1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* Basic authentication token and access key management 3 * 4 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 8 #include <linux/export.h> 9 #include <linux/init.h> 10 #include <linux/poison.h> 11 #include <linux/sched.h> 12 #include <linux/slab.h> 13 #include <linux/security.h> 14 #include <linux/workqueue.h> 15 #include <linux/random.h> 16 #include <linux/ima.h> 17 #include <linux/err.h> 18 #include "internal.h" 19 20 struct kmem_cache *key_jar; 21 struct rb_root key_serial_tree; /* tree of keys indexed by serial */ 22 DEFINE_SPINLOCK(key_serial_lock); 23 24 struct rb_root key_user_tree; /* tree of quota records indexed by UID */ 25 DEFINE_SPINLOCK(key_user_lock); 26 27 unsigned int key_quota_root_maxkeys = 1000000; /* root's key count quota */ 28 unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */ 29 unsigned int key_quota_maxkeys = 200; /* general key count quota */ 30 unsigned int key_quota_maxbytes = 20000; /* general key space quota */ 31 32 static LIST_HEAD(key_types_list); 33 static DECLARE_RWSEM(key_types_sem); 34 35 /* We serialise key instantiation and link */ 36 DEFINE_MUTEX(key_construction_mutex); 37 38 #ifdef KEY_DEBUGGING 39 void __key_check(const struct key *key) 40 { 41 printk("__key_check: key %p {%08x} should be {%08x}\n", 42 key, key->magic, KEY_DEBUG_MAGIC); 43 BUG(); 44 } 45 #endif 46 47 /* 48 * Get the key quota record for a user, allocating a new record if one doesn't 49 * already exist. 50 */ 51 struct key_user *key_user_lookup(kuid_t uid) 52 { 53 struct key_user *candidate = NULL, *user; 54 struct rb_node *parent, **p; 55 56 try_again: 57 parent = NULL; 58 p = &key_user_tree.rb_node; 59 spin_lock(&key_user_lock); 60 61 /* search the tree for a user record with a matching UID */ 62 while (*p) { 63 parent = *p; 64 user = rb_entry(parent, struct key_user, node); 65 66 if (uid_lt(uid, user->uid)) 67 p = &(*p)->rb_left; 68 else if (uid_gt(uid, user->uid)) 69 p = &(*p)->rb_right; 70 else 71 goto found; 72 } 73 74 /* if we get here, we failed to find a match in the tree */ 75 if (!candidate) { 76 /* allocate a candidate user record if we don't already have 77 * one */ 78 spin_unlock(&key_user_lock); 79 80 user = NULL; 81 candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL); 82 if (unlikely(!candidate)) 83 goto out; 84 85 /* the allocation may have scheduled, so we need to repeat the 86 * search lest someone else added the record whilst we were 87 * asleep */ 88 goto try_again; 89 } 90 91 /* if we get here, then the user record still hadn't appeared on the 92 * second pass - so we use the candidate record */ 93 refcount_set(&candidate->usage, 1); 94 atomic_set(&candidate->nkeys, 0); 95 atomic_set(&candidate->nikeys, 0); 96 candidate->uid = uid; 97 candidate->qnkeys = 0; 98 candidate->qnbytes = 0; 99 spin_lock_init(&candidate->lock); 100 mutex_init(&candidate->cons_lock); 101 102 rb_link_node(&candidate->node, parent, p); 103 rb_insert_color(&candidate->node, &key_user_tree); 104 spin_unlock(&key_user_lock); 105 user = candidate; 106 goto out; 107 108 /* okay - we found a user record for this UID */ 109 found: 110 refcount_inc(&user->usage); 111 spin_unlock(&key_user_lock); 112 kfree(candidate); 113 out: 114 return user; 115 } 116 117 /* 118 * Dispose of a user structure 119 */ 120 void key_user_put(struct key_user *user) 121 { 122 if (refcount_dec_and_lock(&user->usage, &key_user_lock)) { 123 rb_erase(&user->node, &key_user_tree); 124 spin_unlock(&key_user_lock); 125 126 kfree(user); 127 } 128 } 129 130 /* 131 * Allocate a serial number for a key. These are assigned randomly to avoid 132 * security issues through covert channel problems. 133 */ 134 static inline void key_alloc_serial(struct key *key) 135 { 136 struct rb_node *parent, **p; 137 struct key *xkey; 138 139 /* propose a random serial number and look for a hole for it in the 140 * serial number tree */ 141 do { 142 get_random_bytes(&key->serial, sizeof(key->serial)); 143 144 key->serial >>= 1; /* negative numbers are not permitted */ 145 } while (key->serial < 3); 146 147 spin_lock(&key_serial_lock); 148 149 attempt_insertion: 150 parent = NULL; 151 p = &key_serial_tree.rb_node; 152 153 while (*p) { 154 parent = *p; 155 xkey = rb_entry(parent, struct key, serial_node); 156 157 if (key->serial < xkey->serial) 158 p = &(*p)->rb_left; 159 else if (key->serial > xkey->serial) 160 p = &(*p)->rb_right; 161 else 162 goto serial_exists; 163 } 164 165 /* we've found a suitable hole - arrange for this key to occupy it */ 166 rb_link_node(&key->serial_node, parent, p); 167 rb_insert_color(&key->serial_node, &key_serial_tree); 168 169 spin_unlock(&key_serial_lock); 170 return; 171 172 /* we found a key with the proposed serial number - walk the tree from 173 * that point looking for the next unused serial number */ 174 serial_exists: 175 for (;;) { 176 key->serial++; 177 if (key->serial < 3) { 178 key->serial = 3; 179 goto attempt_insertion; 180 } 181 182 parent = rb_next(parent); 183 if (!parent) 184 goto attempt_insertion; 185 186 xkey = rb_entry(parent, struct key, serial_node); 187 if (key->serial < xkey->serial) 188 goto attempt_insertion; 189 } 190 } 191 192 /** 193 * key_alloc - Allocate a key of the specified type. 194 * @type: The type of key to allocate. 195 * @desc: The key description to allow the key to be searched out. 196 * @uid: The owner of the new key. 197 * @gid: The group ID for the new key's group permissions. 198 * @cred: The credentials specifying UID namespace. 199 * @perm: The permissions mask of the new key. 200 * @flags: Flags specifying quota properties. 201 * @restrict_link: Optional link restriction for new keyrings. 202 * 203 * Allocate a key of the specified type with the attributes given. The key is 204 * returned in an uninstantiated state and the caller needs to instantiate the 205 * key before returning. 206 * 207 * The restrict_link structure (if not NULL) will be freed when the 208 * keyring is destroyed, so it must be dynamically allocated. 209 * 210 * The user's key count quota is updated to reflect the creation of the key and 211 * the user's key data quota has the default for the key type reserved. The 212 * instantiation function should amend this as necessary. If insufficient 213 * quota is available, -EDQUOT will be returned. 214 * 215 * The LSM security modules can prevent a key being created, in which case 216 * -EACCES will be returned. 217 * 218 * Returns a pointer to the new key if successful and an error code otherwise. 219 * 220 * Note that the caller needs to ensure the key type isn't uninstantiated. 221 * Internally this can be done by locking key_types_sem. Externally, this can 222 * be done by either never unregistering the key type, or making sure 223 * key_alloc() calls don't race with module unloading. 224 */ 225 struct key *key_alloc(struct key_type *type, const char *desc, 226 kuid_t uid, kgid_t gid, const struct cred *cred, 227 key_perm_t perm, unsigned long flags, 228 struct key_restriction *restrict_link) 229 { 230 struct key_user *user = NULL; 231 struct key *key; 232 size_t desclen, quotalen; 233 int ret; 234 235 key = ERR_PTR(-EINVAL); 236 if (!desc || !*desc) 237 goto error; 238 239 if (type->vet_description) { 240 ret = type->vet_description(desc); 241 if (ret < 0) { 242 key = ERR_PTR(ret); 243 goto error; 244 } 245 } 246 247 desclen = strlen(desc); 248 quotalen = desclen + 1 + type->def_datalen; 249 250 /* get hold of the key tracking for this user */ 251 user = key_user_lookup(uid); 252 if (!user) 253 goto no_memory_1; 254 255 /* check that the user's quota permits allocation of another key and 256 * its description */ 257 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { 258 unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ? 259 key_quota_root_maxkeys : key_quota_maxkeys; 260 unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ? 261 key_quota_root_maxbytes : key_quota_maxbytes; 262 263 spin_lock(&user->lock); 264 if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) { 265 if (user->qnkeys + 1 > maxkeys || 266 user->qnbytes + quotalen > maxbytes || 267 user->qnbytes + quotalen < user->qnbytes) 268 goto no_quota; 269 } 270 271 user->qnkeys++; 272 user->qnbytes += quotalen; 273 spin_unlock(&user->lock); 274 } 275 276 /* allocate and initialise the key and its description */ 277 key = kmem_cache_zalloc(key_jar, GFP_KERNEL); 278 if (!key) 279 goto no_memory_2; 280 281 key->index_key.desc_len = desclen; 282 key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL); 283 if (!key->index_key.description) 284 goto no_memory_3; 285 key->index_key.type = type; 286 key_set_index_key(&key->index_key); 287 288 refcount_set(&key->usage, 1); 289 init_rwsem(&key->sem); 290 lockdep_set_class(&key->sem, &type->lock_class); 291 key->user = user; 292 key->quotalen = quotalen; 293 key->datalen = type->def_datalen; 294 key->uid = uid; 295 key->gid = gid; 296 key->perm = perm; 297 key->restrict_link = restrict_link; 298 key->last_used_at = ktime_get_real_seconds(); 299 300 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) 301 key->flags |= 1 << KEY_FLAG_IN_QUOTA; 302 if (flags & KEY_ALLOC_BUILT_IN) 303 key->flags |= 1 << KEY_FLAG_BUILTIN; 304 if (flags & KEY_ALLOC_UID_KEYRING) 305 key->flags |= 1 << KEY_FLAG_UID_KEYRING; 306 307 #ifdef KEY_DEBUGGING 308 key->magic = KEY_DEBUG_MAGIC; 309 #endif 310 311 /* let the security module know about the key */ 312 ret = security_key_alloc(key, cred, flags); 313 if (ret < 0) 314 goto security_error; 315 316 /* publish the key by giving it a serial number */ 317 refcount_inc(&key->domain_tag->usage); 318 atomic_inc(&user->nkeys); 319 key_alloc_serial(key); 320 321 error: 322 return key; 323 324 security_error: 325 kfree(key->description); 326 kmem_cache_free(key_jar, key); 327 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { 328 spin_lock(&user->lock); 329 user->qnkeys--; 330 user->qnbytes -= quotalen; 331 spin_unlock(&user->lock); 332 } 333 key_user_put(user); 334 key = ERR_PTR(ret); 335 goto error; 336 337 no_memory_3: 338 kmem_cache_free(key_jar, key); 339 no_memory_2: 340 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { 341 spin_lock(&user->lock); 342 user->qnkeys--; 343 user->qnbytes -= quotalen; 344 spin_unlock(&user->lock); 345 } 346 key_user_put(user); 347 no_memory_1: 348 key = ERR_PTR(-ENOMEM); 349 goto error; 350 351 no_quota: 352 spin_unlock(&user->lock); 353 key_user_put(user); 354 key = ERR_PTR(-EDQUOT); 355 goto error; 356 } 357 EXPORT_SYMBOL(key_alloc); 358 359 /** 360 * key_payload_reserve - Adjust data quota reservation for the key's payload 361 * @key: The key to make the reservation for. 362 * @datalen: The amount of data payload the caller now wants. 363 * 364 * Adjust the amount of the owning user's key data quota that a key reserves. 365 * If the amount is increased, then -EDQUOT may be returned if there isn't 366 * enough free quota available. 367 * 368 * If successful, 0 is returned. 369 */ 370 int key_payload_reserve(struct key *key, size_t datalen) 371 { 372 int delta = (int)datalen - key->datalen; 373 int ret = 0; 374 375 key_check(key); 376 377 /* contemplate the quota adjustment */ 378 if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) { 379 unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ? 380 key_quota_root_maxbytes : key_quota_maxbytes; 381 382 spin_lock(&key->user->lock); 383 384 if (delta > 0 && 385 (key->user->qnbytes + delta > maxbytes || 386 key->user->qnbytes + delta < key->user->qnbytes)) { 387 ret = -EDQUOT; 388 } 389 else { 390 key->user->qnbytes += delta; 391 key->quotalen += delta; 392 } 393 spin_unlock(&key->user->lock); 394 } 395 396 /* change the recorded data length if that didn't generate an error */ 397 if (ret == 0) 398 key->datalen = datalen; 399 400 return ret; 401 } 402 EXPORT_SYMBOL(key_payload_reserve); 403 404 /* 405 * Change the key state to being instantiated. 406 */ 407 static void mark_key_instantiated(struct key *key, int reject_error) 408 { 409 /* Commit the payload before setting the state; barrier versus 410 * key_read_state(). 411 */ 412 smp_store_release(&key->state, 413 (reject_error < 0) ? reject_error : KEY_IS_POSITIVE); 414 } 415 416 /* 417 * Instantiate a key and link it into the target keyring atomically. Must be 418 * called with the target keyring's semaphore writelocked. The target key's 419 * semaphore need not be locked as instantiation is serialised by 420 * key_construction_mutex. 421 */ 422 static int __key_instantiate_and_link(struct key *key, 423 struct key_preparsed_payload *prep, 424 struct key *keyring, 425 struct key *authkey, 426 struct assoc_array_edit **_edit) 427 { 428 int ret, awaken; 429 430 key_check(key); 431 key_check(keyring); 432 433 awaken = 0; 434 ret = -EBUSY; 435 436 mutex_lock(&key_construction_mutex); 437 438 /* can't instantiate twice */ 439 if (key->state == KEY_IS_UNINSTANTIATED) { 440 /* instantiate the key */ 441 ret = key->type->instantiate(key, prep); 442 443 if (ret == 0) { 444 /* mark the key as being instantiated */ 445 atomic_inc(&key->user->nikeys); 446 mark_key_instantiated(key, 0); 447 notify_key(key, NOTIFY_KEY_INSTANTIATED, 0); 448 449 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) 450 awaken = 1; 