xref: /openbmc/linux/security/keys/key.c (revision 7490ca1e)
1 /* Basic authentication token and access key management
2  *
3  * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/poison.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/security.h>
18 #include <linux/workqueue.h>
19 #include <linux/random.h>
20 #include <linux/err.h>
21 #include <linux/user_namespace.h>
22 #include "internal.h"
23 
24 struct kmem_cache *key_jar;
25 struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
26 DEFINE_SPINLOCK(key_serial_lock);
27 
28 struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
29 DEFINE_SPINLOCK(key_user_lock);
30 
31 unsigned int key_quota_root_maxkeys = 200;	/* root's key count quota */
32 unsigned int key_quota_root_maxbytes = 20000;	/* root's key space quota */
33 unsigned int key_quota_maxkeys = 200;		/* general key count quota */
34 unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
35 
36 static LIST_HEAD(key_types_list);
37 static DECLARE_RWSEM(key_types_sem);
38 
39 /* We serialise key instantiation and link */
40 DEFINE_MUTEX(key_construction_mutex);
41 
42 #ifdef KEY_DEBUGGING
43 void __key_check(const struct key *key)
44 {
45 	printk("__key_check: key %p {%08x} should be {%08x}\n",
46 	       key, key->magic, KEY_DEBUG_MAGIC);
47 	BUG();
48 }
49 #endif
50 
51 /*
52  * Get the key quota record for a user, allocating a new record if one doesn't
53  * already exist.
54  */
55 struct key_user *key_user_lookup(uid_t uid, struct user_namespace *user_ns)
56 {
57 	struct key_user *candidate = NULL, *user;
58 	struct rb_node *parent = NULL;
59 	struct rb_node **p;
60 
61 try_again:
62 	p = &key_user_tree.rb_node;
63 	spin_lock(&key_user_lock);
64 
65 	/* search the tree for a user record with a matching UID */
66 	while (*p) {
67 		parent = *p;
68 		user = rb_entry(parent, struct key_user, node);
69 
70 		if (uid < user->uid)
71 			p = &(*p)->rb_left;
72 		else if (uid > user->uid)
73 			p = &(*p)->rb_right;
74 		else if (user_ns < user->user_ns)
75 			p = &(*p)->rb_left;
76 		else if (user_ns > user->user_ns)
77 			p = &(*p)->rb_right;
78 		else
79 			goto found;
80 	}
81 
82 	/* if we get here, we failed to find a match in the tree */
83 	if (!candidate) {
84 		/* allocate a candidate user record if we don't already have
85 		 * one */
86 		spin_unlock(&key_user_lock);
87 
88 		user = NULL;
89 		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
90 		if (unlikely(!candidate))
91 			goto out;
92 
93 		/* the allocation may have scheduled, so we need to repeat the
94 		 * search lest someone else added the record whilst we were
95 		 * asleep */
96 		goto try_again;
97 	}
98 
99 	/* if we get here, then the user record still hadn't appeared on the
100 	 * second pass - so we use the candidate record */
101 	atomic_set(&candidate->usage, 1);
102 	atomic_set(&candidate->nkeys, 0);
103 	atomic_set(&candidate->nikeys, 0);
104 	candidate->uid = uid;
105 	candidate->user_ns = get_user_ns(user_ns);
106 	candidate->qnkeys = 0;
107 	candidate->qnbytes = 0;
108 	spin_lock_init(&candidate->lock);
109 	mutex_init(&candidate->cons_lock);
110 
111 	rb_link_node(&candidate->node, parent, p);
112 	rb_insert_color(&candidate->node, &key_user_tree);
113 	spin_unlock(&key_user_lock);
114 	user = candidate;
115 	goto out;
116 
117 	/* okay - we found a user record for this UID */
118 found:
119 	atomic_inc(&user->usage);
120 	spin_unlock(&key_user_lock);
121 	kfree(candidate);
122 out:
123 	return user;
124 }
125 
126 /*
127  * Dispose of a user structure
128  */
129 void key_user_put(struct key_user *user)
130 {
131 	if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
132 		rb_erase(&user->node, &key_user_tree);
133 		spin_unlock(&key_user_lock);
134 		put_user_ns(user->user_ns);
135 
136 		kfree(user);
137 	}
138 }
139 
140 /*
141  * Allocate a serial number for a key.  These are assigned randomly to avoid
142  * security issues through covert channel problems.
