktype)
953 {
954 	struct rb_node *_n;
955 	struct key *key;
956 
957 	down_write(&key_types_sem);
958 
959 	/* withdraw the key type */
960 	list_del_init(&ktype->link);
961 
962 	/* mark all the keys of this type dead */
963 	spin_lock(&key_serial_lock);
964 
965 	for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
966 		key = rb_entry(_n, struct key, serial_node);
967 
968 		if (key->type == ktype)
969 			key->type = &key_type_dead;
970 	}
971 
972 	spin_unlock(&key_serial_lock);
973 
974 	/* make sure everyone revalidates their keys */
975 	synchronize_rcu();
976 
977 	/* we should now be able to destroy the payloads of all the keys of
978 	 * this type with impunity */
979 	spin_lock(&key_serial_lock);
980 
981 	for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
982 		key = rb_entry(_n, struct key, serial_node);
983 
984 		if (key->type == ktype) {
985 			if (ktype->destroy)
986 				ktype->destroy(key);
987 			memset(&key->payload, KEY_DESTROY, sizeof(key->payload));
988 		}
989 	}
990 
991 	spin_unlock(&key_serial_lock);
992 	up_write(&key_types_sem);
993 
994 } /* end unregister_key_type() */
995 
996 EXPORT_SYMBOL(unregister_key_type);
997 
998 /*****************************************************************************/
999 /*
1000  * initialise the key management stuff
1001  */
1002 void __init key_init(void)
1003 {
1004 	/* allocate a slab in which we can store keys */
1005 	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1006 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1007 
1008 	/* add the special key types */
1009 	list_add_tail(&key_type_keyring.link, &key_types_list);
1010 	list_add_tail(&key_type_dead.link, &key_types_list);
1011 	list_add_tail(&key_type_user.link, &key_types_list);
1012 
1013 	/* record the root user tracking */
1014 	rb_link_node(&root_key_user.node,
1015 		     NULL,
1016 		     &key_user_tree.rb_node);
1017 
1018 	rb_insert_color(&root_key_user.node,
1019 			&key_user_tree);
1020 
1021 	/* record root's user standard keyrings */
1022 	key_check(&root_user_keyring);
1023 	key_check(&root_session_keyring);
1024 
1025 	__key_insert_serial(&root_user_keyring);
1026 	__key_insert_serial(&root_session_keyring);
1027 
1028 	keyring_publish_name(&root_user_keyring);
1029 	keyring_publish_name(&root_session_keyring);
1030 
1031 	/* link the two root keyrings together */
1032 	key_link(&root_session_keyring, &root_user_keyring);
1033 
1034 } /* end key_init() */
1035