xref: /openbmc/linux/security/keys/key.c (revision 82ced6fd)
1 /* Basic authentication token and access key management
2  *
3  * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/poison.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/security.h>
18 #include <linux/workqueue.h>
19 #include <linux/random.h>
20 #include <linux/err.h>
21 #include <linux/user_namespace.h>
22 #include "internal.h"
23 
24 static struct kmem_cache	*key_jar;
25 struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
26 DEFINE_SPINLOCK(key_serial_lock);
27 
28 struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
29 DEFINE_SPINLOCK(key_user_lock);
30 
31 unsigned int key_quota_root_maxkeys = 200;	/* root's key count quota */
32 unsigned int key_quota_root_maxbytes = 20000;	/* root's key space quota */
33 unsigned int key_quota_maxkeys = 200;		/* general key count quota */
34 unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
35 
36 static LIST_HEAD(key_types_list);
37 static DECLARE_RWSEM(key_types_sem);
38 
39 static void key_cleanup(struct work_struct *work);
40 static DECLARE_WORK(key_cleanup_task, key_cleanup);
41 
42 /* we serialise key instantiation and link */
43 DEFINE_MUTEX(key_construction_mutex);
44 
45 /* any key who's type gets unegistered will be re-typed to this */
46 static struct key_type key_type_dead = {
47 	.name		= "dead",
48 };
49 
50 #ifdef KEY_DEBUGGING
51 void __key_check(const struct key *key)
52 {
53 	printk("__key_check: key %p {%08x} should be {%08x}\n",
54 	       key, key->magic, KEY_DEBUG_MAGIC);
55 	BUG();
56 }
57 #endif
58 
59 /*****************************************************************************/
60 /*
61  * get the key quota record for a user, allocating a new record if one doesn't
62  * already exist
63  */
64 struct key_user *key_user_lookup(uid_t uid, struct user_namespace *user_ns)
65 {
66 	struct key_user *candidate = NULL, *user;
67 	struct rb_node *parent = NULL;
68 	struct rb_node **p;
69 
70  try_again:
71 	p = &key_user_tree.rb_node;
72 	spin_lock(&key_user_lock);
73 
74 	/* search the tree for a user record with a matching UID */
75 	while (*p) {
76 		parent = *p;
77 		user = rb_entry(parent, struct key_user, node);
78 
79 		if (uid < user->uid)
80 			p = &(*p)->rb_left;
81 		else if (uid > user->uid)
82 			p = &(*p)->rb_right;
83 		else if (user_ns < user->user_ns)
84 			p = &(*p)->rb_left;
85 		else if (user_ns > user->user_ns)
86 			p = &(*p)->rb_right;
87 		else
88 			goto found;
89 	}
90 
91 	/* if we get here, we failed to find a match in the tree */
92 	if (!candidate) {
93 		/* allocate a candidate user record if we don't already have
94 		 * one */
95 		spin_unlock(&key_user_lock);
96 
97 		user = NULL;
98 		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
99 		if (unlikely(!candidate))
100 			goto out;
101 
102 		/* the allocation may have scheduled, so we need to repeat the
103 		 * search lest someone else added the record whilst we were
104 		 * asleep */
105 		goto try_again;
106 	}
107 
108 	/* if we get here, then the user record still hadn't appeared on the
109 	 * second pass - so we use the candidate record */
110 	atomic_set(&candidate->usage, 1);
111 	atomic_set(&candidate->nkeys, 0);
112 	atomic_set(&candidate->nikeys, 0);
113 	candidate->uid = uid;
114 	candidate->user_ns = get_user_ns(user_ns);
115 	candidate->qnkeys = 0;
116 	candidate->qnbytes = 0;
117 	spin_lock_init(&candidate->lock);
118 	mutex_init(&candidate->cons_lock);
119 
120 	rb_link_node(&candidate->node, parent, p);
121 	rb_insert_color(&candidate->node, &key_user_tree);
122 	spin_unlock(&key_user_lock);
123 	user = candidate;
124 	goto out;
125 
126 	/* okay - we found a user record for this UID */
127  found:
128 	atomic_inc(&user->usage);
129 	spin_unlock(&key_user_lock);