143  */
144 static inline void key_alloc_serial(struct key *key)
145 {
146 	struct rb_node *parent, **p;
147 	struct key *xkey;
148 
149 	/* propose a random serial number and look for a hole for it in the
150 	 * serial number tree */
151 	do {
152 		get_random_bytes(&key->serial, sizeof(key->serial));
153 
154 		key->serial >>= 1; /* negative numbers are not permitted */
155 	} while (key->serial < 3);
156 
157 	spin_lock(&key_serial_lock);
158 
159 attempt_insertion:
160 	parent = NULL;
161 	p = &key_serial_tree.rb_node;
162 
163 	while (*p) {
164 		parent = *p;
165 		xkey = rb_entry(parent, struct key, serial_node);
166 
167 		if (key->serial < xkey->serial)
168 			p = &(*p)->rb_left;
169 		else if (key->serial > xkey->serial)
170 			p = &(*p)->rb_right;
171 		else
172 			goto serial_exists;
173 	}
174 
175 	/* we've found a suitable hole - arrange for this key to occupy it */
176 	rb_link_node(&key->serial_node, parent, p);
177 	rb_insert_color(&key->serial_node, &key_serial_tree);
178 
179 	spin_unlock(&key_serial_lock);
180 	return;
181 
182 	/* we found a key with the proposed serial number - walk the tree from
183 	 * that point looking for the next unused serial number */
184 serial_exists:
185 	for (;;) {
186 		key->serial++;
187 		if (key->serial < 3) {
188 			key->serial = 3;
189 			goto attempt_insertion;
190 		}
191 
192 		parent = rb_next(parent);
193 		if (!parent)
194 			goto attempt_insertion;
195 
196 		xkey = rb_entry(parent, struct key, serial_node);
197 		if (key->serial < xkey->serial)
198 			goto attempt_insertion;
199 	}
200 }
201 
202 /**
203  * key_alloc - Allocate a key of the specified type.
204  * @type: The type of key to allocate.
205  * @desc: The key description to allow the key to be searched out.
206  * @uid: The owner of the new key.
207  * @gid: The group ID for the new key's group permissions.
208  * @cred: The credentials specifying UID namespace.
209  * @perm: The permissions mask of the new key.
210  * @flags: Flags specifying quota properties.
211  *
212  * Allocate a key of the specified type with the attributes given.  The key is
213  * returned in an uninstantiated state and the caller needs to instantiate the
214  * key before returning.
215  *
216  * The user's key count quota is updated to reflect the creation of the key and
217  * the user's key data quota has the default for the key type reserved.  The
218  * instantiation function should amend this as necessary.  If insufficient
219  * quota is available, -EDQUOT will be returned.
220  *
221  * The LSM security modules can prevent a key being created, in which case
222  * -EACCES will be returned.
223  *
224  * Returns a pointer to the new key if successful and an error code otherwise.
225  *
226  * Note that the caller needs to ensure the key type isn't uninstantiated.
227  * Internally this can be done by locking key_types_sem.  Externally, this can
228  * be done by either never unregistering the key type, or making sure
229  * key_alloc() calls don't race with module unloading.
230  */
231 struct key *key_alloc(struct key_type *type, const char *desc,
232 		      uid_t uid, gid_t gid, const struct cred *cred,
233 		      key_perm_t perm, unsigned long flags)
234 {
235 	struct key_user *user = NULL;
236 	struct key *key;
237 	size_t desclen, quotalen;
238 	int ret;
239 
240 	key = ERR_PTR(-EINVAL);
241 	if (!desc || !*desc)
242 		goto error;
243 
244 	if (type->vet_description) {
245 		ret = type->vet_description(desc);
246 		if (ret < 0) {
247 			key = ERR_PTR(ret);
248 			goto error;
249 		}
250 	}
251 
252 	desclen = strlen(desc) + 1;
253 	quotalen = desclen + type->def_datalen;
254 
255 	/* get hold of the key tracking for this user */
256 	user = key_user_lookup(uid, cred->user->user_ns);
257 	if (!user)
258 		goto no_memory_1;
259 
260 	/* check that the user's quota permits allocation of another key and
261 	 * its description */
262 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
263 		unsigned maxkeys = (uid == 0) ?
