xref: /openbmc/linux/security/keys/key.c (revision 5a244f48)
1 /* Basic authentication token and access key management
2  *
3  * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/poison.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/security.h>
18 #include <linux/workqueue.h>
19 #include <linux/random.h>
20 #include <linux/err.h>
21 #include "internal.h"
22 
23 struct kmem_cache *key_jar;
24 struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
25 DEFINE_SPINLOCK(key_serial_lock);
26 
27 struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
28 DEFINE_SPINLOCK(key_user_lock);
29 
30 unsigned int key_quota_root_maxkeys = 1000000;	/* root's key count quota */
31 unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
32 unsigned int key_quota_maxkeys = 200;		/* general key count quota */
33 unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
34 
35 static LIST_HEAD(key_types_list);
36 static DECLARE_RWSEM(key_types_sem);
37 
38 /* We serialise key instantiation and link */
39 DEFINE_MUTEX(key_construction_mutex);
40 
41 #ifdef KEY_DEBUGGING
42 void __key_check(const struct key *key)
43 {
44 	printk("__key_check: key %p {%08x} should be {%08x}\n",
45 	       key, key->magic, KEY_DEBUG_MAGIC);
46 	BUG();
47 }
48 #endif
49 
50 /*
51  * Get the key quota record for a user, allocating a new record if one doesn't
52  * already exist.
53  */
54 struct key_user *key_user_lookup(kuid_t uid)
55 {
56 	struct key_user *candidate = NULL, *user;
57 	struct rb_node *parent, **p;
58 
59 try_again:
60 	parent = NULL;
61 	p = &key_user_tree.rb_node;
62 	spin_lock(&key_user_lock);
63 
64 	/* search the tree for a user record with a matching UID */
65 	while (*p) {
66 		parent = *p;
67 		user = rb_entry(parent, struct key_user, node);
68 
69 		if (uid_lt(uid, user->uid))
70 			p = &(*p)->rb_left;
71 		else if (uid_gt(uid, user->uid))
72 			p = &(*p)->rb_right;
73 		else
74 			goto found;
75 	}
76 
77 	/* if we get here, we failed to find a match in the tree */
78 	if (!candidate) {
79 		/* allocate a candidate user record if we don't already have
80 		 * one */
81 		spin_unlock(&key_user_lock);
82 
83 		user = NULL;
84 		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
85 		if (unlikely(!candidate))
86 			goto out;
87 
88 		/* the allocation may have scheduled, so we need to repeat the
89 		 * search lest someone else added the record whilst we were
90 		 * asleep */
91 		goto try_again;
92 	}
93 
94 	/* if we get here, then the user record still hadn't appeared on the
95 	 * second pass - so we use the candidate record */
96 	refcount_set(&candidate->usage, 1);
97 	atomic_set(&candidate->nkeys, 0);
98 	atomic_set(&candidate->nikeys, 0);
99 	candidate->uid = uid;
100 	candidate->qnkeys = 0;
101 	candidate->qnbytes = 0;
102 	spin_lock_init(&candidate->lock);
103 	mutex_init(&candidate->cons_lock);
104 
105 	rb_link_node(&candidate->node, parent, p);
106 	rb_insert_color(&candidate->node, &key_user_tree);
107 	spin_unlock(&key_user_lock);
108 	user = candidate;
109 	goto out;
110 
111 	/* okay - we found a user record for this UID */
112 found:
113 	refcount_inc(&user->usage);
114 	spin_unlock(&key_user_lock);
115 	kfree(candidate);
116 out:
117 	return user;
118 }
119 
120 /*
121  * Dispose of a user structure
122  */
123 void key_user_put(struct key_user *user)
124 {
125 	if (refcount_dec_and_lock(&user->usage, &key_user_lock)) {
126 		rb_erase(&user->node, &key_user_tree);
127 		spin_unlock(&key_user_lock);
128 
129 		kfree(user);
130 	}
131 }
132 
133 /*
134  * Allocate a serial number for a key.  These are assigned randomly to avoid
135  * security issues through covert channel problems.
