1 /* Basic authentication token and access key management 2 * 3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved. 4 * Written by David Howells (dhowells@redhat.com) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/poison.h> 15 #include <linux/sched.h> 16 #include <linux/slab.h> 17 #include <linux/security.h> 18 #include <linux/workqueue.h> 19 #include <linux/random.h> 20 #include <linux/err.h> 21 #include "internal.h" 22 23 struct kmem_cache *key_jar; 24 struct rb_root key_serial_tree; /* tree of keys indexed by serial */ 25 DEFINE_SPINLOCK(key_serial_lock); 26 27 struct rb_root key_user_tree; /* tree of quota records indexed by UID */ 28 DEFINE_SPINLOCK(key_user_lock); 29 30 unsigned int key_quota_root_maxkeys = 1000000; /* root's key count quota */ 31 unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */ 32 unsigned int key_quota_maxkeys = 200; /* general key count quota */ 33 unsigned int key_quota_maxbytes = 20000; /* general key space quota */ 34 35 static LIST_HEAD(key_types_list); 36 static DECLARE_RWSEM(key_types_sem); 37 38 /* We serialise key instantiation and link */ 39 DEFINE_MUTEX(key_construction_mutex); 40 41 #ifdef KEY_DEBUGGING 42 void __key_check(const struct key *key) 43 { 44 printk("__key_check: key %p {%08x} should be {%08x}\n", 45 key, key->magic, KEY_DEBUG_MAGIC); 46 BUG(); 47 } 48 #endif 49 50 /* 51 * Get the key quota record for a user, allocating a new record if one doesn't 52 * already exist. 53 */ 54 struct key_user *key_user_lookup(kuid_t uid) 55 { 56 struct key_user *candidate = NULL, *user; 57 struct rb_node *parent, **p; 58 59 try_again: 60 parent = NULL; 61 p = &key_user_tree.rb_node; 62 spin_lock(&key_user_lock); 63 64 /* search the tree for a user record with a matching UID */ 65 while (*p) { 66 parent = *p; 67 user = rb_entry(parent, struct key_user, node); 68 69 if (uid_lt(uid, user->uid)) 70 p = &(*p)->rb_left; 71 else if (uid_gt(uid, user->uid)) 72 p = &(*p)->rb_right; 73 else 74 goto found; 75 } 76 77 /* if we get here, we failed to find a match in the tree */ 78 if (!candidate) { 79 /* allocate a candidate user record if we don't already have 80 * one */ 81 spin_unlock(&key_user_lock); 82 83 user = NULL; 84 candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL); 85 if (unlikely(!candidate)) 86 goto out; 87 88 /* the allocation may have scheduled, so we need to repeat the 89 * search lest someone else added the record whilst we were 90 * asleep */ 91 goto try_again; 92 } 93 94 /* if we get here, then the user record still hadn't appeared on the 95 * second pass - so we use the candidate record */ 96 refcount_set(&candidate->usage, 1); 97 atomic_set(&candidate->nkeys, 0); 98 atomic_set(&candidate->nikeys, 0); 99 candidate->uid = uid; 100 candidate->qnkeys = 0; 101 candidate->qnbytes = 0; 102 spin_lock_init(&candidate->lock); 103 mutex_init(&candidate->cons_lock); 104 105 rb_link_node(&candidate->node, parent, p); 106 rb_insert_color(&candidate->node, &key_user_tree); 107 spin_unlock(&key_user_lock); 108 user = candidate; 109 goto out; 110 111 /* okay - we found a user record for this UID */ 112 found: 113 refcount_inc(&user->usage); 114 spin_unlock(&key_user_lock); 115 kfree(candidate); 116 out: 117 return user; 118 } 119 120 /* 121 * Dispose of a user structure 122 */ 123 void key_user_put(struct key_user *user) 124 { 125 if (refcount_dec_and_lock(&user->usage, &key_user_lock)) { 126 rb_erase(&user->node, &key_user_tree); 127 spin_unlock(&key_user_lock); 128 129 kfree(user); 130 } 131 } 132 133 /* 134 * Allocate a serial number for a key. These are assigned randomly to avoid 135 * security issues through covert channel problems. 