264 			key_quota_root_maxkeys : key_quota_maxkeys;
265 		unsigned maxbytes = (uid == 0) ?
266 			key_quota_root_maxbytes : key_quota_maxbytes;
267 
268 		spin_lock(&user->lock);
269 		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
270 			if (user->qnkeys + 1 >= maxkeys ||
271 			    user->qnbytes + quotalen >= maxbytes ||
272 			    user->qnbytes + quotalen < user->qnbytes)
273 				goto no_quota;
274 		}
275 
276 		user->qnkeys++;
277 		user->qnbytes += quotalen;
278 		spin_unlock(&user->lock);
279 	}
280 
281 	/* allocate and initialise the key and its description */
282 	key = kmem_cache_alloc(key_jar, GFP_KERNEL);
283 	if (!key)
284 		goto no_memory_2;
285 
286 	if (desc) {
287 		key->description = kmemdup(desc, desclen, GFP_KERNEL);
288 		if (!key->description)
289 			goto no_memory_3;
290 	}
291 
292 	atomic_set(&key->usage, 1);
293 	init_rwsem(&key->sem);
294 	lockdep_set_class(&key->sem, &type->lock_class);
295 	key->type = type;
296 	key->user = user;
297 	key->quotalen = quotalen;
298 	key->datalen = type->def_datalen;
299 	key->uid = uid;
300 	key->gid = gid;
301 	key->perm = perm;
302 	key->flags = 0;
303 	key->expiry = 0;
304 	key->payload.data = NULL;
305 	key->security = NULL;
306 
307 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
308 		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
309 
310 	memset(&key->type_data, 0, sizeof(key->type_data));
311 
312 #ifdef KEY_DEBUGGING
313 	key->magic = KEY_DEBUG_MAGIC;
314 #endif
315 
316 	/* let the security module know about the key */
317 	ret = security_key_alloc(key, cred, flags);
318 	if (ret < 0)
319 		goto security_error;
320 
321 	/* publish the key by giving it a serial number */
322 	atomic_inc(&user->nkeys);
323 	key_alloc_serial(key);
324 
325 error:
326 	return key;
327 
328 security_error:
329 	kfree(key->description);
330 	kmem_cache_free(key_jar, key);
331 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
332 		spin_lock(&user->lock);
333 		user->qnkeys--;
334 		user->qnbytes -= quotalen;
335 		spin_unlock(&user->lock);
336 	}
337 	key_user_put(user);
338 	key = ERR_PTR(ret);
339 	goto error;
340 
341 no_memory_3:
342 	kmem_cache_free(key_jar, key);
343 no_memory_2:
344 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
345 		spin_lock(&user->lock);
346 		user->qnkeys--;
347 		user->qnbytes -= quotalen;
348 		spin_unlock(&user->lock);
349 	}
350 	key_user_put(user);
351 no_memory_1:
352 	key = ERR_PTR(-ENOMEM);
353 	goto error;
354 
355 no_quota:
356 	spin_unlock(&user->lock);
357 	key_user_put(user);
358 	key = ERR_PTR(-EDQUOT);
359 	goto error;
360 }
361 EXPORT_SYMBOL(key_alloc);
362 
363 /**
364  * key_payload_reserve - Adjust data quota reservation for the key's payload
365  * @key: The key to make the reservation for.
366  * @datalen: The amount of data payload the caller now wants.
367  *
368  * Adjust the amount of the owning user's key data quota that a key reserves.
369  * If the amount is increased, then -EDQUOT may be returned if there isn't
370  * enough free quota available.