451 452 /* and link it into the destination keyring */ 453 if (keyring) { 454 if (test_bit(KEY_FLAG_KEEP, &keyring->flags)) 455 set_bit(KEY_FLAG_KEEP, &key->flags); 456 457 __key_link(keyring, key, _edit); 458 } 459 460 /* disable the authorisation key */ 461 if (authkey) 462 key_invalidate(authkey); 463 464 if (prep->expiry != TIME64_MAX) { 465 key->expiry = prep->expiry; 466 key_schedule_gc(prep->expiry + key_gc_delay); 467 } 468 } 469 } 470 471 mutex_unlock(&key_construction_mutex); 472 473 /* wake up anyone waiting for a key to be constructed */ 474 if (awaken) 475 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT); 476 477 return ret; 478 } 479 480 /** 481 * key_instantiate_and_link - Instantiate a key and link it into the keyring. 482 * @key: The key to instantiate. 483 * @data: The data to use to instantiate the keyring. 484 * @datalen: The length of @data. 485 * @keyring: Keyring to create a link in on success (or NULL). 486 * @authkey: The authorisation token permitting instantiation. 487 * 488 * Instantiate a key that's in the uninstantiated state using the provided data 489 * and, if successful, link it in to the destination keyring if one is 490 * supplied. 491 * 492 * If successful, 0 is returned, the authorisation token is revoked and anyone 493 * waiting for the key is woken up. If the key was already instantiated, 494 * -EBUSY will be returned. 495 */ 496 int key_instantiate_and_link(struct key *key, 497 const void *data, 498 size_t datalen, 499 struct key *keyring, 500 struct key *authkey) 501 { 502 struct key_preparsed_payload prep; 503 struct assoc_array_edit *edit = NULL; 504 int ret; 505 506 memset(&prep, 0, sizeof(prep)); 507 prep.data = data; 508 prep.datalen = datalen; 509 prep.quotalen = key->type->def_datalen; 510 prep.expiry = TIME64_MAX; 511 if (key->type->preparse) { 512 ret = key->type->preparse(&prep); 513 if (ret < 0) 514 goto error; 515 } 516 517 if (keyring) { 518 ret = __key_link_lock(keyring, &key->index_key); 519 if (ret < 0) 520 goto error; 521 522 ret = __key_link_begin(keyring, &key->index_key, &edit); 523 if (ret < 0) 524 goto error_link_end; 525 526 if (keyring->restrict_link && keyring->restrict_link->check) { 527 struct key_restriction *keyres = keyring->restrict_link; 528 529 ret = keyres->check(keyring, key->type, &prep.payload, 530 keyres->key); 531 if (ret < 0) 532 goto error_link_end; 533 } 534 } 535 536 ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit); 537 538 error_link_end: 539 if (keyring) 540 __key_link_end(keyring, &key->index_key, edit); 541 542 error: 543 if (key->type->preparse) 544 key->type->free_preparse(&prep); 545 return ret; 546 } 547 548 EXPORT_SYMBOL(key_instantiate_and_link); 549 550 /** 551 * key_reject_and_link - Negatively instantiate a key and link it into the keyring. 552 * @key: The key to instantiate. 553 * @timeout: The timeout on the negative key. 554 * @error: The error to return when the key is hit. 555 * @keyring: Keyring to create a link in on success (or NULL). 556 * @authkey: The authorisation token permitting instantiation. 557 * 558 * Negatively instantiate a key that's in the uninstantiated state and, if 559 * successful, set its timeout and stored error and link it in to the 560 * destination keyring if one is supplied. The key and any links to the key 561 * will be automatically garbage collected after the timeout expires. 562 * 563 * Negative keys are used to rate limit repeated request_key() calls by causing 564 * them to return the stored error code (typically ENOKEY) until the negative 565 * key expires. 566 * 567 * If successful, 0 is returned, the authorisation token is revoked and anyone 568 * waiting for the key is woken up. If the key was already instantiated, 569 * -EBUSY will be returned. 