xref: /openbmc/linux/security/keys/key.c (revision 8fe62e0c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Basic authentication token and access key management
3  *
4  * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/export.h>
9 #include <linux/init.h>
10 #include <linux/poison.h>
11 #include <linux/sched.h>
12 #include <linux/slab.h>
13 #include <linux/security.h>
14 #include <linux/workqueue.h>
15 #include <linux/random.h>
16 #include <linux/ima.h>
17 #include <linux/err.h>
18 #include "internal.h"
19 
20 struct kmem_cache *key_jar;
21 struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
22 DEFINE_SPINLOCK(key_serial_lock);
23 
24 struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
25 DEFINE_SPINLOCK(key_user_lock);
26 
27 unsigned int key_quota_root_maxkeys = 1000000;	/* root's key count quota */
28 unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
29 unsigned int key_quota_maxkeys = 200;		/* general key count quota */
30 unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
31 
32 static LIST_HEAD(key_types_list);
33 static DECLARE_RWSEM(key_types_sem);
34 
35 /* We serialise key instantiation and link */
36 DEFINE_MUTEX(key_construction_mutex);
37 
38 #ifdef KEY_DEBUGGING
39 void __key_check(const struct key *key)
40 {
41 	printk("__key_check: key %p {%08x} should be {%08x}\n",
42 	       key, key->magic, KEY_DEBUG_MAGIC);
43 	BUG();
44 }
45 #endif
46 
47 /*
48  * Get the key quota record for a user, allocating a new record if one doesn't
49  * already exist.
50  */
51 struct key_user *key_user_lookup(kuid_t uid)
52 {
53 	struct key_user *candidate = NULL, *user;
54 	struct rb_node *parent, **p;
55 
56 try_again:
57 	parent = NULL;
58 	p = &key_user_tree.rb_node;
59 	spin_lock(&key_user_lock);
60 
61 	/* search the tree for a user record with a matching UID */
62 	while (*p) {
63 		parent = *p;
64 		user = rb_entry(parent, struct key_user, node);
65 
66 		if (uid_lt(uid, user->uid))
67 			p = &(*p)->rb_left;
68 		else if (uid_gt(uid, user->uid))
69 			p = &(*p)->rb_right;
70 		else
71 			goto found;
72 	}
73 
74 	/* if we get here, we failed to find a match in the tree */
75 	if (!candidate) {
76 		/* allocate a candidate user record if we don't already have
77 		 * one */
78 		spin_unlock(&key_user_lock);
79 
80 		user = NULL;
81 		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
82 		if (unlikely(!candidate))
83 			goto out;
84 
85 		/* the allocation may have scheduled, so we need to repeat the
86 		 * search lest someone else added the record whilst we were
87 		 * asleep */
88 		goto try_again;
89 	}
90 
91 	/* if we get here, then the user record still hadn't appeared on the
92 	 * second pass - so we use the candidate record */
93 	refcount_set(&candidate->usage, 1);
94 	atomic_set(&candidate->nkeys, 0);
95 	atomic_set(&candidate->nikeys, 0);
96 	candidate->uid = uid;
97 	candidate->qnkeys = 0;
98 	candidate->qnbytes = 0;
99 	spin_lock_init(&candidate->lock);
100 	mutex_init(&candidate->cons_lock);
101 
102 	rb_link_node(&candidate->node, parent, p);
103 	rb_insert_color(&candidate->node, &key_user_tree);
104 	spin_unlock(&key_user_lock);
105 	user = candidate;
106 	goto out;
107 
108 	/* okay - we found a user record for this UID */
109 found:
110 	refcount_inc(&user->usage);
111 	spin_unlock(&key_user_lock);
112 	kfree(candidate);
113 out:
114 	return user;
115 }
116 
117 /*
118  * Dispose of a user structure
119  */
120 void key_user_put(struct key_user *user)
121 {
122 	if (refcount_dec_and_lock(&user->usage, &key_user_lock)) {
123 		rb_erase(&user->node, &key_user_tree);
124 		spin_unlock(&key_user_lock);
125 
126 		kfree(user);
127 	}
128 }
129 
130 /*
131  * Allocate a serial number for a key.  These are assigned randomly to avoid
132  * security issues through covert channel problems.