130 	kfree(candidate);
131  out:
132 	return user;
133 
134 } /* end key_user_lookup() */
135 
136 /*****************************************************************************/
137 /*
138  * dispose of a user structure
139  */
140 void key_user_put(struct key_user *user)
141 {
142 	if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
143 		rb_erase(&user->node, &key_user_tree);
144 		spin_unlock(&key_user_lock);
145 		put_user_ns(user->user_ns);
146 
147 		kfree(user);
148 	}
149 
150 } /* end key_user_put() */
151 
152 /*****************************************************************************/
153 /*
154  * assign a key the next unique serial number
155  * - these are assigned randomly to avoid security issues through covert
156  *   channel problems
157  */
158 static inline void key_alloc_serial(struct key *key)
159 {
160 	struct rb_node *parent, **p;
161 	struct key *xkey;
162 
163 	/* propose a random serial number and look for a hole for it in the
164 	 * serial number tree */
165 	do {
166 		get_random_bytes(&key->serial, sizeof(key->serial));
167 
168 		key->serial >>= 1; /* negative numbers are not permitted */
169 	} while (key->serial < 3);
170 
171 	spin_lock(&key_serial_lock);
172 
173 attempt_insertion:
174 	parent = NULL;
175 	p = &key_serial_tree.rb_node;
176 
177 	while (*p) {
178 		parent = *p;
179 		xkey = rb_entry(parent, struct key, serial_node);
180 
181 		if (key->serial < xkey->serial)
182 			p = &(*p)->rb_left;
183 		else if (key->serial > xkey->serial)
184 			p = &(*p)->rb_right;
185 		else
186 			goto serial_exists;
187 	}
188 
189 	/* we've found a suitable hole - arrange for this key to occupy it */
190 	rb_link_node(&key->serial_node, parent, p);
191 	rb_insert_color(&key->serial_node, &key_serial_tree);
192 
193 	spin_unlock(&key_serial_lock);
194 	return;
195 
196 	/* we found a key with the proposed serial number - walk the tree from
197 	 * that point looking for the next unused serial number */
198 serial_exists:
199 	for (;;) {
200 		key->serial++;
201 		if (key->serial < 3) {
202 			key->serial = 3;
203 			goto attempt_insertion;
204 		}
205 
206 		parent = rb_next(parent);
207 		if (!parent)
208 			goto attempt_insertion;
209 
210 		xkey = rb_entry(parent, struct key, serial_node);
211 		if (key->serial < xkey->serial)
212 			goto attempt_insertion;
213 	}
214 
215 } /* end key_alloc_serial() */
216 
217 /*****************************************************************************/
218 /*
219  * allocate a key of the specified type
220  * - update the user's quota to reflect the existence of the key
221  * - called from a key-type operation with key_types_sem read-locked by
222  *   key_create_or_update()
223  *   - this prevents unregistration of the key type
224  * - upon return the key is as yet uninstantiated; the caller needs to either
225  *   instantiate the key or discard it before returning
226  */
227 struct key *key_alloc(struct key_type *type, const char *desc,
228 		      uid_t uid, gid_t gid, const struct cred *cred,
229 		      key_perm_t perm, unsigned long flags)
230 {
231 	struct key_user *user = NULL;
232 	struct key *key;
233 	size_t desclen, quotalen;
234 	int ret;
235 
236 	key = ERR_PTR(-EINVAL);
237 	if (!desc || !*desc)
238 		goto error;
239 
240 	desclen = strlen(desc) + 1;
241 	quotalen = desclen + type->def_datalen;
242 
243 	/* get hold of the key tracking for this user */
244 	user = key_user_lookup(uid, cred->user->user_ns);
245 	if (!user)
246 		goto no_memory_1;
247 
248 	/* check that the user's quota permits allocation of another key and
249 	 * its description */
250 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
251 		unsigned maxkeys = (uid == 0) ?
252 			key_quota_root_maxkeys : key_quota_maxkeys;
253 		unsigned maxbytes = (uid == 0) ?