136  */
137 static inline void key_alloc_serial(struct key *key)
138 {
139 	struct rb_node *parent, **p;
140 	struct key *xkey;
141 
142 	/* propose a random serial number and look for a hole for it in the
143 	 * serial number tree */
144 	do {
145 		get_random_bytes(&key->serial, sizeof(key->serial));
146 
147 		key->serial >>= 1; /* negative numbers are not permitted */
148 	} while (key->serial < 3);
149 
150 	spin_lock(&key_serial_lock);
151 
152 attempt_insertion:
153 	parent = NULL;
154 	p = &key_serial_tree.rb_node;
155 
156 	while (*p) {
157 		parent = *p;
158 		xkey = rb_entry(parent, struct key, serial_node);
159 
160 		if (key->serial < xkey->serial)
161 			p = &(*p)->rb_left;
162 		else if (key->serial > xkey->serial)
163 			p = &(*p)->rb_right;
164 		else
165 			goto serial_exists;
166 	}
167 
168 	/* we've found a suitable hole - arrange for this key to occupy it */
169 	rb_link_node(&key->serial_node, parent, p);
170 	rb_insert_color(&key->serial_node, &key_serial_tree);
171 
172 	spin_unlock(&key_serial_lock);
173 	return;
174 
175 	/* we found a key with the proposed serial number - walk the tree from
176 	 * that point looking for the next unused serial number */
177 serial_exists:
178 	for (;;) {
179 		key->serial++;
180 		if (key->serial < 3) {
181 			key->serial = 3;
182 			goto attempt_insertion;
183 		}
184 
185 		parent = rb_next(parent);
186 		if (!parent)
187 			goto attempt_insertion;
188 
189 		xkey = rb_entry(parent, struct key, serial_node);
190 		if (key->serial < xkey->serial)
191 			goto attempt_insertion;
192 	}
193 }
194 
195 /**
196  * key_alloc - Allocate a key of the specified type.
197  * @type: The type of key to allocate.
198  * @desc: The key description to allow the key to be searched out.
199  * @uid: The owner of the new key.
200  * @gid: The group ID for the new key's group permissions.
201  * @cred: The credentials specifying UID namespace.
202  * @perm: The permissions mask of the new key.
203  * @flags: Flags specifying quota properties.
204  * @restrict_link: Optional link restriction for new keyrings.
205  *
206  * Allocate a key of the specified type with the attributes given.  The key is
207  * returned in an uninstantiated state and the caller needs to instantiate the
208  * key before returning.
209  *
210  * The restrict_link structure (if not NULL) will be freed when the
211  * keyring is destroyed, so it must be dynamically allocated.
212  *
213  * The user's key count quota is updated to reflect the creation of the key and
214  * the user's key data quota has the default for the key type reserved.  The
215  * instantiation function should amend this as necessary.  If insufficient
216  * quota is available, -EDQUOT will be returned.
217  *
218  * The LSM security modules can prevent a key being created, in which case
219  * -EACCES will be returned.
220  *
221  * Returns a pointer to the new key if successful and an error code otherwise.
222  *
223  * Note that the caller needs to ensure the key type isn't uninstantiated.
224  * Internally this can be done by locking key_types_sem.  Externally, this can
225  * be done by either never unregistering the key type, or making sure
226  * key_alloc() calls don't race with module unloading.
227  */
228 struct key *key_alloc(struct key_type *type, const char *desc,
229 		      kuid_t uid, kgid_t gid, const struct cred *cred,
230 		      key_perm_t perm, unsigned long flags,
231 		      struct key_restriction *restrict_link)
232 {
233 	struct key_user *user = NULL;
234 	struct key *key;
235 	size_t desclen, quotalen;
236 	int ret;
237 
238 	key = ERR_PTR(-EINVAL);
239 	if (!desc || !*desc)
240 		goto error;
241 
242 	if (type->vet_description) {
243 		ret = type->vet_description(desc);
244 		if (ret < 0) {
245 			key = ERR_PTR(ret);
246 			goto error;
247 		}
248 	}
249 
250 	desclen = strlen(desc);
251 	quotalen = desclen + 1 + type->def_datalen;
252 
253 	/* get hold of the key tracking for this user */
254 	user = key_user_lookup(uid);
255 	if (!user)
256 		goto no_memory_1;
257 
258 	/* check that the user's quota permits allocation of another key and
259 	 * its description */
260 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
261 		unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
262 			key_quota_root_maxkeys : key_quota_maxkeys;
263 		unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
264 			key_quota_root_maxbytes : key_quota_maxbytes;
265 
266 		spin_lock(&user->lock);
267 		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
268 			if (user->qnkeys + 1 >= maxkeys ||
269 			    user->qnbytes + quotalen >= maxbytes ||
270 			    user->qnbytes + quotalen < user->qnbytes)
271 				goto no_quota;
272 		}
273 
274 		user->qnkeys++;
275 		user->qnbytes += quotalen;
276 		spin_unlock(&user->lock);
277 	}
278 
279 	/* allocate and initialise the key and its description */
280 	key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
281 	if (!key)
282 		goto no_memory_2;
283 
284 	key->index_key.desc_len = desclen;
285 	key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
286 	if (!key->index_key.description)
287 		goto no_memory_3;
288 