133  */
134 static inline void key_alloc_serial(struct key *key)
135 {
136 	struct rb_node *parent, **p;
137 	struct key *xkey;
138 
139 	/* propose a random serial number and look for a hole for it in the
140 	 * serial number tree */
141 	do {
142 		get_random_bytes(&key->serial, sizeof(key->serial));
143 
144 		key->serial >>= 1; /* negative numbers are not permitted */
145 	} while (key->serial < 3);
146 
147 	spin_lock(&key_serial_lock);
148 
149 attempt_insertion:
150 	parent = NULL;
151 	p = &key_serial_tree.rb_node;
152 
153 	while (*p) {
154 		parent = *p;
155 		xkey = rb_entry(parent, struct key, serial_node);
156 
157 		if (key->serial < xkey->serial)
158 			p = &(*p)->rb_left;
159 		else if (key->serial > xkey->serial)
160 			p = &(*p)->rb_right;
161 		else
162 			goto serial_exists;
163 	}
164 
165 	/* we've found a suitable hole - arrange for this key to occupy it */
166 	rb_link_node(&key->serial_node, parent, p);
167 	rb_insert_color(&key->serial_node, &key_serial_tree);
168 
169 	spin_unlock(&key_serial_lock);
170 	return;
171 
172 	/* we found a key with the proposed serial number - walk the tree from
173 	 * that point looking for the next unused serial number */
174 serial_exists:
175 	for (;;) {
176 		key->serial++;
177 		if (key->serial < 3) {
178 			key->serial = 3;
179 			goto attempt_insertion;
180 		}
181 
182 		parent = rb_next(parent);
183 		if (!parent)
184 			goto attempt_insertion;
185 
186 		xkey = rb_entry(parent, struct key, serial_node);
187 		if (key->serial < xkey->serial)
188 			goto attempt_insertion;
189 	}
190 }
191 
192 /**
193  * key_alloc - Allocate a key of the specified type.
194  * @type: The type of key to allocate.
195  * @desc: The key description to allow the key to be searched out.
196  * @uid: The owner of the new key.
197  * @gid: The group ID for the new key's group permissions.
198  * @cred: The credentials specifying UID namespace.
199  * @perm: The permissions mask of the new key.
200  * @flags: Flags specifying quota properties.
201  * @restrict_link: Optional link restriction for new keyrings.
202  *
203  * Allocate a key of the specified type with the attributes given.  The key is
204  * returned in an uninstantiated state and the caller needs to instantiate the
205  * key before returning.
206  *
207  * The restrict_link structure (if not NULL) will be freed when the
208  * keyring is destroyed, so it must be dynamically allocated.
209  *
210  * The user's key count quota is updated to reflect the creation of the key and
211  * the user's key data quota has the default for the key type reserved.  The
212  * instantiation function should amend this as necessary.  If insufficient
213  * quota is available, -EDQUOT will be returned.
214  *
215  * The LSM security modules can prevent a key being created, in which case
216  * -EACCES will be returned.
217  *
218  * Returns a pointer to the new key if successful and an error code otherwise.
219  *
220  * Note that the caller needs to ensure the key type isn't uninstantiated.
221  * Internally this can be done by locking key_types_sem.  Externally, this can
222  * be done by either never unregistering the key type, or making sure
223  * key_alloc() calls don't race with module unloading.
224  */
225 struct key *key_alloc(struct key_type *type, const char *desc,
226 		      kuid_t uid, kgid_t gid, const struct cred *cred,
227 		      key_perm_t perm, unsigned long flags,
228 		      struct key_restriction *restrict_link)
229 {
230 	struct key_user *user = NULL;
231 	struct key *key;
232 	size_t desclen, quotalen;
233 	int ret;
234 
235 	key = ERR_PTR(-EINVAL);
236 	if (!desc || !*desc)
237 		goto error;
238 
239 	if (type->vet_description) {
240 		ret = type->vet_description(desc);
241 		if (ret < 0) {
242 			key = ERR_PTR(ret);
243 			goto error;
244 		}
245 	}
246 
247 	desclen = strlen(desc);
248 	quotalen = desclen + 1 + type->def_datalen;
249 
250 	/* get hold of the key tracking for this user */
251 	user = key_user_lookup(uid);
252 	if (!user)
253 		goto no_memory_1;
254 
255 	/* check that the user's quota permits allocation of another key and
256 	 * its description */
257 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
258 		unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
259 			key_quota_root_maxkeys : key_quota_maxkeys;
260 		unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
261 			key_quota_root_maxbytes : key_quota_maxbytes;
262 
263 		spin_lock(&user->lock);
264 		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
265 			if (user->qnkeys + 1 > maxkeys ||
266 			    user->qnbytes + quotalen > maxbytes ||
267 			    user->qnbytes + quotalen < user->qnbytes)
268 				goto no_quota;
269 		}
270 
271 		user->qnkeys++;
272 		user->qnbytes += quotalen;
273 		spin_unlock(&user->lock);
274 	}
275 
276 	/* allocate and initialise the key and its description */
277 	key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
278 	if (!key)
279 		goto no_memory_2;
280 
281 	key->index_key.desc_len = desclen;
282 	key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
283 	if (!key->index_key.description)
284 		goto no_memory_3;
285 	key->index_key.type = type;
286 	key_set_index_key(&key->index_key);
287 
288 	refcount_set(&key->usage, 1);
289 	init_rwsem(&key->sem);
290 	lockdep_set_class(&key->sem, &type->lock_class);
291 	key->user = user;
292 	key->quotalen = quotalen;
293 	key->datalen = type->def_datalen;