254 			key_quota_root_maxbytes : key_quota_maxbytes;
255 
256 		spin_lock(&user->lock);
257 		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
258 			if (user->qnkeys + 1 >= maxkeys ||
259 			    user->qnbytes + quotalen >= maxbytes ||
260 			    user->qnbytes + quotalen < user->qnbytes)
261 				goto no_quota;
262 		}
263 
264 		user->qnkeys++;
265 		user->qnbytes += quotalen;
266 		spin_unlock(&user->lock);
267 	}
268 
269 	/* allocate and initialise the key and its description */
270 	key = kmem_cache_alloc(key_jar, GFP_KERNEL);
271 	if (!key)
272 		goto no_memory_2;
273 
274 	if (desc) {
275 		key->description = kmemdup(desc, desclen, GFP_KERNEL);
276 		if (!key->description)
277 			goto no_memory_3;
278 	}
279 
280 	atomic_set(&key->usage, 1);
281 	init_rwsem(&key->sem);
282 	key->type = type;
283 	key->user = user;
284 	key->quotalen = quotalen;
285 	key->datalen = type->def_datalen;
286 	key->uid = uid;
287 	key->gid = gid;
288 	key->perm = perm;
289 	key->flags = 0;
290 	key->expiry = 0;
291 	key->payload.data = NULL;
292 	key->security = NULL;
293 
294 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
295 		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
296 
297 	memset(&key->type_data, 0, sizeof(key->type_data));
298 
299 #ifdef KEY_DEBUGGING
300 	key->magic = KEY_DEBUG_MAGIC;
301 #endif
302 
303 	/* let the security module know about the key */
304 	ret = security_key_alloc(key, cred, flags);
305 	if (ret < 0)
306 		goto security_error;
307 
308 	/* publish the key by giving it a serial number */
309 	atomic_inc(&user->nkeys);
310 	key_alloc_serial(key);
311 
312 error:
313 	return key;
314 
315 security_error:
316 	kfree(key->description);
317 	kmem_cache_free(key_jar, key);
318 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
319 		spin_lock(&user->lock);
320 		user->qnkeys--;
321 		user->qnbytes -= quotalen;
322 		spin_unlock(&user->lock);
323 	}
324 	key_user_put(user);
325 	key = ERR_PTR(ret);
326 	goto error;
327 
328 no_memory_3:
329 	kmem_cache_free(key_jar, key);
330 no_memory_2:
331 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
332 		spin_lock(&user->lock);
333 		user->qnkeys--;
334 		user->qnbytes -= quotalen;
335 		spin_unlock(&user->lock);
336 	}
337 	key_user_put(user);
338 no_memory_1:
339 	key = ERR_PTR(-ENOMEM);
340 	goto error;
341 
342 no_quota:
343 	spin_unlock(&user->lock);
344 	key_user_put(user);
345 	key = ERR_PTR(-EDQUOT);
346 	goto error;
347 
348 } /* end key_alloc() */
349 
350 EXPORT_SYMBOL(key_alloc);
351 
352 /*****************************************************************************/
353 /*
354  * reserve an amount of quota for the key's payload
355  */
356 int key_payload_reserve(struct key *key, size_t datalen)
357 {
358 	int delta = (int) datalen - key->datalen;
359 	int ret = 0;
360 
361 	key_check(key);
362 
363 	/* contemplate the quota adjustment */
364 	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
365 		unsigned maxbytes = (key->user->uid == 0) ?
366 			key_quota_root_maxbytes : key_quota_maxbytes;
367 
368 		spin_lock(&key->user->lock);
369 
370 		if (delta > 0 &&
371 		    (key->user->qnbytes + delta >= maxbytes ||
372 		     key->user->qnbytes + delta < key->user->qnbytes)) {
373 			ret = -EDQUOT;
374 		}
375 		else {
376 			key->user->qnbytes += delta;
377 			key->quotalen += delta;
378 		}
379 		spin_unlock(&key->user->lock);
380 	}
381 
382 	/* change the recorded data length if that didn't generate an error */
383 	if (ret == 0)
384 		key->datalen = datalen;
385 
386 	return ret;
387 
388 } /* end key_payload_reserve() */
389 
390 EXPORT_SYMBOL(key_payload_reserve);
391 
392 /*****************************************************************************/
393 /*
394  * instantiate a key and link it into the target keyring atomically
395  * - called with the target keyring's semaphore writelocked
396  */
397 static int __key_instantiate_and_link(struct key *key,
398 				      const void *data,
399 				      size_t datalen,
400 				      struct key *keyring,
401 				      struct key *authkey)
402 {
403 	int ret, awaken;
404 
405 	key_check(key);
406 	key_check(keyring);