371  *
372  * If successful, 0 is returned.
373  */
374 int key_payload_reserve(struct key *key, size_t datalen)
375 {
376 	int delta = (int)datalen - key->datalen;
377 	int ret = 0;
378 
379 	key_check(key);
380 
381 	/* contemplate the quota adjustment */
382 	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
383 		unsigned maxbytes = (key->user->uid == 0) ?
384 			key_quota_root_maxbytes : key_quota_maxbytes;
385 
386 		spin_lock(&key->user->lock);
387 
388 		if (delta > 0 &&
389 		    (key->user->qnbytes + delta >= maxbytes ||
390 		     key->user->qnbytes + delta < key->user->qnbytes)) {
391 			ret = -EDQUOT;
392 		}
393 		else {
394 			key->user->qnbytes += delta;
395 			key->quotalen += delta;
396 		}
397 		spin_unlock(&key->user->lock);
398 	}
399 
400 	/* change the recorded data length if that didn't generate an error */
401 	if (ret == 0)
402 		key->datalen = datalen;
403 
404 	return ret;
405 }
406 EXPORT_SYMBOL(key_payload_reserve);
407 
408 /*
409  * Instantiate a key and link it into the target keyring atomically.  Must be
410  * called with the target keyring's semaphore writelocked.  The target key's
411  * semaphore need not be locked as instantiation is serialised by
412  * key_construction_mutex.
413  */
414 static int __key_instantiate_and_link(struct key *key,
415 				      const void *data,
416 				      size_t datalen,
417 				      struct key *keyring,
418 				      struct key *authkey,
419 				      unsigned long *_prealloc)
420 {
421 	int ret, awaken;
422 
423 	key_check(key);
424 	key_check(keyring);
425 
426 	awaken = 0;
427 	ret = -EBUSY;
428 
429 	mutex_lock(&key_construction_mutex);
430 
431 	/* can't instantiate twice */
432 	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
433 		/* instantiate the key */
434 		ret = key->type->instantiate(key, data, datalen);
435 
436 		if (ret == 0) {
437 			/* mark the key as being instantiated */
438 			atomic_inc(&key->user->nikeys);
439 			set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
440 
441 			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
442 				awaken = 1;
443 
444 			/* and link it into the destination keyring */
445 			if (keyring)
446 				__key_link(keyring, key, _prealloc);
447 
448 			/* disable the authorisation key */
449 			if (authkey)
450 				key_revoke(authkey);
451 		}
452 	}
453 
454 	mutex_unlock(&key_construction_mutex);
455 
456 	/* wake up anyone waiting for a key to be constructed */
457 	if (awaken)
458 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
459 
460 	return ret;
461 }
462 
463 /**
464  * key_instantiate_and_link - Instantiate a key and link it into the keyring.
465  * @key: The key to instantiate.
466  * @data: The data to use to instantiate the keyring.
467  * @datalen: The length of @data.
468  * @keyring: Keyring to create a link in on success (or NULL).
469  * @authkey: The authorisation token permitting instantiation.
470  *
471  * Instantiate a key that's in the uninstantiated state using the provided data
472  * and, if successful, link it in to the destination keyring if one is
473  * supplied.
474  *
475  * If successful, 0 is returned, the authorisation token is revoked and anyone
476  * waiting for the key is woken up.  If the key was already instantiated,
477  * -EBUSY will be returned.
478  */
479 int key_instantiate_and_link(struct key *key,
480 			     const void *data,
481 			     size_t datalen,
482 			     struct key *keyring,
483 			     struct key *authkey)
484 {
485 	unsigned long prealloc;
486 	int ret;
487 
488 	if (keyring) {
489 		ret = __key_link_begin(keyring, key->type, key->description,
490 				       &prealloc);
491 		if (ret < 0)
492 			return ret;
493 	}
494 
495 	ret = __key_instantiate_and_link(key, data, datalen, keyring, authkey,
496 					 &prealloc);
497 
498 	if (keyring)
499 		__key_link_end(keyring, key->type, prealloc);
500 
501 	return ret;
502 }
503 
504 EXPORT_SYMBOL(key_instantiate_and_link);
505 
506 /**
507  * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
508  * @key: The key to instantiate.