294 	key->uid = uid;
295 	key->gid = gid;
296 	key->perm = perm;
297 	key->restrict_link = restrict_link;
298 	key->last_used_at = ktime_get_real_seconds();
299 
300 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
301 		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
302 	if (flags & KEY_ALLOC_BUILT_IN)
303 		key->flags |= 1 << KEY_FLAG_BUILTIN;
304 	if (flags & KEY_ALLOC_UID_KEYRING)
305 		key->flags |= 1 << KEY_FLAG_UID_KEYRING;
306 
307 #ifdef KEY_DEBUGGING
308 	key->magic = KEY_DEBUG_MAGIC;
309 #endif
310 
311 	/* let the security module know about the key */
312 	ret = security_key_alloc(key, cred, flags);
313 	if (ret < 0)
314 		goto security_error;
315 
316 	/* publish the key by giving it a serial number */
317 	refcount_inc(&key->domain_tag->usage);
318 	atomic_inc(&user->nkeys);
319 	key_alloc_serial(key);
320 
321 error:
322 	return key;
323 
324 security_error:
325 	kfree(key->description);
326 	kmem_cache_free(key_jar, key);
327 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
328 		spin_lock(&user->lock);
329 		user->qnkeys--;
330 		user->qnbytes -= quotalen;
331 		spin_unlock(&user->lock);
332 	}
333 	key_user_put(user);
334 	key = ERR_PTR(ret);
335 	goto error;
336 
337 no_memory_3:
338 	kmem_cache_free(key_jar, key);
339 no_memory_2:
340 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
341 		spin_lock(&user->lock);
342 		user->qnkeys--;
343 		user->qnbytes -= quotalen;
344 		spin_unlock(&user->lock);
345 	}
346 	key_user_put(user);
347 no_memory_1:
348 	key = ERR_PTR(-ENOMEM);
349 	goto error;
350 
351 no_quota:
352 	spin_unlock(&user->lock);
353 	key_user_put(user);
354 	key = ERR_PTR(-EDQUOT);
355 	goto error;
356 }
357 EXPORT_SYMBOL(key_alloc);
358 
359 /**
360  * key_payload_reserve - Adjust data quota reservation for the key's payload
361  * @key: The key to make the reservation for.
362  * @datalen: The amount of data payload the caller now wants.
363  *
364  * Adjust the amount of the owning user's key data quota that a key reserves.
365  * If the amount is increased, then -EDQUOT may be returned if there isn't
366  * enough free quota available.
367  *
368  * If successful, 0 is returned.
369  */
370 int key_payload_reserve(struct key *key, size_t datalen)
371 {
372 	int delta = (int)datalen - key->datalen;
373 	int ret = 0;
374 
375 	key_check(key);
376 
377 	/* contemplate the quota adjustment */
378 	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
379 		unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
380 			key_quota_root_maxbytes : key_quota_maxbytes;
381 
382 		spin_lock(&key->user->lock);
383 
384 		if (delta > 0 &&
385 		    (key->user->qnbytes + delta > maxbytes ||
386 		     key->user->qnbytes + delta < key->user->qnbytes)) {
387 			ret = -EDQUOT;
388 		}
389 		else {
390 			key->user->qnbytes += delta;
391 			key->quotalen += delta;
392 		}
393 		spin_unlock(&key->user->lock);
394 	}
395 
396 	/* change the recorded data length if that didn't generate an error */
397 	if (ret == 0)
398 		key->datalen = datalen;
399 
400 	return ret;
401 }
402 EXPORT_SYMBOL(key_payload_reserve);
403 
404 /*
405  * Change the key state to being instantiated.
406  */
407 static void mark_key_instantiated(struct key *key, int reject_error)
408 {
409 	/* Commit the payload before setting the state; barrier versus
410 	 * key_read_state().
411 	 */
412 	smp_store_release(&key->state,
413 			  (reject_error < 0) ? reject_error : KEY_IS_POSITIVE);
414 }
415 
416 /*
417  * Instantiate a key and link it into the target keyring atomically.  Must be
418  * called with the target keyring's semaphore writelocked.  The target key's
419  * semaphore need not be locked as instantiation is serialised by
420  * key_construction_mutex.
421  */
422 static int __key_instantiate_and_link(struct key *key,
423 				      struct key_preparsed_payload *prep,
424 				      struct key *keyring,
425 				      struct key *authkey,
426 				      struct assoc_array_edit **_edit)
427 {
428 	int ret, awaken;
429 
430 	key_check(key);
431 	key_check(keyring);
432 
433 	awaken = 0;
434 	ret = -EBUSY;
435 
436 	mutex_lock(&key_construction_mutex);
437 
438 	/* can't instantiate twice */
439 	if (key->state == KEY_IS_UNINSTANTIATED) {
440 		/* instantiate the key */
441 		ret = key->type->instantiate(key, prep);
442 
443 		if (ret == 0) {
444 			/* mark the key as being instantiated */
445 			atomic_inc(&key->user->nikeys);
446 			mark_key_instantiated(key, 0);
447 			notify_key(key, NOTIFY_KEY_INSTANTIATED, 0);
448 
449 			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
450 				awaken = 1;
451 
452 			/* and link it into the destination keyring */
453 			if (keyring) {
454 				if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
455 					set_bit(KEY_FLAG_KEEP, &key->flags);
456 
457 				__key_link(keyring, key, _edit);
458 			}
459 
460 			/* disable the authorisation key */
461 			if (authkey)
462 				key_invalidate(authkey);
463 
464 			if (prep->expiry != TIME64_MAX) {
465 				key->expiry = prep->expiry;
466 				key_schedule_gc(prep->expiry + key_gc_delay);
467 			}
468 		}
469 	}
470 
471 	mutex_unlock(&key_construction_mutex);
472 
473 	/* wake up anyone waiting for a key to be constructed */
474 	if (awaken)
475 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
476 
477 	return ret;
478 }
479 
480 /**
481  * key_instantiate_and_link - Instantiate a key and link it into the keyring.