407 
408 	awaken = 0;
409 	ret = -EBUSY;
410 
411 	mutex_lock(&key_construction_mutex);
412 
413 	/* can't instantiate twice */
414 	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
415 		/* instantiate the key */
416 		ret = key->type->instantiate(key, data, datalen);
417 
418 		if (ret == 0) {
419 			/* mark the key as being instantiated */
420 			atomic_inc(&key->user->nikeys);
421 			set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
422 
423 			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
424 				awaken = 1;
425 
426 			/* and link it into the destination keyring */
427 			if (keyring)
428 				ret = __key_link(keyring, key);
429 
430 			/* disable the authorisation key */
431 			if (authkey)
432 				key_revoke(authkey);
433 		}
434 	}
435 
436 	mutex_unlock(&key_construction_mutex);
437 
438 	/* wake up anyone waiting for a key to be constructed */
439 	if (awaken)
440 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
441 
442 	return ret;
443 
444 } /* end __key_instantiate_and_link() */
445 
446 /*****************************************************************************/
447 /*
448  * instantiate a key and link it into the target keyring atomically
449  */
450 int key_instantiate_and_link(struct key *key,
451 			     const void *data,
452 			     size_t datalen,
453 			     struct key *keyring,
454 			     struct key *authkey)
455 {
456 	int ret;
457 
458 	if (keyring)
459 		down_write(&keyring->sem);
460 
461 	ret = __key_instantiate_and_link(key, data, datalen, keyring, authkey);
462 
463 	if (keyring)
464 		up_write(&keyring->sem);
465 
466 	return ret;
467 
468 } /* end key_instantiate_and_link() */
469 
470 EXPORT_SYMBOL(key_instantiate_and_link);
471 
472 /*****************************************************************************/
473 /*
474  * negatively instantiate a key and link it into the target keyring atomically
475  */
476 int key_negate_and_link(struct key *key,
477 			unsigned timeout,
478 			struct key *keyring,
479 			struct key *authkey)
480 {
481 	struct timespec now;
482 	int ret, awaken;
483 
484 	key_check(key);
485 	key_check(keyring);
486 
487 	awaken = 0;
488 	ret = -EBUSY;
489 
490 	if (keyring)
491 		down_write(&keyring->sem);
492 
493 	mutex_lock(&key_construction_mutex);
494 
495 	/* can't instantiate twice */
496 	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
497 		/* mark the key as being negatively instantiated */
498 		atomic_inc(&key->user->nikeys);
499 		set_bit(KEY_FLAG_NEGATIVE, &key->flags);
500 		set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
501 		now = current_kernel_time();
502 		key->expiry = now.tv_sec + timeout;
503 
504 		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
505 			awaken = 1;
506 
507 		ret = 0;
508 
509 		/* and link it into the destination keyring */
510 		if (keyring)
511 			ret = __key_link(keyring, key);
512 
513 		/* disable the authorisation key */
514 		if (authkey)
515 			key_revoke(authkey);
516 	}
517 
518 	mutex_unlock(&key_construction_mutex);
519 
520 	if (keyring)
521 		up_write(&keyring->sem);
522 
523 	/* wake up anyone waiting for a key to be constructed */
524 	if (awaken)
525 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
526 
527 	return ret;
528 
529 } /* end key_negate_and_link() */
530 
531 EXPORT_SYMBOL(key_negate_and_link);
532 
533 /*****************************************************************************/
534 /*
535  * do cleaning up in process context so that we don't have to disable
536  * interrupts all over the place
537  */
538 static void key_cleanup(struct work_struct *work)
539 {
540 	struct rb_node *_n;
541 	struct key *key;
542 
543  go_again:
544 	/* look for a dead key in the tree */
545 	spin_lock(&key_serial_lock);
546 
547 	for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
548 		key = rb_entry(_n, struct key, serial_node);
549 
550 		if (atomic_read(&key->usage) == 0)
551 			goto found_dead_key;
552 	}
553 
554 	spin_unlock(&key_serial_lock);
555 	return;
556 
557  found_dead_key:
558 	/* we found a dead key - once we've removed it from the tree, we can
559 	 * drop the lock */