289 	refcount_set(&key->usage, 1);
290 	init_rwsem(&key->sem);
291 	lockdep_set_class(&key->sem, &type->lock_class);
292 	key->index_key.type = type;
293 	key->user = user;
294 	key->quotalen = quotalen;
295 	key->datalen = type->def_datalen;
296 	key->uid = uid;
297 	key->gid = gid;
298 	key->perm = perm;
299 	key->restrict_link = restrict_link;
300 
301 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
302 		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
303 	if (flags & KEY_ALLOC_BUILT_IN)
304 		key->flags |= 1 << KEY_FLAG_BUILTIN;
305 	if (flags & KEY_ALLOC_UID_KEYRING)
306 		key->flags |= 1 << KEY_FLAG_UID_KEYRING;
307 
308 #ifdef KEY_DEBUGGING
309 	key->magic = KEY_DEBUG_MAGIC;
310 #endif
311 
312 	/* let the security module know about the key */
313 	ret = security_key_alloc(key, cred, flags);
314 	if (ret < 0)
315 		goto security_error;
316 
317 	/* publish the key by giving it a serial number */
318 	atomic_inc(&user->nkeys);
319 	key_alloc_serial(key);
320 
321 error:
322 	return key;
323 
324 security_error:
325 	kfree(key->description);
326 	kmem_cache_free(key_jar, key);
327 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
328 		spin_lock(&user->lock);
329 		user->qnkeys--;
330 		user->qnbytes -= quotalen;
331 		spin_unlock(&user->lock);
332 	}
333 	key_user_put(user);
334 	key = ERR_PTR(ret);
335 	goto error;
336 
337 no_memory_3:
338 	kmem_cache_free(key_jar, key);
339 no_memory_2:
340 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
341 		spin_lock(&user->lock);
342 		user->qnkeys--;
343 		user->qnbytes -= quotalen;
344 		spin_unlock(&user->lock);
345 	}
346 	key_user_put(user);
347 no_memory_1:
348 	key = ERR_PTR(-ENOMEM);
349 	goto error;
350 
351 no_quota:
352 	spin_unlock(&user->lock);
353 	key_user_put(user);
354 	key = ERR_PTR(-EDQUOT);
355 	goto error;
356 }
357 EXPORT_SYMBOL(key_alloc);
358 
359 /**
360  * key_payload_reserve - Adjust data quota reservation for the key's payload
361  * @key: The key to make the reservation for.
362  * @datalen: The amount of data payload the caller now wants.
363  *
364  * Adjust the amount of the owning user's key data quota that a key reserves.
365  * If the amount is increased, then -EDQUOT may be returned if there isn't
366  * enough free quota available.
367  *
368  * If successful, 0 is returned.
369  */
370 int key_payload_reserve(struct key *key, size_t datalen)
371 {
372 	int delta = (int)datalen - key->datalen;
373 	int ret = 0;
374 
375 	key_check(key);
376 
377 	/* contemplate the quota adjustment */
378 	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
379 		unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
380 			key_quota_root_maxbytes : key_quota_maxbytes;
381 
382 		spin_lock(&key->user->lock);
383 
384 		if (delta > 0 &&
385 		    (key->user->qnbytes + delta >= maxbytes ||
386 		     key->user->qnbytes + delta < key->user->qnbytes)) {
387 			ret = -EDQUOT;
388 		}
389 		else {
390 			key->user->qnbytes += delta;
391 			key->quotalen += delta;
392 		}
393 		spin_unlock(&key->user->lock);
394 	}
395 
396 	/* change the recorded data length if that didn't generate an error */
397 	if (ret == 0)
398 		key->datalen = datalen;
399 
400 	return ret;
401 }
402 EXPORT_SYMBOL(key_payload_reserve);
403 
404 /*
405  * Instantiate a key and link it into the target keyring atomically.  Must be
406  * called with the target keyring's semaphore writelocked.  The target key's
407  * semaphore need not be locked as instantiation is serialised by
408  * key_construction_mutex.
409  */
410 static int __key_instantiate_and_link(struct key *key,
411 				      struct key_preparsed_payload *prep,
412 				      struct key *keyring,
413 				      struct key *authkey,
414 				      struct assoc_array_edit **_edit)
415 {
416 	int ret, awaken;
417 
418 	key_check(key);
419 	key_check(keyring);
420 
421 	awaken = 0;
422 	ret = -EBUSY;
423 
424 	mutex_lock(&key_construction_mutex);
425 
426 	/* can't instantiate twice */
427 	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
428 		/* instantiate the key */
429 		ret = key->type->instantiate(key, prep);
430 
431 		if (ret == 0) {
432 			/* mark the key as being instantiated */
433 			atomic_inc(&key->user->nikeys);
434 			set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
435 
436 			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
437 				awaken = 1;
438 
439 			/* and link it into the destination keyring */
440 			if (keyring) {
441 				if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
442 					set_bit(KEY_FLAG_KEEP, &key->flags);
443 
444 				__key_link(key, _edit);
445 			}
446 
447 			/* disable the authorisation key */
448 			if (authkey)
449 				key_revoke(authkey);
450 
451 			if (prep->expiry != TIME_T_MAX) {
452 				key->expiry = prep->expiry;
453 				key_schedule_gc(prep->expiry + key_gc_delay);
454 			}
455 		}
456 	}
457 
458 	mutex_unlock(&key_construction_mutex);
459 
460 	/* wake up anyone waiting for a key to be constructed */
461 	if (awaken)
462 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
463 
464 	return ret;
465 }
466 
467 /**
468  * key_instantiate_and_link - Instantiate a key and link it into the keyring.