482  * @key: The key to instantiate.
483  * @data: The data to use to instantiate the keyring.
484  * @datalen: The length of @data.
485  * @keyring: Keyring to create a link in on success (or NULL).
486  * @authkey: The authorisation token permitting instantiation.
487  *
488  * Instantiate a key that's in the uninstantiated state using the provided data
489  * and, if successful, link it in to the destination keyring if one is
490  * supplied.
491  *
492  * If successful, 0 is returned, the authorisation token is revoked and anyone
493  * waiting for the key is woken up.  If the key was already instantiated,
494  * -EBUSY will be returned.
495  */
496 int key_instantiate_and_link(struct key *key,
497 			     const void *data,
498 			     size_t datalen,
499 			     struct key *keyring,
500 			     struct key *authkey)
501 {
502 	struct key_preparsed_payload prep;
503 	struct assoc_array_edit *edit = NULL;
504 	int ret;
505 
506 	memset(&prep, 0, sizeof(prep));
507 	prep.orig_description = key->description;
508 	prep.data = data;
509 	prep.datalen = datalen;
510 	prep.quotalen = key->type->def_datalen;
511 	prep.expiry = TIME64_MAX;
512 	if (key->type->preparse) {
513 		ret = key->type->preparse(&prep);
514 		if (ret < 0)
515 			goto error;
516 	}
517 
518 	if (keyring) {
519 		ret = __key_link_lock(keyring, &key->index_key);
520 		if (ret < 0)
521 			goto error;
522 
523 		ret = __key_link_begin(keyring, &key->index_key, &edit);
524 		if (ret < 0)
525 			goto error_link_end;
526 
527 		if (keyring->restrict_link && keyring->restrict_link->check) {
528 			struct key_restriction *keyres = keyring->restrict_link;
529 
530 			ret = keyres->check(keyring, key->type, &prep.payload,
531 					    keyres->key);
532 			if (ret < 0)
533 				goto error_link_end;
534 		}
535 	}
536 
537 	ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
538 
539 error_link_end:
540 	if (keyring)
541 		__key_link_end(keyring, &key->index_key, edit);
542 
543 error:
544 	if (key->type->preparse)
545 		key->type->free_preparse(&prep);
546 	return ret;
547 }
548 
549 EXPORT_SYMBOL(key_instantiate_and_link);
550 
551 /**
552  * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
553  * @key: The key to instantiate.
554  * @timeout: The timeout on the negative key.
555  * @error: The error to return when the key is hit.
556  * @keyring: Keyring to create a link in on success (or NULL).
557  * @authkey: The authorisation token permitting instantiation.
558  *
559  * Negatively instantiate a key that's in the uninstantiated state and, if
560  * successful, set its timeout and stored error and link it in to the
561  * destination keyring if one is supplied.  The key and any links to the key
562  * will be automatically garbage collected after the timeout expires.
563  *
564  * Negative keys are used to rate limit repeated request_key() calls by causing
565  * them to return the stored error code (typically ENOKEY) until the negative
566  * key expires.
567  *
568  * If successful, 0 is returned, the authorisation token is revoked and anyone
569  * waiting for the key is woken up.  If the key was already instantiated,
570  * -EBUSY will be returned.
571  */
572 int key_reject_and_link(struct key *key,
573 			unsigned timeout,
574 			unsigned error,
575 			struct key *keyring,
576 			struct key *authkey)
577 {
578 	struct assoc_array_edit *edit = NULL;
579 	int ret, awaken, link_ret = 0;
580 
581 	key_check(key);
582 	key_check(keyring);
583 
584 	awaken = 0;
585 	ret = -EBUSY;
586 
587 	if (keyring) {
588 		if (keyring->restrict_link)
589 			return -EPERM;
590 
591 		link_ret = __key_link_lock(keyring, &key->index_key);
592 		if (link_ret == 0) {
593 			link_ret = __key_link_begin(keyring, &key->index_key, &edit);
594 			if (link_ret < 0)
595 				__key_link_end(keyring, &key->index_key, edit);
596 		}
597 	}
598 
599 	mutex_lock(&key_construction_mutex);
600 
601 	/* can't instantiate twice */
602 	if (key->state == KEY_IS_UNINSTANTIATED) {
603 		/* mark the key as being negatively instantiated */
604 		atomic_inc(&key->user->nikeys);
605 		mark_key_instantiated(key, -error);
606 		notify_key(key, NOTIFY_KEY_INSTANTIATED, -error);
607 		key->expiry = ktime_get_real_seconds() + timeout;
608 		key_schedule_gc(key->expiry + key_gc_delay);
609 
610 		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
611 			awaken = 1;
612 
613 		ret = 0;
614 
615 		/* and link it into the destination keyring */
616 		if (keyring && link_ret == 0)
617 			__key_link(keyring, key, &edit);
618 
619 		/* disable the authorisation key */
620 		if (authkey)
621 			key_invalidate(authkey);
622 	}
623 
624 	mutex_unlock(&key_construction_mutex);
625 
626 	if (keyring && link_ret == 0)
627 		__key_link_end(keyring, &key->index_key, edit);
628 
629 	/* wake up anyone waiting for a key to be constructed */
630 	if (awaken)
631 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
632 
633 	return ret == 0 ? link_ret : ret;
634 }
635 EXPORT_SYMBOL(key_reject_and_link);
636 
637 /**
638  * key_put - Discard a reference to a key.