509  * @timeout: The timeout on the negative key.
510  * @error: The error to return when the key is hit.
511  * @keyring: Keyring to create a link in on success (or NULL).
512  * @authkey: The authorisation token permitting instantiation.
513  *
514  * Negatively instantiate a key that's in the uninstantiated state and, if
515  * successful, set its timeout and stored error and link it in to the
516  * destination keyring if one is supplied.  The key and any links to the key
517  * will be automatically garbage collected after the timeout expires.
518  *
519  * Negative keys are used to rate limit repeated request_key() calls by causing
520  * them to return the stored error code (typically ENOKEY) until the negative
521  * key expires.
522  *
523  * If successful, 0 is returned, the authorisation token is revoked and anyone
524  * waiting for the key is woken up.  If the key was already instantiated,
525  * -EBUSY will be returned.
526  */
527 int key_reject_and_link(struct key *key,
528 			unsigned timeout,
529 			unsigned error,
530 			struct key *keyring,
531 			struct key *authkey)
532 {
533 	unsigned long prealloc;
534 	struct timespec now;
535 	int ret, awaken, link_ret = 0;
536 
537 	key_check(key);
538 	key_check(keyring);
539 
540 	awaken = 0;
541 	ret = -EBUSY;
542 
543 	if (keyring)
544 		link_ret = __key_link_begin(keyring, key->type,
545 					    key->description, &prealloc);
546 
547 	mutex_lock(&key_construction_mutex);
548 
549 	/* can't instantiate twice */
550 	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
551 		/* mark the key as being negatively instantiated */
552 		atomic_inc(&key->user->nikeys);
553 		set_bit(KEY_FLAG_NEGATIVE, &key->flags);
554 		set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
555 		key->type_data.reject_error = -error;
556 		now = current_kernel_time();
557 		key->expiry = now.tv_sec + timeout;
558 		key_schedule_gc(key->expiry + key_gc_delay);
559 
560 		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
561 			awaken = 1;
562 
563 		ret = 0;
564 
565 		/* and link it into the destination keyring */
566 		if (keyring && link_ret == 0)
567 			__key_link(keyring, key, &prealloc);
568 
569 		/* disable the authorisation key */
570 		if (authkey)
571 			key_revoke(authkey);
572 	}
573 
574 	mutex_unlock(&key_construction_mutex);
575 
576 	if (keyring)
577 		__key_link_end(keyring, key->type, prealloc);
578 
579 	/* wake up anyone waiting for a key to be constructed */
580 	if (awaken)
581 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
582 
583 	return ret == 0 ? link_ret : ret;
584 }
585 EXPORT_SYMBOL(key_reject_and_link);
586 
587 /**
588  * key_put - Discard a reference to a key.
589  * @key: The key to discard a reference from.
590  *
591  * Discard a reference to a key, and when all the references are gone, we
592  * schedule the cleanup task to come and pull it out of the tree in process
593  * context at some later time.
594  */
595 void key_put(struct key *key)
596 {
597 	if (key) {
598 		key_check(key);
599 
600 		if (atomic_dec_and_test(&key->usage))
601 			queue_work(system_nrt_wq, &key_gc_work);
602 	}
603 }
604 EXPORT_SYMBOL(key_put);
605 
606 /*
607  * Find a key by its serial number.
608  */
609 struct key *key_lookup(key_serial_t id)
610 {
611 	struct rb_node *n;
612 	struct key *key;
613 
614 	spin_lock(&key_serial_lock);
615 
616 	/* search the tree for the specified key */
617 	n = key_serial_tree.rb_node;
618 	while (n) {
619 		key = rb_entry(n, struct key, serial_node);
620 
621 		if (id < key->serial)
622 			n = n->rb_left;
623 		else if (id > key->serial)
624 			n = n->rb_right;
625 		else
626 			goto found;
627 	}
628 
629 not_found:
630 	key = ERR_PTR(-ENOKEY);
631 	goto error;
632 
633 found:
634 	/* pretend it doesn't exist if it is awaiting deletion */
635 	if (atomic_read(&key->usage) == 0)
636 		goto not_found;
637 
638 	/* this races with key_put(), but that doesn't matter since key_put()
639 	 * doesn't actually change the key
640 	 */
641 	atomic_inc(&key->usage);
642 
643 error:
644 	spin_unlock(&key_serial_lock);
645 	return key;
646 }
647 
648 /*
649  * Find and lock the specified key type against removal.