469  * @key: The key to instantiate.
470  * @data: The data to use to instantiate the keyring.
471  * @datalen: The length of @data.
472  * @keyring: Keyring to create a link in on success (or NULL).
473  * @authkey: The authorisation token permitting instantiation.
474  *
475  * Instantiate a key that's in the uninstantiated state using the provided data
476  * and, if successful, link it in to the destination keyring if one is
477  * supplied.
478  *
479  * If successful, 0 is returned, the authorisation token is revoked and anyone
480  * waiting for the key is woken up.  If the key was already instantiated,
481  * -EBUSY will be returned.
482  */
483 int key_instantiate_and_link(struct key *key,
484 			     const void *data,
485 			     size_t datalen,
486 			     struct key *keyring,
487 			     struct key *authkey)
488 {
489 	struct key_preparsed_payload prep;
490 	struct assoc_array_edit *edit;
491 	int ret;
492 
493 	memset(&prep, 0, sizeof(prep));
494 	prep.data = data;
495 	prep.datalen = datalen;
496 	prep.quotalen = key->type->def_datalen;
497 	prep.expiry = TIME_T_MAX;
498 	if (key->type->preparse) {
499 		ret = key->type->preparse(&prep);
500 		if (ret < 0)
501 			goto error;
502 	}
503 
504 	if (keyring) {
505 		ret = __key_link_begin(keyring, &key->index_key, &edit);
506 		if (ret < 0)
507 			goto error;
508 
509 		if (keyring->restrict_link && keyring->restrict_link->check) {
510 			struct key_restriction *keyres = keyring->restrict_link;
511 
512 			ret = keyres->check(keyring, key->type, &prep.payload,
513 					    keyres->key);
514 			if (ret < 0)
515 				goto error_link_end;
516 		}
517 	}
518 
519 	ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
520 
521 error_link_end:
522 	if (keyring)
523 		__key_link_end(keyring, &key->index_key, edit);
524 
525 error:
526 	if (key->type->preparse)
527 		key->type->free_preparse(&prep);
528 	return ret;
529 }
530 
531 EXPORT_SYMBOL(key_instantiate_and_link);
532 
533 /**
534  * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
535  * @key: The key to instantiate.
536  * @timeout: The timeout on the negative key.
537  * @error: The error to return when the key is hit.
538  * @keyring: Keyring to create a link in on success (or NULL).
539  * @authkey: The authorisation token permitting instantiation.
540  *
541  * Negatively instantiate a key that's in the uninstantiated state and, if
542  * successful, set its timeout and stored error and link it in to the
543  * destination keyring if one is supplied.  The key and any links to the key
544  * will be automatically garbage collected after the timeout expires.
545  *
546  * Negative keys are used to rate limit repeated request_key() calls by causing
547  * them to return the stored error code (typically ENOKEY) until the negative
548  * key expires.
549  *
550  * If successful, 0 is returned, the authorisation token is revoked and anyone
551  * waiting for the key is woken up.  If the key was already instantiated,
552  * -EBUSY will be returned.
553  */
554 int key_reject_and_link(struct key *key,
555 			unsigned timeout,
556 			unsigned error,
557 			struct key *keyring,
558 			struct key *authkey)
559 {
560 	struct assoc_array_edit *edit;
561 	struct timespec now;
562 	int ret, awaken, link_ret = 0;
563 
564 	key_check(key);
565 	key_check(keyring);
566 
567 	awaken = 0;
568 	ret = -EBUSY;
569 
570 	if (keyring) {
571 		if (keyring->restrict_link)
572 			return -EPERM;
573 
574 		link_ret = __key_link_begin(keyring, &key->index_key, &edit);
575 	}
576 
577 	mutex_lock(&key_construction_mutex);
578 
579 	/* can't instantiate twice */
580 	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
581 		/* mark the key as being negatively instantiated */
582 		atomic_inc(&key->user->nikeys);
583 		key->reject_error = -error;
584 		smp_wmb();
585 		set_bit(KEY_FLAG_NEGATIVE, &key->flags);
586 		set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
587 		now = current_kernel_time();
588 		key->expiry = now.tv_sec + timeout;
589 		key_schedule_gc(key->expiry + key_gc_delay);
590 
591 		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
592 			awaken = 1;
593 
594 		ret = 0;
595 
596 		/* and link it into the destination keyring */
597 		if (keyring && link_ret == 0)
598 			__key_link(key, &edit);
599 
600 		/* disable the authorisation key */
601 		if (authkey)
602 			key_revoke(authkey);
603 	}
604 
605 	mutex_unlock(&key_construction_mutex);
606 
607 	if (keyring && link_ret == 0)
608 		__key_link_end(keyring, &key->index_key, edit);
609 
610 	/* wake up anyone waiting for a key to be constructed */
611 	if (awaken)
612 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
613 
614 	return ret == 0 ? link_ret : ret;
615 }
616 EXPORT_SYMBOL(key_reject_and_link);
617 
618 /**
619  * key_put - Discard a reference to a key.