639  * @key: The key to discard a reference from.
640  *
641  * Discard a reference to a key, and when all the references are gone, we
642  * schedule the cleanup task to come and pull it out of the tree in process
643  * context at some later time.
644  */
645 void key_put(struct key *key)
646 {
647 	if (key) {
648 		key_check(key);
649 
650 		if (refcount_dec_and_test(&key->usage))
651 			schedule_work(&key_gc_work);
652 	}
653 }
654 EXPORT_SYMBOL(key_put);
655 
656 /*
657  * Find a key by its serial number.
658  */
659 struct key *key_lookup(key_serial_t id)
660 {
661 	struct rb_node *n;
662 	struct key *key;
663 
664 	spin_lock(&key_serial_lock);
665 
666 	/* search the tree for the specified key */
667 	n = key_serial_tree.rb_node;
668 	while (n) {
669 		key = rb_entry(n, struct key, serial_node);
670 
671 		if (id < key->serial)
672 			n = n->rb_left;
673 		else if (id > key->serial)
674 			n = n->rb_right;
675 		else
676 			goto found;
677 	}
678 
679 not_found:
680 	key = ERR_PTR(-ENOKEY);
681 	goto error;
682 
683 found:
684 	/* A key is allowed to be looked up only if someone still owns a
685 	 * reference to it - otherwise it's awaiting the gc.
686 	 */
687 	if (!refcount_inc_not_zero(&key->usage))
688 		goto not_found;
689 
690 error:
691 	spin_unlock(&key_serial_lock);
692 	return key;
693 }
694 
695 /*
696  * Find and lock the specified key type against removal.
697  *
698  * We return with the sem read-locked if successful.  If the type wasn't
699  * available -ENOKEY is returned instead.
700  */
701 struct key_type *key_type_lookup(const char *type)
702 {
703 	struct key_type *ktype;
704 
705 	down_read(&key_types_sem);
706 
707 	/* look up the key type to see if it's one of the registered kernel
708 	 * types */
709 	list_for_each_entry(ktype, &key_types_list, link) {
710 		if (strcmp(ktype->name, type) == 0)
711 			goto found_kernel_type;
712 	}
713 
714 	up_read(&key_types_sem);
715 	ktype = ERR_PTR(-ENOKEY);
716 
717 found_kernel_type:
718 	return ktype;
719 }
720 
721 void key_set_timeout(struct key *key, unsigned timeout)
722 {
723 	time64_t expiry = 0;
724 
725 	/* make the changes with the locks held to prevent races */
726 	down_write(&key->sem);
727 
728 	if (timeout > 0)
729 		expiry = ktime_get_real_seconds() + timeout;
730 
731 	key->expiry = expiry;
732 	key_schedule_gc(key->expiry + key_gc_delay);
733 
734 	up_write(&key->sem);
735 }
736 EXPORT_SYMBOL_GPL(key_set_timeout);
737 
738 /*
739  * Unlock a key type locked by key_type_lookup().
740  */
741 void key_type_put(struct key_type *ktype)
742 {
743 	up_read(&key_types_sem);
744 }
745 
746 /*
747  * Attempt to update an existing key.
748  *
749  * The key is given to us with an incremented refcount that we need to discard
750  * if we get an error.
751  */
752 static inline key_ref_t __key_update(key_ref_t key_ref,
753 				     struct key_preparsed_payload *prep)
754 {
755 	struct key *key = key_ref_to_ptr(key_ref);
756 	int ret;
757 
758 	/* need write permission on the key to update it */
759 	ret = key_permission(key_ref, KEY_NEED_WRITE);
760 	if (ret < 0)
761 		goto error;
762 
763 	ret = -EEXIST;
764 	if (!key->type->update)
765 		goto error;
766 
767 	down_write(&key->sem);
768 
769 	ret = key->type->update(key, prep);
770 	if (ret == 0) {
771 		/* Updating a negative key positively instantiates it */
772 		mark_key_instantiated(key, 0);
773 		notify_key(key, NOTIFY_KEY_UPDATED, 0);
774 	}
775 
776 	up_write(&key->sem);
777 
778 	if (ret < 0)
779 		goto error;
780 out:
781 	return key_ref;
782 
783 error:
784 	key_put(key);
785 	key_ref = ERR_PTR(ret);
786 	goto out;
787 }
788 
789 /**
790  * key_create_or_update - Update or create and instantiate a key.