136 */ 137 static inline void key_alloc_serial(struct key *key) 138 { 139 struct rb_node *parent, **p; 140 struct key *xkey; 141 142 /* propose a random serial number and look for a hole for it in the 143 * serial number tree */ 144 do { 145 get_random_bytes(&key->serial, sizeof(key->serial)); 146 147 key->serial >>= 1; /* negative numbers are not permitted */ 148 } while (key->serial < 3); 149 150 spin_lock(&key_serial_lock); 151 152 attempt_insertion: 153 parent = NULL; 154 p = &key_serial_tree.rb_node; 155 156 while (*p) { 157 parent = *p; 158 xkey = rb_entry(parent, struct key, serial_node); 159 160 if (key->serial < xkey->serial) 161 p = &(*p)->rb_left; 162 else if (key->serial > xkey->serial) 163 p = &(*p)->rb_right; 164 else 165 goto serial_exists; 166 } 167 168 /* we've found a suitable hole - arrange for this key to occupy it */ 169 rb_link_node(&key->serial_node, parent, p); 170 rb_insert_color(&key->serial_node, &key_serial_tree); 171 172 spin_unlock(&key_serial_lock); 173 return; 174 175 /* we found a key with the proposed serial number - walk the tree from 176 * that point looking for the next unused serial number */ 177 serial_exists: 178 for (;;) { 179 key->serial++; 180 if (key->serial < 3) { 181 key->serial = 3; 182 goto attempt_insertion; 183 } 184 185 parent = rb_next(parent); 186 if (!parent) 187 goto attempt_insertion; 188 189 xkey = rb_entry(parent, struct key, serial_node); 190 if (key->serial < xkey->serial) 191 goto attempt_insertion; 192 } 193 } 194 195 /** 196 * key_alloc - Allocate a key of the specified type. 197 * @type: The type of key to allocate. 198 * @desc: The key description to allow the key to be searched out. 199 * @uid: The owner of the new key. 200 * @gid: The group ID for the new key's group permissions. 201 * @cred: The credentials specifying UID namespace. 202 * @perm: The permissions mask of the new key. 203 * @flags: Flags specifying quota properties. 204 * @restrict_link: Optional link restriction for new keyrings. 205 * 206 * Allocate a key of the specified type with the attributes given. The key is 207 * returned in an uninstantiated state and the caller needs to instantiate the 208 * key before returning. 209 * 210 * The restrict_link structure (if not NULL) will be freed when the 211 * keyring is destroyed, so it must be dynamically allocated. 212 * 213 * The user's key count quota is updated to reflect the creation of the key and 214 * the user's key data quota has the default for the key type reserved. The 215 * instantiation function should amend this as necessary. If insufficient 216 * quota is available, -EDQUOT will be returned. 217 * 218 * The LSM security modules can prevent a key being created, in which case 219 * -EACCES will be returned. 220 * 221 * Returns a pointer to the new key if successful and an error code otherwise. 222 * 223 * Note that the caller needs to ensure the key type isn't uninstantiated. 224 * Internally this can be done by locking key_types_sem. Externally, this can 225 * be done by either never unregistering the key type, or making sure 226 * key_alloc() calls don't race with module unloading. 227 */ 228 struct key *key_alloc(struct key_type *type, const char *desc, 229 kuid_t uid, kgid_t gid, const struct cred *cred, 230 key_perm_t perm, unsigned long flags, 231 struct key_restriction *restrict_link) 232 { 233 struct key_user *user = NULL; 234 struct key *key; 235 size_t desclen, quotalen; 236 int ret; 237 238 key = ERR_PTR(-EINVAL); 239 if (!desc || !*desc) 240 goto error; 241 242 if (type->vet_description) { 243 ret = type->vet_description(desc); 244 if (ret < 0) { 245 key = ERR_PTR(ret); 246 goto error; 247 } 248 } 249 250 desclen = strlen(desc); 251 quotalen = desclen + 1 + type->def_datalen; 252 253 /* get hold of the key tracking for this user */ 254 user = key_user_lookup(uid); 255 if (!user) 256 goto no_memory_1; 257 258 /* check that the user's quota permits allocation of another key and 259 * its description */ 260 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { 261 unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ? 