560 	rb_erase(&key->serial_node, &key_serial_tree);
561 	spin_unlock(&key_serial_lock);
562 
563 	key_check(key);
564 
565 	security_key_free(key);
566 
567 	/* deal with the user's key tracking and quota */
568 	if (test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
569 		spin_lock(&key->user->lock);
570 		key->user->qnkeys--;
571 		key->user->qnbytes -= key->quotalen;
572 		spin_unlock(&key->user->lock);
573 	}
574 
575 	atomic_dec(&key->user->nkeys);
576 	if (test_bit(KEY_FLAG_INSTANTIATED, &key->flags))
577 		atomic_dec(&key->user->nikeys);
578 
579 	key_user_put(key->user);
580 
581 	/* now throw away the key memory */
582 	if (key->type->destroy)
583 		key->type->destroy(key);
584 
585 	kfree(key->description);
586 
587 #ifdef KEY_DEBUGGING
588 	key->magic = KEY_DEBUG_MAGIC_X;
589 #endif
590 	kmem_cache_free(key_jar, key);
591 
592 	/* there may, of course, be more than one key to destroy */
593 	goto go_again;
594 
595 } /* end key_cleanup() */
596 
597 /*****************************************************************************/
598 /*
599  * dispose of a reference to a key
600  * - when all the references are gone, we schedule the cleanup task to come and
601  *   pull it out of the tree in definite process context
602  */
603 void key_put(struct key *key)
604 {
605 	if (key) {
606 		key_check(key);
607 
608 		if (atomic_dec_and_test(&key->usage))
609 			schedule_work(&key_cleanup_task);
610 	}
611 
612 } /* end key_put() */
613 
614 EXPORT_SYMBOL(key_put);
615 
616 /*****************************************************************************/
617 /*
618  * find a key by its serial number
619  */
620 struct key *key_lookup(key_serial_t id)
621 {
622 	struct rb_node *n;
623 	struct key *key;
624 
625 	spin_lock(&key_serial_lock);
626 
627 	/* search the tree for the specified key */
628 	n = key_serial_tree.rb_node;
629 	while (n) {
630 		key = rb_entry(n, struct key, serial_node);
631 
632 		if (id < key->serial)
633 			n = n->rb_left;
634 		else if (id > key->serial)
635 			n = n->rb_right;
636 		else
637 			goto found;
638 	}
639 
640  not_found:
641 	key = ERR_PTR(-ENOKEY);
642 	goto error;
643 
644  found:
645 	/* pretend it doesn't exist if it's dead */
646 	if (atomic_read(&key->usage) == 0 ||
647 	    test_bit(KEY_FLAG_DEAD, &key->flags) ||
648 	    key->type == &key_type_dead)
649 		goto not_found;
650 
651 	/* this races with key_put(), but that doesn't matter since key_put()
652 	 * doesn't actually change the key
653 	 */
654 	atomic_inc(&key->usage);
655 
656  error:
657 	spin_unlock(&key_serial_lock);
658 	return key;
659 
660 } /* end key_lookup() */
661 
662 /*****************************************************************************/
663 /*
664  * find and lock the specified key type against removal
665  * - we return with the sem readlocked
666  */
667 struct key_type *key_type_lookup(const char *type)
668 {
669 	struct key_type *ktype;
670 
671 	down_read(&key_types_sem);
672 
673 	/* look up the key type to see if it's one of the registered kernel
674 	 * types */
675 	list_for_each_entry(ktype, &key_types_list, link) {
676 		if (strcmp(ktype->name, type) == 0)
677 			goto found_kernel_type;
678 	}
679 
680 	up_read(&key_types_sem);
681 	ktype = ERR_PTR(-ENOKEY);
682 
683  found_kernel_type:
684 	return ktype;
685 
686 } /* end key_type_lookup() */
687 
688 /*****************************************************************************/
689 /*
690  * unlock a key type
691  */
692 void key_type_put(struct key_type *ktype)
693 {
694 	up_read(&key_types_sem);
695 
696 } /* end key_type_put() */
697 
698 /*****************************************************************************/
699 /*
700  * attempt to update an existing key
701  * - the key has an incremented refcount
702  * - we need to put the key if we get an error
703  */
704 static inline key_ref_t __key_update(key_ref_t key_ref,
705 				     const void *payload, size_t plen)
706 {
707 	struct key *key = key_ref_to_ptr(key_ref);
708 	int ret;
709 
710 	/* need write permission on the key to update it */
711 	ret = key_permission(key_ref, KEY_WRITE);