791  * @keyring_ref: A pointer to the destination keyring with possession flag.
792  * @type: The type of key.
793  * @description: The searchable description for the key.
794  * @payload: The data to use to instantiate or update the key.
795  * @plen: The length of @payload.
796  * @perm: The permissions mask for a new key.
797  * @flags: The quota flags for a new key.
798  *
799  * Search the destination keyring for a key of the same description and if one
800  * is found, update it, otherwise create and instantiate a new one and create a
801  * link to it from that keyring.
802  *
803  * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
804  * concocted.
805  *
806  * Returns a pointer to the new key if successful, -ENODEV if the key type
807  * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
808  * caller isn't permitted to modify the keyring or the LSM did not permit
809  * creation of the key.
810  *
811  * On success, the possession flag from the keyring ref will be tacked on to
812  * the key ref before it is returned.
813  */
814 key_ref_t key_create_or_update(key_ref_t keyring_ref,
815 			       const char *type,
816 			       const char *description,
817 			       const void *payload,
818 			       size_t plen,
819 			       key_perm_t perm,
820 			       unsigned long flags)
821 {
822 	struct keyring_index_key index_key = {
823 		.description	= description,
824 	};
825 	struct key_preparsed_payload prep;
826 	struct assoc_array_edit *edit = NULL;
827 	const struct cred *cred = current_cred();
828 	struct key *keyring, *key = NULL;
829 	key_ref_t key_ref;
830 	int ret;
831 	struct key_restriction *restrict_link = NULL;
832 
833 	/* look up the key type to see if it's one of the registered kernel
834 	 * types */
835 	index_key.type = key_type_lookup(type);
836 	if (IS_ERR(index_key.type)) {
837 		key_ref = ERR_PTR(-ENODEV);
838 		goto error;
839 	}
840 
841 	key_ref = ERR_PTR(-EINVAL);
842 	if (!index_key.type->instantiate ||
843 	    (!index_key.description && !index_key.type->preparse))
844 		goto error_put_type;
845 
846 	keyring = key_ref_to_ptr(keyring_ref);
847 
848 	key_check(keyring);
849 
850 	if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
851 		restrict_link = keyring->restrict_link;
852 
853 	key_ref = ERR_PTR(-ENOTDIR);
854 	if (keyring->type != &key_type_keyring)
855 		goto error_put_type;
856 
857 	memset(&prep, 0, sizeof(prep));
858 	prep.orig_description = description;
859 	prep.data = payload;
860 	prep.datalen = plen;
861 	prep.quotalen = index_key.type->def_datalen;
862 	prep.expiry = TIME64_MAX;
863 	if (index_key.type->preparse) {
864 		ret = index_key.type->preparse(&prep);
865 		if (ret < 0) {
866 			key_ref = ERR_PTR(ret);
867 			goto error_free_prep;
868 		}
869 		if (!index_key.description)
870 			index_key.description = prep.description;
871 		key_ref = ERR_PTR(-EINVAL);
872 		if (!index_key.description)
873 			goto error_free_prep;
874 	}
875 	index_key.desc_len = strlen(index_key.description);
876 	key_set_index_key(&index_key);
877 
878 	ret = __key_link_lock(keyring, &index_key);
879 	if (ret < 0) {
880 		key_ref = ERR_PTR(ret);
881 		goto error_free_prep;
882 	}
883 
884 	ret = __key_link_begin(keyring, &index_key, &edit);
885 	if (ret < 0) {
886 		key_ref = ERR_PTR(ret);
887 		goto error_link_end;
888 	}
889 
890 	if (restrict_link && restrict_link->check) {
891 		ret = restrict_link->check(keyring, index_key.type,
892 					   &prep.payload, restrict_link->key);
893 		if (ret < 0) {
894 			key_ref = ERR_PTR(ret);
895 			goto error_link_end;
896 		}
897 	}
898 
899 	/* if we're going to allocate a new key, we're going to have
900 	 * to modify the keyring */
901 	ret = key_permission(keyring_ref, KEY_NEED_WRITE);
902 	if (ret < 0) {
903 		key_ref = ERR_PTR(ret);
904 		goto error_link_end;
905 	}
906 
907 	/* if it's possible to update this type of key, search for an existing
908 	 * key of the same type and description in the destination keyring and
909 	 * update that instead if possible
910 	 */
911 	if (index_key.type->update) {
912 		key_ref = find_key_to_update(keyring_ref, &index_key);
913 		if (key_ref)
914 			goto found_matching_key;
915 	}
916 
917 	/* if the client doesn't provide, decide on the permissions we want */
918 	if (perm == KEY_PERM_UNDEF) {
919 		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
920 		perm |= KEY_USR_VIEW;
921 
922 		if (index_key.type->read)
923 			perm |= KEY_POS_READ;
924 
925 		if (index_key.type == &key_type_keyring ||
926 		    index_key.type->update)
927 			perm |= KEY_POS_WRITE;
928 	}
929 
930 	/* allocate a new key */
931 	key = key_alloc(index_key.type, index_key.description,