262 key_quota_root_maxkeys : key_quota_maxkeys; 263 unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ? 264 key_quota_root_maxbytes : key_quota_maxbytes; 265 266 spin_lock(&user->lock); 267 if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) { 268 if (user->qnkeys + 1 >= maxkeys || 269 user->qnbytes + quotalen >= maxbytes || 270 user->qnbytes + quotalen < user->qnbytes) 271 goto no_quota; 272 } 273 274 user->qnkeys++; 275 user->qnbytes += quotalen; 276 spin_unlock(&user->lock); 277 } 278 279 /* allocate and initialise the key and its description */ 280 key = kmem_cache_zalloc(key_jar, GFP_KERNEL); 281 if (!key) 282 goto no_memory_2; 283 284 key->index_key.desc_len = desclen; 285 key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL); 286 if (!key->index_key.description) 287 goto no_memory_3; 288 289 refcount_set(&key->usage, 1); 290 init_rwsem(&key->sem); 291 lockdep_set_class(&key->sem, &type->lock_class); 292 key->index_key.type = type; 293 key->user = user; 294 key->quotalen = quotalen; 295 key->datalen = type->def_datalen; 296 key->uid = uid; 297 key->gid = gid; 298 key->perm = perm; 299 key->restrict_link = restrict_link; 300 301 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) 302 key->flags |= 1 << KEY_FLAG_IN_QUOTA; 303 if (flags & KEY_ALLOC_BUILT_IN) 304 key->flags |= 1 << KEY_FLAG_BUILTIN; 305 if (flags & KEY_ALLOC_UID_KEYRING) 306 key->flags |= 1 << KEY_FLAG_UID_KEYRING; 307 308 #ifdef KEY_DEBUGGING 309 key->magic = KEY_DEBUG_MAGIC; 310 #endif 311 312 /* let the security module know about the key */ 313 ret = security_key_alloc(key, cred, flags); 314 if (ret < 0) 315 goto security_error; 316 317 /* publish the key by giving it a serial number */ 318 atomic_inc(&user->nkeys); 319 key_alloc_serial(key); 320 321 error: 322 return key; 323 324 security_error: 325 kfree(key->description); 326 kmem_cache_free(key_jar, key); 327 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { 328 spin_lock(&user->lock); 329 user->qnkeys--; 330 user->qnbytes -= quotalen; 331 spin_unlock(&user->lock); 332 } 333 key_user_put(user); 334 key = ERR_PTR(ret); 335 goto error; 336 337 no_memory_3: 338 kmem_cache_free(key_jar, key); 339 no_memory_2: 340 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { 341 spin_lock(&user->lock); 342 user->qnkeys--; 343 user->qnbytes -= quotalen; 344 spin_unlock(&user->lock); 345 } 346 key_user_put(user); 347 no_memory_1: 348 key = ERR_PTR(-ENOMEM); 349 goto error; 350 351 no_quota: 352 spin_unlock(&user->lock); 353 key_user_put(user); 354 key = ERR_PTR(-EDQUOT); 355 goto error; 356 } 357 EXPORT_SYMBOL(key_alloc); 358 359 /** 360 * key_payload_reserve - Adjust data quota reservation for the key's payload 361 * @key: The key to make the reservation for. 362 * @datalen: The amount of data payload the caller now wants. 363 * 364 * Adjust the amount of the owning user's key data quota that a key reserves. 365 * If the amount is increased, then -EDQUOT may be returned if there isn't 366 * enough free quota available. 367 * 368 * If successful, 0 is returned. 369 */ 370 int key_payload_reserve(struct key *key, size_t datalen) 371 { 372 int delta = (int)datalen - key->datalen; 373 int ret = 0; 374 375 key_check(key); 376 377 /* contemplate the quota adjustment */ 378 if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) { 379 unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ? 