712 	if (ret < 0)
713 		goto error;
714 
715 	ret = -EEXIST;
716 	if (!key->type->update)
717 		goto error;
718 
719 	down_write(&key->sem);
720 
721 	ret = key->type->update(key, payload, plen);
722 	if (ret == 0)
723 		/* updating a negative key instantiates it */
724 		clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
725 
726 	up_write(&key->sem);
727 
728 	if (ret < 0)
729 		goto error;
730 out:
731 	return key_ref;
732 
733 error:
734 	key_put(key);
735 	key_ref = ERR_PTR(ret);
736 	goto out;
737 
738 } /* end __key_update() */
739 
740 /*****************************************************************************/
741 /*
742  * search the specified keyring for a key of the same description; if one is
743  * found, update it, otherwise add a new one
744  */
745 key_ref_t key_create_or_update(key_ref_t keyring_ref,
746 			       const char *type,
747 			       const char *description,
748 			       const void *payload,
749 			       size_t plen,
750 			       key_perm_t perm,
751 			       unsigned long flags)
752 {
753 	const struct cred *cred = current_cred();
754 	struct key_type *ktype;
755 	struct key *keyring, *key = NULL;
756 	key_ref_t key_ref;
757 	int ret;
758 
759 	/* look up the key type to see if it's one of the registered kernel
760 	 * types */
761 	ktype = key_type_lookup(type);
762 	if (IS_ERR(ktype)) {
763 		key_ref = ERR_PTR(-ENODEV);
764 		goto error;
765 	}
766 
767 	key_ref = ERR_PTR(-EINVAL);
768 	if (!ktype->match || !ktype->instantiate)
769 		goto error_2;
770 
771 	keyring = key_ref_to_ptr(keyring_ref);
772 
773 	key_check(keyring);
774 
775 	key_ref = ERR_PTR(-ENOTDIR);
776 	if (keyring->type != &key_type_keyring)
777 		goto error_2;
778 
779 	down_write(&keyring->sem);
780 
781 	/* if we're going to allocate a new key, we're going to have
782 	 * to modify the keyring */
783 	ret = key_permission(keyring_ref, KEY_WRITE);
784 	if (ret < 0) {
785 		key_ref = ERR_PTR(ret);
786 		goto error_3;
787 	}
788 
789 	/* if it's possible to update this type of key, search for an existing
790 	 * key of the same type and description in the destination keyring and
791 	 * update that instead if possible
792 	 */
793 	if (ktype->update) {
794 		key_ref = __keyring_search_one(keyring_ref, ktype, description,
795 					       0);
796 		if (!IS_ERR(key_ref))
797 			goto found_matching_key;
798 	}
799 
800 	/* if the client doesn't provide, decide on the permissions we want */
801 	if (perm == KEY_PERM_UNDEF) {
802 		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
803 		perm |= KEY_USR_VIEW | KEY_USR_SEARCH | KEY_USR_LINK | KEY_USR_SETATTR;
804 
805 		if (ktype->read)
806 			perm |= KEY_POS_READ | KEY_USR_READ;
807 
808 		if (ktype == &key_type_keyring || ktype->update)
809 			perm |= KEY_USR_WRITE;
810 	}
811 
812 	/* allocate a new key */
813 	key = key_alloc(ktype, description, cred->fsuid, cred->fsgid, cred,
814 			perm, flags);
815 	if (IS_ERR(key)) {
816 		key_ref = ERR_CAST(key);
817 		goto error_3;
818 	}
819 
820 	/* instantiate it and link it into the target keyring */
821 	ret = __key_instantiate_and_link(key, payload, plen, keyring, NULL);
822 	if (ret < 0) {
823 		key_put(key);
824 		key_ref = ERR_PTR(ret);
825 		goto error_3;
826 	}
827 
828 	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
829 
830  error_3:
831 	up_write(&keyring->sem);
832  error_2:
833 	key_type_put(ktype);
834  error:
835 	return key_ref;
836 
837  found_matching_key:
838 	/* we found a matching key, so we're going to try to update it
839 	 * - we can drop the locks first as we have the key pinned
840 	 */
841 	up_write(&keyring->sem);
842 	key_type_put(ktype);
843 
844 	key_ref = __key_update(key_ref, payload, plen);
845 	goto error;
846 
847 } /* end key_create_or_update() */
848 
849 EXPORT_SYMBOL(key_create_or_update);
850 
851 /*****************************************************************************/
852 /*
853  * update a key
854  */
855 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
856 {
857 	struct key *key = key_ref_to_ptr(key_ref);
858 	int ret;
859 
860 	key_check(key);
861 
862 	/* the key must be writable */