932 			cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
933 	if (IS_ERR(key)) {
934 		key_ref = ERR_CAST(key);
935 		goto error_link_end;
936 	}
937 
938 	/* instantiate it and link it into the target keyring */
939 	ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
940 	if (ret < 0) {
941 		key_put(key);
942 		key_ref = ERR_PTR(ret);
943 		goto error_link_end;
944 	}
945 
946 	ima_post_key_create_or_update(keyring, key, payload, plen,
947 				      flags, true);
948 
949 	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
950 
951 error_link_end:
952 	__key_link_end(keyring, &index_key, edit);
953 error_free_prep:
954 	if (index_key.type->preparse)
955 		index_key.type->free_preparse(&prep);
956 error_put_type:
957 	key_type_put(index_key.type);
958 error:
959 	return key_ref;
960 
961  found_matching_key:
962 	/* we found a matching key, so we're going to try to update it
963 	 * - we can drop the locks first as we have the key pinned
964 	 */
965 	__key_link_end(keyring, &index_key, edit);
966 
967 	key = key_ref_to_ptr(key_ref);
968 	if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) {
969 		ret = wait_for_key_construction(key, true);
970 		if (ret < 0) {
971 			key_ref_put(key_ref);
972 			key_ref = ERR_PTR(ret);
973 			goto error_free_prep;
974 		}
975 	}
976 
977 	key_ref = __key_update(key_ref, &prep);
978 
979 	if (!IS_ERR(key_ref))
980 		ima_post_key_create_or_update(keyring, key,
981 					      payload, plen,
982 					      flags, false);
983 
984 	goto error_free_prep;
985 }
986 EXPORT_SYMBOL(key_create_or_update);
987 
988 /**
989  * key_update - Update a key's contents.
990  * @key_ref: The pointer (plus possession flag) to the key.
991  * @payload: The data to be used to update the key.
992  * @plen: The length of @payload.
993  *
994  * Attempt to update the contents of a key with the given payload data.  The
995  * caller must be granted Write permission on the key.  Negative keys can be
996  * instantiated by this method.
997  *
998  * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
999  * type does not support updating.  The key type may return other errors.
1000  */
1001 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
1002 {
1003 	struct key_preparsed_payload prep;
1004 	struct key *key = key_ref_to_ptr(key_ref);
1005 	int ret;
1006 
1007 	key_check(key);
1008 
1009 	/* the key must be writable */
1010 	ret = key_permission(key_ref, KEY_NEED_WRITE);
1011 	if (ret < 0)
1012 		return ret;
1013 
1014 	/* attempt to update it if supported */
1015 	if (!key->type->update)
1016 		return -EOPNOTSUPP;
1017 
1018 	memset(&prep, 0, sizeof(prep));
1019 	prep.data = payload;
1020 	prep.datalen = plen;
1021 	prep.quotalen = key->type->def_datalen;
1022 	prep.expiry = TIME64_MAX;
1023 	if (key->type->preparse) {
1024 		ret = key->type->preparse(&prep);
1025 		if (ret < 0)
1026 			goto error;
1027 	}
1028 
1029 	down_write(&key->sem);
1030 
1031 	ret = key->type->update(key, &prep);
1032 	if (ret == 0) {
1033 		/* Updating a negative key positively instantiates it */
1034 		mark_key_instantiated(key, 0);
1035 		notify_key(key, NOTIFY_KEY_UPDATED, 0);
1036 	}
1037 
1038 	up_write(&key->sem);
1039 
1040 error:
1041 	if (key->type->preparse)
1042 		key->type->free_preparse(&prep);
1043 	return ret;
1044 }
1045 EXPORT_SYMBOL(key_update);
1046 
1047 /**
1048  * key_revoke - Revoke a key.
1049  * @key: The key to be revoked.
1050  *
1051  * Mark a key as being revoked and ask the type to free up its resources.  The
1052  * revocation timeout is set and the key and all its links will be
1053  * automatically garbage collected after key_gc_delay amount of time if they
1054  * are not manually dealt with first.
1055  */
1056 void key_revoke(struct key *key)
1057 {
1058 	time64_t time;
1059 
1060 	key_check(key);
1061 
1062 	/* make sure no one's trying to change or use the key when we mark it
1063 	 * - we tell lockdep that we might nest because we might be revoking an
1064 	 *   authorisation key whilst holding the sem on a key we've just
1065 	 *   instantiated
1066 	 */
1067 	down_write_nested(&key->sem, 1);
1068 	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags)) {
1069 		notify_key(key, NOTIFY_KEY_REVOKED, 0);
1070 		if (key->type->revoke)
1071 			key->type->revoke(key);
1072 
1073 		/* set the death time to no more than the expiry time */
1074 		time = ktime_get_real_seconds();
1075 		if (key->revoked_at == 0 || key->revoked_at > time) {
1076 			key->revoked_at = time;
1077 			key_schedule_gc(key->revoked_at + key_gc_delay);
1078 		}
1079 	}
1080 
1081 	up_write(&key->sem);
1082 }
1083 EXPORT_SYMBOL(key_revoke);
1084 
1085 /**
1086  * key_invalidate - Invalidate a key.