570 */ 571 int key_reject_and_link(struct key *key, 572 unsigned timeout, 573 unsigned error, 574 struct key *keyring, 575 struct key *authkey) 576 { 577 struct assoc_array_edit *edit = NULL; 578 int ret, awaken, link_ret = 0; 579 580 key_check(key); 581 key_check(keyring); 582 583 awaken = 0; 584 ret = -EBUSY; 585 586 if (keyring) { 587 if (keyring->restrict_link) 588 return -EPERM; 589 590 link_ret = __key_link_lock(keyring, &key->index_key); 591 if (link_ret == 0) { 592 link_ret = __key_link_begin(keyring, &key->index_key, &edit); 593 if (link_ret < 0) 594 __key_link_end(keyring, &key->index_key, edit); 595 } 596 } 597 598 mutex_lock(&key_construction_mutex); 599 600 /* can't instantiate twice */ 601 if (key->state == KEY_IS_UNINSTANTIATED) { 602 /* mark the key as being negatively instantiated */ 603 atomic_inc(&key->user->nikeys); 604 mark_key_instantiated(key, -error); 605 notify_key(key, NOTIFY_KEY_INSTANTIATED, -error); 606 key->expiry = ktime_get_real_seconds() + timeout; 607 key_schedule_gc(key->expiry + key_gc_delay); 608 609 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) 610 awaken = 1; 611 612 ret = 0; 613 614 /* and link it into the destination keyring */ 615 if (keyring && link_ret == 0) 616 __key_link(keyring, key, &edit); 617 618 /* disable the authorisation key */ 619 if (authkey) 620 key_invalidate(authkey); 621 } 622 623 mutex_unlock(&key_construction_mutex); 624 625 if (keyring && link_ret == 0) 626 __key_link_end(keyring, &key->index_key, edit); 627 628 /* wake up anyone waiting for a key to be constructed */ 629 if (awaken) 630 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT); 631 632 return ret == 0 ? link_ret : ret; 633 } 634 EXPORT_SYMBOL(key_reject_and_link); 635 636 /** 637 * key_put - Discard a reference to a key. 638 * @key: The key to discard a reference from. 639 * 640 * Discard a reference to a key, and when all the references are gone, we 641 * schedule the cleanup task to come and pull it out of the tree in process 642 * context at some later time. 643 */ 644 void key_put(struct key *key) 645 { 646 if (key) { 647 key_check(key); 648 649 if (refcount_dec_and_test(&key->usage)) 650 schedule_work(&key_gc_work); 651 } 652 } 653 EXPORT_SYMBOL(key_put); 654 655 /* 656 * Find a key by its serial number. 657 */ 658 struct key *key_lookup(key_serial_t id) 659 { 660 struct rb_node *n; 661 struct key *key; 662 663 spin_lock(&key_serial_lock); 664 665 /* search the tree for the specified key */ 666 n = key_serial_tree.rb_node; 667 while (n) { 668 key = rb_entry(n, struct key, serial_node); 669 670 if (id < key->serial) 671 n = n->rb_left; 672 else if (id > key->serial) 673 n = n->rb_right; 674 else 675 goto found; 676 } 677 678 not_found: 679 key = ERR_PTR(-ENOKEY); 680 goto error; 681 682 found: 683 /* A key is allowed to be looked up only if someone still owns a 684 * reference to it - otherwise it's awaiting the gc. 685 */ 686 if (!refcount_inc_not_zero(&key->usage)) 687 goto not_found; 688 689 error: 690 spin_unlock(&key_serial_lock); 691 return key; 692 } 693 694 /* 695 * Find and lock the specified key type against removal. 696 * 697 * We return with the sem read-locked if successful. If the type wasn't 698 * available -ENOKEY is returned instead. 699 */ 700 struct key_type *key_type_lookup(const char *type) 701 { 702 struct key_type *ktype; 703 704 down_read(&key_types_sem); 705 706 /* look up the key type to see if it's one of the registered kernel 707 * types */ 708 list_for_each_entry(ktype, &key_types_list, link) { 709 if (strcmp(ktype->name, type) == 0) 710 goto found_kernel_type; 711 } 712 713 up_read(&key_types_sem); 714 ktype = ERR_PTR(-ENOKEY); 715 716 found_kernel_type: 717 return ktype; 718 } 719 720 void key_set_timeout(struct key *key, unsigned timeout) 721 { 722 time64_t expiry = 0; 723 724 /* make the changes with the locks held to prevent races */ 725 down_write(&key->sem); 726 727 if (timeout > 0) 728 expiry = ktime_get_real_seconds() + timeout; 729 730 key->expiry = expiry; 731 key_schedule_gc(key->expiry + key_gc_delay); 732 733 up_write(&key->sem); 734 } 735 EXPORT_SYMBOL_GPL(key_set_timeout); 736 737 /* 738 * Unlock a key type locked by key_type_lookup(). 739 */ 740 void key_type_put(struct key_type *ktype) 741 { 742 up_read(&key_types_sem); 743 } 744 745 /* 746 * Attempt to update an existing key. 747 * 748 * The key is given to us with an incremented refcount that we need to discard 749 * if we get an error. 750 */ 751 static inline key_ref_t __key_update(key_ref_t key_ref, 752 struct key_preparsed_payload *prep) 753 { 754 struct key *key = key_ref_to_ptr(key_ref); 755 int ret; 756 757 /* need write permission on the key to update it */ 758 ret = key_permission(key_ref, KEY_NEED_WRITE); 759 if (ret < 0) 760 goto error; 761 762 ret = -EEXIST; 763 if (!key->type->update) 764 goto error; 765 766 down_write(&key->sem); 767 768 ret = key->type->update(key, prep); 769 if (ret == 0) { 770 /* Updating a negative key positively instantiates it */ 771 mark_key_instantiated(key, 0); 772 notify_key(key, NOTIFY_KEY_UPDATED, 0); 773 } 774 775 up_write(&key->sem); 776 777 if (ret < 0) 778 goto error; 779 out: 780 return key_ref; 781 782 error: 783 key_put(key); 784 key_ref = ERR_PTR(ret); 785 goto out; 786 } 787 788 /** 789 * key_create_or_update - Update or create and instantiate a key. 790 * @keyring_ref: A pointer to the destination keyring with possession flag. 791 * @type: The type of key. 792 * @description: The searchable description for the key. 793 * @payload: The data to use to instantiate or update the key. 794 * @plen: The length of @payload. 