650  *
651  * We return with the sem read-locked if successful.  If the type wasn't
652  * available -ENOKEY is returned instead.
653  */
654 struct key_type *key_type_lookup(const char *type)
655 {
656 	struct key_type *ktype;
657 
658 	down_read(&key_types_sem);
659 
660 	/* look up the key type to see if it's one of the registered kernel
661 	 * types */
662 	list_for_each_entry(ktype, &key_types_list, link) {
663 		if (strcmp(ktype->name, type) == 0)
664 			goto found_kernel_type;
665 	}
666 
667 	up_read(&key_types_sem);
668 	ktype = ERR_PTR(-ENOKEY);
669 
670 found_kernel_type:
671 	return ktype;
672 }
673 
674 /*
675  * Unlock a key type locked by key_type_lookup().
676  */
677 void key_type_put(struct key_type *ktype)
678 {
679 	up_read(&key_types_sem);
680 }
681 
682 /*
683  * Attempt to update an existing key.
684  *
685  * The key is given to us with an incremented refcount that we need to discard
686  * if we get an error.
687  */
688 static inline key_ref_t __key_update(key_ref_t key_ref,
689 				     const void *payload, size_t plen)
690 {
691 	struct key *key = key_ref_to_ptr(key_ref);
692 	int ret;
693 
694 	/* need write permission on the key to update it */
695 	ret = key_permission(key_ref, KEY_WRITE);
696 	if (ret < 0)
697 		goto error;
698 
699 	ret = -EEXIST;
700 	if (!key->type->update)
701 		goto error;
702 
703 	down_write(&key->sem);
704 
705 	ret = key->type->update(key, payload, plen);
706 	if (ret == 0)
707 		/* updating a negative key instantiates it */
708 		clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
709 
710 	up_write(&key->sem);
711 
712 	if (ret < 0)
713 		goto error;
714 out:
715 	return key_ref;
716 
717 error:
718 	key_put(key);
719 	key_ref = ERR_PTR(ret);
720 	goto out;
721 }
722 
723 /**
724  * key_create_or_update - Update or create and instantiate a key.
725  * @keyring_ref: A pointer to the destination keyring with possession flag.
726  * @type: The type of key.
727  * @description: The searchable description for the key.
728  * @payload: The data to use to instantiate or update the key.
729  * @plen: The length of @payload.
730  * @perm: The permissions mask for a new key.
731  * @flags: The quota flags for a new key.
732  *
733  * Search the destination keyring for a key of the same description and if one
734  * is found, update it, otherwise create and instantiate a new one and create a
735  * link to it from that keyring.
736  *
737  * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
738  * concocted.
739  *
740  * Returns a pointer to the new key if successful, -ENODEV if the key type
741  * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
742  * caller isn't permitted to modify the keyring or the LSM did not permit
743  * creation of the key.
744  *
745  * On success, the possession flag from the keyring ref will be tacked on to
746  * the key ref before it is returned.