620  * @key: The key to discard a reference from.
621  *
622  * Discard a reference to a key, and when all the references are gone, we
623  * schedule the cleanup task to come and pull it out of the tree in process
624  * context at some later time.
625  */
626 void key_put(struct key *key)
627 {
628 	if (key) {
629 		key_check(key);
630 
631 		if (refcount_dec_and_test(&key->usage))
632 			schedule_work(&key_gc_work);
633 	}
634 }
635 EXPORT_SYMBOL(key_put);
636 
637 /*
638  * Find a key by its serial number.
639  */
640 struct key *key_lookup(key_serial_t id)
641 {
642 	struct rb_node *n;
643 	struct key *key;
644 
645 	spin_lock(&key_serial_lock);
646 
647 	/* search the tree for the specified key */
648 	n = key_serial_tree.rb_node;
649 	while (n) {
650 		key = rb_entry(n, struct key, serial_node);
651 
652 		if (id < key->serial)
653 			n = n->rb_left;
654 		else if (id > key->serial)
655 			n = n->rb_right;
656 		else
657 			goto found;
658 	}
659 
660 not_found:
661 	key = ERR_PTR(-ENOKEY);
662 	goto error;
663 
664 found:
665 	/* A key is allowed to be looked up only if someone still owns a
666 	 * reference to it - otherwise it's awaiting the gc.
667 	 */
668 	if (!refcount_inc_not_zero(&key->usage))
669 		goto not_found;
670 
671 error:
672 	spin_unlock(&key_serial_lock);
673 	return key;
674 }
675 
676 /*
677  * Find and lock the specified key type against removal.
678  *
679  * We return with the sem read-locked if successful.  If the type wasn't
680  * available -ENOKEY is returned instead.
681  */
682 struct key_type *key_type_lookup(const char *type)
683 {
684 	struct key_type *ktype;
685 
686 	down_read(&key_types_sem);
687 
688 	/* look up the key type to see if it's one of the registered kernel
689 	 * types */
690 	list_for_each_entry(ktype, &key_types_list, link) {
691 		if (strcmp(ktype->name, type) == 0)
692 			goto found_kernel_type;
693 	}
694 
695 	up_read(&key_types_sem);
696 	ktype = ERR_PTR(-ENOKEY);
697 
698 found_kernel_type:
699 	return ktype;
700 }
701 
702 void key_set_timeout(struct key *key, unsigned timeout)
703 {
704 	struct timespec now;
705 	time_t expiry = 0;
706 
707 	/* make the changes with the locks held to prevent races */
708 	down_write(&key->sem);
709 
710 	if (timeout > 0) {
711 		now = current_kernel_time();
712 		expiry = now.tv_sec + timeout;
713 	}
714 
715 	key->expiry = expiry;
716 	key_schedule_gc(key->expiry + key_gc_delay);
717 
718 	up_write(&key->sem);
719 }
720 EXPORT_SYMBOL_GPL(key_set_timeout);
721 
722 /*
723  * Unlock a key type locked by key_type_lookup().
724  */
725 void key_type_put(struct key_type *ktype)
726 {
727 	up_read(&key_types_sem);
728 }
729 
730 /*
731  * Attempt to update an existing key.
732  *
733  * The key is given to us with an incremented refcount that we need to discard
734  * if we get an error.