863 	ret = key_permission(key_ref, KEY_WRITE);
864 	if (ret < 0)
865 		goto error;
866 
867 	/* attempt to update it if supported */
868 	ret = -EOPNOTSUPP;
869 	if (key->type->update) {
870 		down_write(&key->sem);
871 
872 		ret = key->type->update(key, payload, plen);
873 		if (ret == 0)
874 			/* updating a negative key instantiates it */
875 			clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
876 
877 		up_write(&key->sem);
878 	}
879 
880  error:
881 	return ret;
882 
883 } /* end key_update() */
884 
885 EXPORT_SYMBOL(key_update);
886 
887 /*****************************************************************************/
888 /*
889  * revoke a key
890  */
891 void key_revoke(struct key *key)
892 {
893 	key_check(key);
894 
895 	/* make sure no one's trying to change or use the key when we mark it
896 	 * - we tell lockdep that we might nest because we might be revoking an
897 	 *   authorisation key whilst holding the sem on a key we've just
898 	 *   instantiated
899 	 */
900 	down_write_nested(&key->sem, 1);
901 	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
902 	    key->type->revoke)
903 		key->type->revoke(key);
904 
905 	up_write(&key->sem);
906 
907 } /* end key_revoke() */
908 
909 EXPORT_SYMBOL(key_revoke);
910 
911 /*****************************************************************************/
912 /*
913  * register a type of key
914  */
915 int register_key_type(struct key_type *ktype)
916 {
917 	struct key_type *p;
918 	int ret;
919 
920 	ret = -EEXIST;
921 	down_write(&key_types_sem);
922 
923 	/* disallow key types with the same name */
924 	list_for_each_entry(p, &key_types_list, link) {
925 		if (strcmp(p->name, ktype->name) == 0)
926 			goto out;
927 	}
928 
929 	/* store the type */
930 	list_add(&ktype->link, &key_types_list);
931 	ret = 0;
932 
933  out:
934 	up_write(&key_types_sem);
935 	return ret;
936 
937 } /* end register_key_type() */
938 
939 EXPORT_SYMBOL(register_key_type);
940 
941 /*****************************************************************************/
942 /*
943  * unregister a type of key
944  */
945 void unregister_key_type(struct key_type *ktype)
946 {
947 	struct rb_node *_n;
948 	struct key *key;
949 
950 	down_write(&key_types_sem);
951 
952 	/* withdraw the key type */
953 	list_del_init(&ktype->link);
954 
955 	/* mark all the keys of this type dead */
956 	spin_lock(&key_serial_lock);
957 
958 	for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
959 		key = rb_entry(_n, struct key, serial_node);
960 
961 		if (key->type == ktype)
962 			key->type = &key_type_dead;
963 	}
964 
965 	spin_unlock(&key_serial_lock);
966 
967 	/* make sure everyone revalidates their keys */
968 	synchronize_rcu();
969 
970 	/* we should now be able to destroy the payloads of all the keys of
971 	 * this type with impunity */
972 	spin_lock(&key_serial_lock);
973 
974 	for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
975 		key = rb_entry(_n, struct key, serial_node);
976 
977 		if (key->type == ktype) {
978 			if (ktype->destroy)
979 				ktype->destroy(key);
980 			memset(&key->payload, KEY_DESTROY, sizeof(key->payload));
981 		}
982 	}
983 
984 	spin_unlock(&key_serial_lock);
985 	up_write(&key_types_sem);
986 
987 } /* end unregister_key_type() */
988 
989 EXPORT_SYMBOL(unregister_key_type);
990 
991 /*****************************************************************************/
992 /*
993  * initialise the key management stuff
994  */
995 void __init key_init(void)
996 {
997 	/* allocate a slab in which we can store keys */
998 	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
999 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1000 
1001 	/* add the special key types */
1002 	list_add_tail(&key_type_keyring.link, &key_types_list);
1003 	list_add_tail(&key_type_dead.link, &key_types_list);
1004 	list_add_tail(&key_type_user.link, &key_types_list);
1005 
1006 	/* record the root user tracking */
1007 	rb_link_node(&root_key_user.node,
1008 		     NULL,
1009 		     &key_user_tree.rb_node);
1010 
1011 	rb_insert_color(&root_key_user.node,
1012 			&key_user_tree);
1013 
1014 } /* end key_init() */
1015