747  */
748 key_ref_t key_create_or_update(key_ref_t keyring_ref,
749 			       const char *type,
750 			       const char *description,
751 			       const void *payload,
752 			       size_t plen,
753 			       key_perm_t perm,
754 			       unsigned long flags)
755 {
756 	unsigned long prealloc;
757 	const struct cred *cred = current_cred();
758 	struct key_type *ktype;
759 	struct key *keyring, *key = NULL;
760 	key_ref_t key_ref;
761 	int ret;
762 
763 	/* look up the key type to see if it's one of the registered kernel
764 	 * types */
765 	ktype = key_type_lookup(type);
766 	if (IS_ERR(ktype)) {
767 		key_ref = ERR_PTR(-ENODEV);
768 		goto error;
769 	}
770 
771 	key_ref = ERR_PTR(-EINVAL);
772 	if (!ktype->match || !ktype->instantiate)
773 		goto error_2;
774 
775 	keyring = key_ref_to_ptr(keyring_ref);
776 
777 	key_check(keyring);
778 
779 	key_ref = ERR_PTR(-ENOTDIR);
780 	if (keyring->type != &key_type_keyring)
781 		goto error_2;
782 
783 	ret = __key_link_begin(keyring, ktype, description, &prealloc);
784 	if (ret < 0)
785 		goto error_2;
786 
787 	/* if we're going to allocate a new key, we're going to have
788 	 * to modify the keyring */
789 	ret = key_permission(keyring_ref, KEY_WRITE);
790 	if (ret < 0) {
791 		key_ref = ERR_PTR(ret);
792 		goto error_3;
793 	}
794 
795 	/* if it's possible to update this type of key, search for an existing
796 	 * key of the same type and description in the destination keyring and
797 	 * update that instead if possible
798 	 */
799 	if (ktype->update) {
800 		key_ref = __keyring_search_one(keyring_ref, ktype, description,
801 					       0);
802 		if (!IS_ERR(key_ref))
803 			goto found_matching_key;
804 	}
805 
806 	/* if the client doesn't provide, decide on the permissions we want */
807 	if (perm == KEY_PERM_UNDEF) {
808 		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
809 		perm |= KEY_USR_VIEW | KEY_USR_SEARCH | KEY_USR_LINK | KEY_USR_SETATTR;
810 
811 		if (ktype->read)
812 			perm |= KEY_POS_READ | KEY_USR_READ;
813 
814 		if (ktype == &key_type_keyring || ktype->update)
815 			perm |= KEY_USR_WRITE;
816 	}
817 
818 	/* allocate a new key */
819 	key = key_alloc(ktype, description, cred->fsuid, cred->fsgid, cred,
820 			perm, flags);
821 	if (IS_ERR(key)) {
822 		key_ref = ERR_CAST(key);
823 		goto error_3;
824 	}
825 
826 	/* instantiate it and link it into the target keyring */
827 	ret = __key_instantiate_and_link(key, payload, plen, keyring, NULL,
828 					 &prealloc);
829 	if (ret < 0) {
830 		key_put(key);
831 		key_ref = ERR_PTR(ret);
832 		goto error_3;
833 	}
834 
835 	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
836 
837  error_3:
838 	__key_link_end(keyring, ktype, prealloc);
839  error_2:
840 	key_type_put(ktype);
841  error:
842 	return key_ref;
843 
844  found_matching_key:
845 	/* we found a matching key, so we're going to try to update it
846 	 * - we can drop the locks first as we have the key pinned
847 	 */
848 	__key_link_end(keyring, ktype, prealloc);
849 	key_type_put(ktype);
850 
851 	key_ref = __key_update(key_ref, payload, plen);
852 	goto error;
853 }
854 EXPORT_SYMBOL(key_create_or_update);
855 
856 /**
857  * key_update - Update a key's contents.
858  * @key_ref: The pointer (plus possession flag) to the key.
859  * @payload: The data to be used to update the key.
860  * @plen: The length of @payload.
861  *
862  * Attempt to update the contents of a key with the given payload data.  The
863  * caller must be granted Write permission on the key.  Negative keys can be
864  * instantiated by this method.
865  *
866  * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
867  * type does not support updating.  The key type may return other errors.