795 * @perm: The permissions mask for a new key. 796 * @flags: The quota flags for a new key. 797 * 798 * Search the destination keyring for a key of the same description and if one 799 * is found, update it, otherwise create and instantiate a new one and create a 800 * link to it from that keyring. 801 * 802 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be 803 * concocted. 804 * 805 * Returns a pointer to the new key if successful, -ENODEV if the key type 806 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the 807 * caller isn't permitted to modify the keyring or the LSM did not permit 808 * creation of the key. 809 * 810 * On success, the possession flag from the keyring ref will be tacked on to 811 * the key ref before it is returned. 812 */ 813 key_ref_t key_create_or_update(key_ref_t keyring_ref, 814 const char *type, 815 const char *description, 816 const void *payload, 817 size_t plen, 818 key_perm_t perm, 819 unsigned long flags) 820 { 821 struct keyring_index_key index_key = { 822 .description = description, 823 }; 824 struct key_preparsed_payload prep; 825 struct assoc_array_edit *edit = NULL; 826 const struct cred *cred = current_cred(); 827 struct key *keyring, *key = NULL; 828 key_ref_t key_ref; 829 int ret; 830 struct key_restriction *restrict_link = NULL; 831 832 /* look up the key type to see if it's one of the registered kernel 833 * types */ 834 index_key.type = key_type_lookup(type); 835 if (IS_ERR(index_key.type)) { 836 key_ref = ERR_PTR(-ENODEV); 837 goto error; 838 } 839 840 key_ref = ERR_PTR(-EINVAL); 841 if (!index_key.type->instantiate || 842 (!index_key.description && !index_key.type->preparse)) 843 goto error_put_type; 844 845 keyring = key_ref_to_ptr(keyring_ref); 846 847 key_check(keyring); 848 849 if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION)) 850 restrict_link = keyring->restrict_link; 851 852 key_ref = ERR_PTR(-ENOTDIR); 853 if (keyring->type != &key_type_keyring) 854 goto error_put_type; 855 856 memset(&prep, 0, sizeof(prep)); 857 prep.data = payload; 858 prep.datalen = plen; 859 prep.quotalen = index_key.type->def_datalen; 860 prep.expiry = TIME64_MAX; 861 if (index_key.type->preparse) { 862 ret = index_key.type->preparse(&prep); 863 if (ret < 0) { 864 key_ref = ERR_PTR(ret); 865 goto error_free_prep; 866 } 867 if (!index_key.description) 868 index_key.description = prep.description; 869 key_ref = ERR_PTR(-EINVAL); 870 if (!index_key.description) 871 goto error_free_prep; 872 } 873 index_key.desc_len = strlen(index_key.description); 874 key_set_index_key(&index_key); 875 876 ret = __key_link_lock(keyring, &index_key); 877 if (ret < 0) { 878 key_ref = ERR_PTR(ret); 879 goto error_free_prep; 880 } 881 882 ret = __key_link_begin(keyring, &index_key, &edit); 883 if (ret < 0) { 884 key_ref = ERR_PTR(ret); 885 goto error_link_end; 886 } 887 888 if (restrict_link && restrict_link->check) { 889 ret = restrict_link->check(keyring, index_key.type, 890 &prep.payload, restrict_link->key); 891 if (ret < 0) { 892 key_ref = ERR_PTR(ret); 893 goto error_link_end; 894 } 895 } 896 897 /* if we're going to allocate a new key, we're going to have 898 * to modify the keyring */ 899 ret = key_permission(keyring_ref, KEY_NEED_WRITE); 900 if (ret < 0) { 901 key_ref = ERR_PTR(ret); 902 goto error_link_end; 903 } 904 905 /* if it's possible to update this type of key, search for an existing 906 * key of the same type and description in the destination keyring and 907 * update that instead if possible 908 */ 909 if (index_key.type->update) { 910 key_ref = find_key_to_update(keyring_ref, &index_key); 911 if (key_ref) 912 goto found_matching_key; 913 } 914 915 /* if the client doesn't provide, decide on the permissions we want */ 916 if (perm == KEY_PERM_UNDEF) { 917 perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR; 918 perm |= KEY_USR_VIEW; 919 920 if (index_key.type->read) 921 perm |= KEY_POS_READ; 922 923 if (index_key.type == &key_type_keyring || 924 index_key.type->update) 925 perm |= KEY_POS_WRITE; 926 } 927 928 /* allocate a new key */ 929 key = key_alloc(index_key.type, index_key.description, 930 cred->fsuid, cred->fsgid, cred, perm, flags, NULL); 931 if (IS_ERR(key)) { 932 key_ref = ERR_CAST(key); 933 goto error_link_end; 934 } 935 936 /* instantiate it and link it into the target keyring */ 937 ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit); 938 if (ret < 0) { 939 key_put(key); 940 key_ref = ERR_PTR(ret); 941 goto error_link_end; 942 } 943 944 ima_post_key_create_or_update(keyring, key, payload, plen, 945 flags, true); 946 947 key_ref = make_key_ref(key, is_key_possessed(keyring_ref)); 948 949 error_link_end: 950 __key_link_end(keyring, &index_key, edit); 951 error_free_prep: 952 if (index_key.type->preparse) 953 index_key.type->free_preparse(&prep); 954 error_put_type: 955 key_type_put(index_key.type); 956 error: 957 return key_ref; 958 959 found_matching_key: 960 /* we found a matching key, so we're going to try to update it 961 * - we can drop the locks first as we have the key pinned 962 */ 963 __key_link_end(keyring, &index_key, edit); 964 965 key = key_ref_to_ptr(key_ref); 966 if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) { 967 ret = wait_for_key_construction(key, true); 968 if (ret < 0) { 969 key_ref_put(key_ref); 970 key_ref = ERR_PTR(ret); 971 goto error_free_prep; 972 } 973 } 974 975 key_ref = __key_update(key_ref, &prep); 976 977 if (!IS_ERR(key_ref)) 978 ima_post_key_create_or_update(keyring, key, 979 payload, plen, 980 flags, false); 981 982 goto error_free_prep; 983 } 984 EXPORT_SYMBOL(key_create_or_update); 985 986 /** 987 * key_update - Update a key's contents. 988 * @key_ref: The pointer (plus possession flag) to the key. 989 * @payload: The data to be used to update the key. 990 * @plen: The length of @payload. 991 * 992 * Attempt to update the contents of a key with the given payload data. The 993 * caller must be granted Write permission on the key. Negative keys can be 994 * instantiated by this method. 995 * 996 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key 997 * type does not support updating. The key type may return other errors. 998 */ 999 int key_update(key_ref_t key_ref, const void *payload, size_t plen) 1000 { 1001 struct key_preparsed_payload prep; 1002 struct key *key = key_ref_to_ptr(key_ref); 1003 int ret; 1004 1005 key_check(key); 1006 1007 /* the key must be writable */ 1008 ret = key_permission(key_ref, KEY_NEED_WRITE); 1009 if (ret < 0) 1010 return ret; 1011 1012 /* attempt to update it if supported */ 1013 if (!key->type->update) 1014 return -EOPNOTSUPP; 1015 1016 memset(&prep, 0, sizeof(prep)); 1017 prep.data = payload; 1018 prep.datalen = plen; 1019 prep.quotalen = key->type->def_datalen; 1020 prep.expiry = TIME64_MAX; 1021 if (key->type->preparse) { 1022 ret = key->type->preparse(&prep); 1023 if (ret < 0) 1024 goto error; 1025 } 1026 1027 down_write(&key->sem); 1028 1029 ret = key->type->update(key, &prep); 1030 if (ret == 0) { 1031 /* Updating a negative key positively instantiates it */ 1032 mark_key_instantiated(key, 0); 1033 notify_key(key, NOTIFY_KEY_UPDATED, 0); 1034 } 1035 1036 up_write(&key->sem); 1037 1038 error: 1039 if (key->type->preparse) 1040 key->type->free_preparse(&prep); 1041 return ret; 1042 } 1043 EXPORT_SYMBOL(key_update); 1044 1045 /** 1046 * key_revoke - Revoke a key. 1047 * @key: The key to be revoked. 1048 * 1049 * Mark a key as being revoked and ask the type to free up its resources. The 1050 * revocation timeout is set and the key and all its links will be 1051 * automatically garbage collected after key_gc_delay amount of time if they 1052 * are not manually dealt with first. 1053 */ 1054 void key_revoke(struct key *key) 1055 { 1056 time64_t time; 1057 1058 key_check(key); 1059 1060 /* make sure no one's trying to change or use the key when we mark it 1061 * - we tell lockdep that we might nest because we might be revoking an 1062 * authorisation key whilst holding the sem on a key we've just 1063 * instantiated 1064 */ 1065 down_write_nested(&key->sem, 1); 1066 if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags)) { 1067 notify_key(key, NOTIFY_KEY_REVOKED, 0); 1068 if (key->type->revoke) 1069 key->type->revoke(key); 1070 1071 /* set the death time to no more than the expiry time */ 1072 time = ktime_get_real_seconds(); 1073 if (key->revoked_at == 0 || key->revoked_at > time) { 1074 key->revoked_at = time; 1075 key_schedule_gc(key->revoked_at + key_gc_delay); 1076 } 1077 } 1078 1079 up_write(&key->sem); 1080 } 1081 EXPORT_SYMBOL(key_revoke); 1082 1083 /** 1084 * key_invalidate - Invalidate a key. 1085 * @key: The key to be invalidated. 