735  */
736 static inline key_ref_t __key_update(key_ref_t key_ref,
737 				     struct key_preparsed_payload *prep)
738 {
739 	struct key *key = key_ref_to_ptr(key_ref);
740 	int ret;
741 
742 	/* need write permission on the key to update it */
743 	ret = key_permission(key_ref, KEY_NEED_WRITE);
744 	if (ret < 0)
745 		goto error;
746 
747 	ret = -EEXIST;
748 	if (!key->type->update)
749 		goto error;
750 
751 	down_write(&key->sem);
752 
753 	ret = key->type->update(key, prep);
754 	if (ret == 0)
755 		/* updating a negative key instantiates it */
756 		clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
757 
758 	up_write(&key->sem);
759 
760 	if (ret < 0)
761 		goto error;
762 out:
763 	return key_ref;
764 
765 error:
766 	key_put(key);
767 	key_ref = ERR_PTR(ret);
768 	goto out;
769 }
770 
771 /**
772  * key_create_or_update - Update or create and instantiate a key.
773  * @keyring_ref: A pointer to the destination keyring with possession flag.
774  * @type: The type of key.
775  * @description: The searchable description for the key.
776  * @payload: The data to use to instantiate or update the key.
777  * @plen: The length of @payload.
778  * @perm: The permissions mask for a new key.
779  * @flags: The quota flags for a new key.
780  *
781  * Search the destination keyring for a key of the same description and if one
782  * is found, update it, otherwise create and instantiate a new one and create a
783  * link to it from that keyring.
784  *
785  * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
786  * concocted.
787  *
788  * Returns a pointer to the new key if successful, -ENODEV if the key type
789  * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
790  * caller isn't permitted to modify the keyring or the LSM did not permit
791  * creation of the key.
792  *
793  * On success, the possession flag from the keyring ref will be tacked on to
794  * the key ref before it is returned.
795  */
796 key_ref_t key_create_or_update(key_ref_t keyring_ref,
797 			       const char *type,
798 			       const char *description,
799 			       const void *payload,
800 			       size_t plen,
801 			       key_perm_t perm,
802 			       unsigned long flags)
803 {
804 	struct keyring_index_key index_key = {
805 		.description	= description,
806 	};
807 	struct key_preparsed_payload prep;
808 	struct assoc_array_edit *edit;
809 	const struct cred *cred = current_cred();
810 	struct key *keyring, *key = NULL;
811 	key_ref_t key_ref;
812 	int ret;
813 	struct key_restriction *restrict_link = NULL;
814 
815 	/* look up the key type to see if it's one of the registered kernel
816 	 * types */
817 	index_key.type = key_type_lookup(type);
818 	if (IS_ERR(index_key.type)) {
819 		key_ref = ERR_PTR(-ENODEV);
820 		goto error;
821 	}
822 
823 	key_ref = ERR_PTR(-EINVAL);
824 	if (!index_key.type->instantiate ||
825 	    (!index_key.description && !index_key.type->preparse))
826 		goto error_put_type;
827 
828 	keyring = key_ref_to_ptr(keyring_ref);
829 
830 	key_check(keyring);
831 
832 	key_ref = ERR_PTR(-EPERM);
833 	if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
834 		restrict_link = keyring->restrict_link;
835 
836 	key_ref = ERR_PTR(-ENOTDIR);
837 	if (keyring->type != &key_type_keyring)
838 		goto error_put_type;
839 
840 	memset(&prep, 0, sizeof(prep));
841 	prep.data = payload;
842 	prep.datalen = plen;
843 	prep.quotalen = index_key.type->def_datalen;
844 	prep.expiry = TIME_T_MAX;
845 	if (index_key.type->preparse) {
846 		ret = index_key.type->preparse(&prep);
847 		if (ret < 0) {
848 			key_ref = ERR_PTR(ret);
849 			goto error_free_prep;
850 		}
851 		if (!index_key.description)
852 			index_key.description = prep.description;
853 		key_ref = ERR_PTR(-EINVAL);
854 		if (!index_key.description)
855 			goto error_free_prep;
856 	}
857 	index_key.desc_len = strlen(index_key.description);
858 
859 	ret = __key_link_begin(keyring, &index_key, &edit);
860 	if (ret < 0) {
861 		key_ref = ERR_PTR(ret);
862 		goto error_free_prep;
863 	}
864 
865 	if (restrict_link && restrict_link->check) {
866 		ret = restrict_link->check(keyring, index_key.type,
867 					   &prep.payload, restrict_link->key);
868 		if (ret < 0) {
869 			key_ref = ERR_PTR(ret);
870 			goto error_link_end;
871 		}
872 	}
873 
874 	/* if we're going to allocate a new key, we're going to have
875 	 * to modify the keyring */
876 	ret = key_permission(keyring_ref, KEY_NEED_WRITE);
877 	if (ret < 0) {
878 		key_ref = ERR_PTR(ret);
879 		goto error_link_end;
880 	}
881 
882 	/* if it's possible to update this type of key, search for an existing
883 	 * key of the same type and description in the destination keyring and
884 	 * update that instead if possible