868  */
869 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
870 {
871 	struct key *key = key_ref_to_ptr(key_ref);
872 	int ret;
873 
874 	key_check(key);
875 
876 	/* the key must be writable */
877 	ret = key_permission(key_ref, KEY_WRITE);
878 	if (ret < 0)
879 		goto error;
880 
881 	/* attempt to update it if supported */
882 	ret = -EOPNOTSUPP;
883 	if (key->type->update) {
884 		down_write(&key->sem);
885 
886 		ret = key->type->update(key, payload, plen);
887 		if (ret == 0)
888 			/* updating a negative key instantiates it */
889 			clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
890 
891 		up_write(&key->sem);
892 	}
893 
894  error:
895 	return ret;
896 }
897 EXPORT_SYMBOL(key_update);
898 
899 /**
900  * key_revoke - Revoke a key.
901  * @key: The key to be revoked.
902  *
903  * Mark a key as being revoked and ask the type to free up its resources.  The
904  * revocation timeout is set and the key and all its links will be
905  * automatically garbage collected after key_gc_delay amount of time if they
906  * are not manually dealt with first.
907  */
908 void key_revoke(struct key *key)
909 {
910 	struct timespec now;
911 	time_t time;
912 
913 	key_check(key);
914 
915 	/* make sure no one's trying to change or use the key when we mark it
916 	 * - we tell lockdep that we might nest because we might be revoking an
917 	 *   authorisation key whilst holding the sem on a key we've just
918 	 *   instantiated
919 	 */
920 	down_write_nested(&key->sem, 1);
921 	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
922 	    key->type->revoke)
923 		key->type->revoke(key);
924 
925 	/* set the death time to no more than the expiry time */
926 	now = current_kernel_time();
927 	time = now.tv_sec;
928 	if (key->revoked_at == 0 || key->revoked_at > time) {
929 		key->revoked_at = time;
930 		key_schedule_gc(key->revoked_at + key_gc_delay);
931 	}
932 
933 	up_write(&key->sem);
934 }
935 EXPORT_SYMBOL(key_revoke);
936 
937 /**
938  * register_key_type - Register a type of key.
939  * @ktype: The new key type.
940  *
941  * Register a new key type.
942  *
943  * Returns 0 on success or -EEXIST if a type of this name already exists.
944  */
945 int register_key_type(struct key_type *ktype)
946 {
947 	struct key_type *p;
948 	int ret;
949 
950 	memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
951 
952 	ret = -EEXIST;
953 	down_write(&key_types_sem);
954 
955 	/* disallow key types with the same name */
956 	list_for_each_entry(p, &key_types_list, link) {
957 		if (strcmp(p->name, ktype->name) == 0)
958 			goto out;
959 	}
960 
961 	/* store the type */
962 	list_add(&ktype->link, &key_types_list);
963 	ret = 0;
964 
965 out:
966 	up_write(&key_types_sem);
967 	return ret;
968 }
969 EXPORT_SYMBOL(register_key_type);
970 
971 /**
972  * unregister_key_type - Unregister a type of key.
973  * @ktype: The key type.
974  *
975  * Unregister a key type and mark all the extant keys of this type as dead.
976  * Those keys of this type are then destroyed to get rid of their payloads and
977  * they and their links will be garbage collected as soon as possible.
978  */
979 void unregister_key_type(struct key_type *ktype)
980 {
981 	down_write(&key_types_sem);
982 	list_del_init(&ktype->link);
983 	downgrade_write(&key_types_sem);
984 	key_gc_keytype(ktype);
985 	up_read(&key_types_sem);
986 }
987 EXPORT_SYMBOL(unregister_key_type);
988 
989 /*
990  * Initialise the key management state.
991  */
992 void __init key_init(void)
993 {
994 	/* allocate a slab in which we can store keys */
995 	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
996 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
997 
998 	/* add the special key types */
999 	list_add_tail(&key_type_keyring.link, &key_types_list);
1000 	list_add_tail(&key_type_dead.link, &key_types_list);
1001 	list_add_tail(&key_type_user.link, &key_types_list);
1002 	list_add_tail(&key_type_logon.link, &key_types_list);
1003 
1004 	/* record the root user tracking */
1005 	rb_link_node(&root_key_user.node,
1006 		     NULL,
1007 		     &key_user_tree.rb_node);
1008 
1009 	rb_insert_color(&root_key_user.node,
1010 			&key_user_tree);
1011 }
1012