1086 * 1087 * Mark a key as being invalidated and have it cleaned up immediately. The key 1088 * is ignored by all searches and other operations from this point. 1089 */ 1090 void key_invalidate(struct key *key) 1091 { 1092 kenter("%d", key_serial(key)); 1093 1094 key_check(key); 1095 1096 if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) { 1097 down_write_nested(&key->sem, 1); 1098 if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags)) { 1099 notify_key(key, NOTIFY_KEY_INVALIDATED, 0); 1100 key_schedule_gc_links(); 1101 } 1102 up_write(&key->sem); 1103 } 1104 } 1105 EXPORT_SYMBOL(key_invalidate); 1106 1107 /** 1108 * generic_key_instantiate - Simple instantiation of a key from preparsed data 1109 * @key: The key to be instantiated 1110 * @prep: The preparsed data to load. 1111 * 1112 * Instantiate a key from preparsed data. We assume we can just copy the data 1113 * in directly and clear the old pointers. 1114 * 1115 * This can be pointed to directly by the key type instantiate op pointer. 1116 */ 1117 int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep) 1118 { 1119 int ret; 1120 1121 pr_devel("==>%s()\n", __func__); 1122 1123 ret = key_payload_reserve(key, prep->quotalen); 1124 if (ret == 0) { 1125 rcu_assign_keypointer(key, prep->payload.data[0]); 1126 key->payload.data[1] = prep->payload.data[1]; 1127 key->payload.data[2] = prep->payload.data[2]; 1128 key->payload.data[3] = prep->payload.data[3]; 1129 prep->payload.data[0] = NULL; 1130 prep->payload.data[1] = NULL; 1131 prep->payload.data[2] = NULL; 1132 prep->payload.data[3] = NULL; 1133 } 1134 pr_devel("<==%s() = %d\n", __func__, ret); 1135 return ret; 1136 } 1137 EXPORT_SYMBOL(generic_key_instantiate); 1138 1139 /** 1140 * register_key_type - Register a type of key. 1141 * @ktype: The new key type. 1142 * 1143 * Register a new key type. 1144 * 1145 * Returns 0 on success or -EEXIST if a type of this name already exists. 1146 */ 1147 int register_key_type(struct key_type *ktype) 1148 { 1149 struct key_type *p; 1150 int ret; 1151 1152 memset(&ktype->lock_class, 0, sizeof(ktype->lock_class)); 1153 1154 ret = -EEXIST; 1155 down_write(&key_types_sem); 1156 1157 /* disallow key types with the same name */ 1158 list_for_each_entry(p, &key_types_list, link) { 1159 if (strcmp(p->name, ktype->name) == 0) 1160 goto out; 1161 } 1162 1163 /* store the type */ 1164 list_add(&ktype->link, &key_types_list); 1165 1166 pr_notice("Key type %s registered\n", ktype->name); 1167 ret = 0; 1168 1169 out: 1170 up_write(&key_types_sem); 1171 return ret; 1172 } 1173 EXPORT_SYMBOL(register_key_type); 1174 1175 /** 1176 * unregister_key_type - Unregister a type of key. 1177 * @ktype: The key type. 1178 * 1179 * Unregister a key type and mark all the extant keys of this type as dead. 1180 * Those keys of this type are then destroyed to get rid of their payloads and 1181 * they and their links will be garbage collected as soon as possible. 1182 */ 1183 void unregister_key_type(struct key_type *ktype) 1184 { 1185 down_write(&key_types_sem); 1186 list_del_init(&ktype->link); 1187 downgrade_write(&key_types_sem); 1188 key_gc_keytype(ktype); 1189 pr_notice("Key type %s unregistered\n", ktype->name); 1190 up_read(&key_types_sem); 1191 } 1192 EXPORT_SYMBOL(unregister_key_type); 1193 1194 /* 1195 * Initialise the key management state. 1196 */ 1197 void __init key_init(void) 1198 { 1199 /* allocate a slab in which we can store keys */ 1200 key_jar = kmem_cache_create("key_jar", sizeof(struct key), 1201 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 1202 1203 /* add the special key types */ 1204 list_add_tail(&key_type_keyring.link, &key_types_list); 1205 list_add_tail(&key_type_dead.link, &key_types_list); 1206 list_add_tail(&key_type_user.link, &key_types_list); 1207 list_add_tail(&key_type_logon.link, &key_types_list); 1208 1209 /* record the root user tracking */ 1210 rb_link_node(&root_key_user.node, 1211 NULL, 1212 &key_user_tree.rb_node); 1213 1214 rb_insert_color(&root_key_user.node, 1215 &key_user_tree); 1216 } 1217