1087  * @key: The key to be invalidated.
1088  *
1089  * Mark a key as being invalidated and have it cleaned up immediately.  The key
1090  * is ignored by all searches and other operations from this point.
1091  */
1092 void key_invalidate(struct key *key)
1093 {
1094 	kenter("%d", key_serial(key));
1095 
1096 	key_check(key);
1097 
1098 	if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1099 		down_write_nested(&key->sem, 1);
1100 		if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1101 			notify_key(key, NOTIFY_KEY_INVALIDATED, 0);
1102 			key_schedule_gc_links();
1103 		}
1104 		up_write(&key->sem);
1105 	}
1106 }
1107 EXPORT_SYMBOL(key_invalidate);
1108 
1109 /**
1110  * generic_key_instantiate - Simple instantiation of a key from preparsed data
1111  * @key: The key to be instantiated
1112  * @prep: The preparsed data to load.
1113  *
1114  * Instantiate a key from preparsed data.  We assume we can just copy the data
1115  * in directly and clear the old pointers.
1116  *
1117  * This can be pointed to directly by the key type instantiate op pointer.
1118  */
1119 int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1120 {
1121 	int ret;
1122 
1123 	pr_devel("==>%s()\n", __func__);
1124 
1125 	ret = key_payload_reserve(key, prep->quotalen);
1126 	if (ret == 0) {
1127 		rcu_assign_keypointer(key, prep->payload.data[0]);
1128 		key->payload.data[1] = prep->payload.data[1];
1129 		key->payload.data[2] = prep->payload.data[2];
1130 		key->payload.data[3] = prep->payload.data[3];
1131 		prep->payload.data[0] = NULL;
1132 		prep->payload.data[1] = NULL;
1133 		prep->payload.data[2] = NULL;
1134 		prep->payload.data[3] = NULL;
1135 	}
1136 	pr_devel("<==%s() = %d\n", __func__, ret);
1137 	return ret;
1138 }
1139 EXPORT_SYMBOL(generic_key_instantiate);
1140 
1141 /**
1142  * register_key_type - Register a type of key.
1143  * @ktype: The new key type.
1144  *
1145  * Register a new key type.
1146  *
1147  * Returns 0 on success or -EEXIST if a type of this name already exists.
1148  */
1149 int register_key_type(struct key_type *ktype)
1150 {
1151 	struct key_type *p;
1152 	int ret;
1153 
1154 	memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1155 
1156 	ret = -EEXIST;
1157 	down_write(&key_types_sem);
1158 
1159 	/* disallow key types with the same name */
1160 	list_for_each_entry(p, &key_types_list, link) {
1161 		if (strcmp(p->name, ktype->name) == 0)
1162 			goto out;
1163 	}
1164 
1165 	/* store the type */
1166 	list_add(&ktype->link, &key_types_list);
1167 
1168 	pr_notice("Key type %s registered\n", ktype->name);
1169 	ret = 0;
1170 
1171 out:
1172 	up_write(&key_types_sem);
1173 	return ret;
1174 }
1175 EXPORT_SYMBOL(register_key_type);
1176 
1177 /**
1178  * unregister_key_type - Unregister a type of key.
1179  * @ktype: The key type.
1180  *
1181  * Unregister a key type and mark all the extant keys of this type as dead.
1182  * Those keys of this type are then destroyed to get rid of their payloads and
1183  * they and their links will be garbage collected as soon as possible.
1184  */
1185 void unregister_key_type(struct key_type *ktype)
1186 {
1187 	down_write(&key_types_sem);
1188 	list_del_init(&ktype->link);
1189 	downgrade_write(&key_types_sem);
1190 	key_gc_keytype(ktype);
1191 	pr_notice("Key type %s unregistered\n", ktype->name);
1192 	up_read(&key_types_sem);
1193 }
1194 EXPORT_SYMBOL(unregister_key_type);
1195 
1196 /*
1197  * Initialise the key management state.
1198  */
1199 void __init key_init(void)
1200 {
1201 	/* allocate a slab in which we can store keys */
1202 	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1203 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1204 
1205 	/* add the special key types */
1206 	list_add_tail(&key_type_keyring.link, &key_types_list);
1207 	list_add_tail(&key_type_dead.link, &key_types_list);
1208 	list_add_tail(&key_type_user.link, &key_types_list);
1209 	list_add_tail(&key_type_logon.link, &key_types_list);
1210 
1211 	/* record the root user tracking */
1212 	rb_link_node(&root_key_user.node,
1213 		     NULL,
1214 		     &key_user_tree.rb_node);
1215 
1216 	rb_insert_color(&root_key_user.node,
1217 			&key_user_tree);
1218 }
1219