885 	 */
886 	if (index_key.type->update) {
887 		key_ref = find_key_to_update(keyring_ref, &index_key);
888 		if (key_ref)
889 			goto found_matching_key;
890 	}
891 
892 	/* if the client doesn't provide, decide on the permissions we want */
893 	if (perm == KEY_PERM_UNDEF) {
894 		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
895 		perm |= KEY_USR_VIEW;
896 
897 		if (index_key.type->read)
898 			perm |= KEY_POS_READ;
899 
900 		if (index_key.type == &key_type_keyring ||
901 		    index_key.type->update)
902 			perm |= KEY_POS_WRITE;
903 	}
904 
905 	/* allocate a new key */
906 	key = key_alloc(index_key.type, index_key.description,
907 			cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
908 	if (IS_ERR(key)) {
909 		key_ref = ERR_CAST(key);
910 		goto error_link_end;
911 	}
912 
913 	/* instantiate it and link it into the target keyring */
914 	ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
915 	if (ret < 0) {
916 		key_put(key);
917 		key_ref = ERR_PTR(ret);
918 		goto error_link_end;
919 	}
920 
921 	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
922 
923 error_link_end:
924 	__key_link_end(keyring, &index_key, edit);
925 error_free_prep:
926 	if (index_key.type->preparse)
927 		index_key.type->free_preparse(&prep);
928 error_put_type:
929 	key_type_put(index_key.type);
930 error:
931 	return key_ref;
932 
933  found_matching_key:
934 	/* we found a matching key, so we're going to try to update it
935 	 * - we can drop the locks first as we have the key pinned
936 	 */
937 	__key_link_end(keyring, &index_key, edit);
938 
939 	key_ref = __key_update(key_ref, &prep);
940 	goto error_free_prep;
941 }
942 EXPORT_SYMBOL(key_create_or_update);
943 
944 /**
945  * key_update - Update a key's contents.
946  * @key_ref: The pointer (plus possession flag) to the key.
947  * @payload: The data to be used to update the key.
948  * @plen: The length of @payload.
949  *
950  * Attempt to update the contents of a key with the given payload data.  The
951  * caller must be granted Write permission on the key.  Negative keys can be
952  * instantiated by this method.
953  *
954  * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
955  * type does not support updating.  The key type may return other errors.
956  */
957 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
958 {
959 	struct key_preparsed_payload prep;
960 	struct key *key = key_ref_to_ptr(key_ref);
961 	int ret;
962 
963 	key_check(key);
964 
965 	/* the key must be writable */
966 	ret = key_permission(key_ref, KEY_NEED_WRITE);
967 	if (ret < 0)
968 		return ret;
969 
970 	/* attempt to update it if supported */
971 	if (!key->type->update)
972 		return -EOPNOTSUPP;
973 
974 	memset(&prep, 0, sizeof(prep));
975 	prep.data = payload;
976 	prep.datalen = plen;
977 	prep.quotalen = key->type->def_datalen;
978 	prep.expiry = TIME_T_MAX;
979 	if (key->type->preparse) {
980 		ret = key->type->preparse(&prep);
981 		if (ret < 0)
982 			goto error;
983 	}
984 
985 	down_write(&key->sem);
986 
987 	ret = key->type->update(key, &prep);
988 	if (ret == 0)
989 		/* updating a negative key instantiates it */
990 		clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
991 
992 	up_write(&key->sem);
993 
994 error:
995 	if (key->type->preparse)
996 		key->type->free_preparse(&prep);
997 	return ret;
998 }
999 EXPORT_SYMBOL(key_update);
1000 
1001 /**
1002  * key_revoke - Revoke a key.
1003  * @key: The key to be revoked.
1004  *
1005  * Mark a key as being revoked and ask the type to free up its resources.  The
1006  * revocation timeout is set and the key and all its links will be
1007  * automatically garbage collected after key_gc_delay amount of time if they
1008  * are not manually dealt with first.
1009  */
1010 void key_revoke(struct key *key)
1011 {
1012 	struct timespec now;
1013 	time_t time;
1014 
1015 	key_check(key);
1016 
1017 	/* make sure no one's trying to change or use the key when we mark it
1018 	 * - we tell lockdep that we might nest because we might be revoking an
1019 	 *   authorisation key whilst holding the sem on a key we've just
1020 	 *   instantiated
1021 	 */
1022 	down_write_nested(&key->sem, 1);
1023 	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
1024 	    key->type->revoke)
1025 		key->type->revoke(key);
1026 
1027 	/* set the death time to no more than the expiry time */
1028 	now = current_kernel_time();
1029 	time = now.tv_sec;
1030 	if (key->revoked_at == 0 || key->revoked_at > time) {
1031 		key->revoked_at = time;
1032 		key_schedule_gc(key->revoked_at + key_gc_delay);
1033 	}
1034 
1035 	up_write(&key->sem);
1036 }
1037 EXPORT_SYMBOL(key_revoke);
1038 
1039 /**
1040  * key_invalidate - Invalidate a key.
1041  * @key: The key to be invalidated.
1042  *
1043  * Mark a key as being invalidated and have it cleaned up immediately.  The key
1044  * is ignored by all searches and other operations from this point.
1045  */
1046 void key_invalidate(struct key *key)
1047 {
1048 	kenter("%d", key_serial(key));
1049 
1050 	key_check(key);
1051 
1052 	if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1053 		down_write_nested(&key->sem, 1);
1054 		if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
1055 			key_schedule_gc_links();
1056 		up_write(&key->sem);
1057 	}
1058 }
1059 EXPORT_SYMBOL(key_invalidate);
1060 
1061 /**
1062  * generic_key_instantiate - Simple instantiation of a key from preparsed data
1063  * @key: The key to be instantiated
1064  * @prep: The preparsed data to load.
1065  *
1066  * Instantiate a key from preparsed data.  We assume we can just copy the data
1067  * in directly and clear the old pointers.
1068  *
1069  * This can be pointed to directly by the key type instantiate op pointer.
1070  */
1071 int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1072 {
1073 	int ret;
1074 
1075 	pr_devel("==>%s()\n", __func__);
1076 
1077 	ret = key_payload_reserve(key, prep->quotalen);
1078 	if (ret == 0) {
1079 		rcu_assign_keypointer(key, prep->payload.data[0]);
1080 		key->payload.data[1] = prep->payload.data[1];
1081 		key->payload.data[2] = prep->payload.data[2];
1082 		key->payload.data[3] = prep->payload.data[3];
1083 		prep->payload.data[0] = NULL;
1084 		prep->payload.data[1] = NULL;
1085 		prep->payload.data[2] = NULL;
1086 		prep->payload.data[3] = NULL;
1087 	}
1088 	pr_devel("<==%s() = %d\n", __func__, ret);
1089 	return ret;
1090 }
1091 EXPORT_SYMBOL(generic_key_instantiate);
1092 
1093 /**
1094  * register_key_type - Register a type of key.
1095  * @ktype: The new key type.
1096  *
1097  * Register a new key type.
1098  *
1099  * Returns 0 on success or -EEXIST if a type of this name already exists.
1100  */
1101 int register_key_type(struct key_type *ktype)
1102 {
1103 	struct key_type *p;
1104 	int ret;
1105 
1106 	memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1107 
1108 	ret = -EEXIST;
1109 	down_write(&key_types_sem);
1110 
1111 	/* disallow key types with the same name */
1112 	list_for_each_entry(p, &key_types_list, link) {
1113 		if (strcmp(p->name, ktype->name) == 0)
1114 			goto out;
1115 	}
1116 
1117 	/* store the type */
1118 	list_add(&ktype->link, &key_types_list);
1119 
1120 	pr_notice("Key type %s registered\n", ktype->name);
1121 	ret = 0;
1122 
1123 out:
1124 	up_write(&key_types_sem);
1125 	return ret;
1126 }
1127 EXPORT_SYMBOL(register_key_type);
1128 
1129 /**
1130  * unregister_key_type - Unregister a type of key.
1131  * @ktype: The key type.
1132  *
1133  * Unregister a key type and mark all the extant keys of this type as dead.
1134  * Those keys of this type are then destroyed to get rid of their payloads and
1135  * they and their links will be garbage collected as soon as possible.
1136  */
1137 void unregister_key_type(struct key_type *ktype)
1138 {
1139 	down_write(&key_types_sem);
1140 	list_del_init(&ktype->link);
1141 	downgrade_write(&key_types_sem);
1142 	key_gc_keytype(ktype);
1143 	pr_notice("Key type %s unregistered\n", ktype->name);
1144 	up_read(&key_types_sem);
1145 }
1146 EXPORT_SYMBOL(unregister_key_type);
1147 
1148 /*
1149  * Initialise the key management state.
1150  */
1151 void __init key_init(void)
1152 {
1153 	/* allocate a slab in which we can store keys */
1154 	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1155 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1156 
1157 	/* add the special key types */
1158 	list_add_tail(&key_type_keyring.link, &key_types_list);
1159 	list_add_tail(&key_type_dead.link, &key_types_list);
1160 	list_add_tail(&key_type_user.link, &key_types_list);
1161 	list_add_tail(&key_type_logon.link, &key_types_list);
1162 
1163 	/* record the root user tracking */
1164 	rb_link_node(&root_key_user.node,
1165 		     NULL,
1166 		     &key_user_tree.rb_node);
1167 
1168 	rb_insert_color(&root_key_user.node,
1169 			&key_user_tree);
1170 }
1171