380 key_quota_root_maxbytes : key_quota_maxbytes; 381 382 spin_lock(&key->user->lock); 383 384 if (delta > 0 && 385 (key->user->qnbytes + delta >= maxbytes || 386 key->user->qnbytes + delta < key->user->qnbytes)) { 387 ret = -EDQUOT; 388 } 389 else { 390 key->user->qnbytes += delta; 391 key->quotalen += delta; 392 } 393 spin_unlock(&key->user->lock); 394 } 395 396 /* change the recorded data length if that didn't generate an error */ 397 if (ret == 0) 398 key->datalen = datalen; 399 400 return ret; 401 } 402 EXPORT_SYMBOL(key_payload_reserve); 403 404 /* 405 * Instantiate a key and link it into the target keyring atomically. Must be 406 * called with the target keyring's semaphore writelocked. The target key's 407 * semaphore need not be locked as instantiation is serialised by 408 * key_construction_mutex. 409 */ 410 static int __key_instantiate_and_link(struct key *key, 411 struct key_preparsed_payload *prep, 412 struct key *keyring, 413 struct key *authkey, 414 struct assoc_array_edit **_edit) 415 { 416 int ret, awaken; 417 418 key_check(key); 419 key_check(keyring); 420 421 awaken = 0; 422 ret = -EBUSY; 423 424 mutex_lock(&key_construction_mutex); 425 426 /* can't instantiate twice */ 427 if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) { 428 /* instantiate the key */ 429 ret = key->type->instantiate(key, prep); 430 431 if (ret == 0) { 432 /* mark the key as being instantiated */ 433 atomic_inc(&key->user->nikeys); 434 set_bit(KEY_FLAG_INSTANTIATED, &key->flags); 435 436 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) 437 awaken = 1; 438 439 /* and link it into the destination keyring */ 440 if (keyring) { 441 if (test_bit(KEY_FLAG_KEEP, &keyring->flags)) 442 set_bit(KEY_FLAG_KEEP, &key->flags); 443 444 __key_link(key, _edit); 445 } 446 447 /* disable the authorisation key */ 448 if (authkey) 449 key_revoke(authkey); 450 451 if (prep->expiry != TIME_T_MAX) { 452 key->expiry = prep->expiry; 453 key_schedule_gc(prep->expiry + key_gc_delay); 454 } 455 } 456 } 457 458 mutex_unlock(&key_construction_mutex); 459 460 /* wake up anyone waiting for a key to be constructed */ 461 if (awaken) 462 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT); 463 464 return ret; 465 } 466 467 /** 468 * key_instantiate_and_link - Instantiate a key and link it into the keyring. 469 * @key: The key to instantiate. 470 * @data: The data to use to instantiate the keyring. 471 * @datalen: The length of @data. 472 * @keyring: Keyring to create a link in on success (or NULL). 473 * @authkey: The authorisation token permitting instantiation. 474 * 475 * Instantiate a key that's in the uninstantiated state using the provided data 476 * and, if successful, link it in to the destination keyring if one is 477 * supplied. 478 * 479 * If successful, 0 is returned, the authorisation token is revoked and anyone 480 * waiting for the key is woken up. If the key was already instantiated, 481 * -EBUSY will be returned. 482 */ 483 int key_instantiate_and_link(struct key *key, 484 const void *data, 485 size_t datalen, 486 struct key *keyring, 487 struct key *authkey) 488 { 489 struct key_preparsed_payload prep; 490 struct assoc_array_edit *edit; 491 int ret; 492 493 memset(&prep, 0, sizeof(prep)); 494 prep.data = data; 495 prep.datalen = datalen; 496 prep.quotalen = key->type->def_datalen; 497 prep.expiry = TIME_T_MAX; 498 if (key->type->preparse) { 499 ret = key->type->preparse(&prep); 500 if (ret < 0) 501 goto error; 502 } 503 504 if (keyring) { 505 ret = __key_link_begin(keyring, &key->index_key, &edit); 506 if (ret < 0) 507 goto error; 508 509 if (keyring->restrict_link && keyring->restrict_link->check) { 510 struct key_restriction *keyres = keyring->restrict_link; 511 512 ret = keyres->check(keyring, key->type, &prep.payload, 513 keyres->key); 514 if (ret < 0) 515 goto error_link_end; 516 } 517 } 518 519 ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit); 520 521 error_link_end: 522 if (keyring) 523 __key_link_end(keyring, &key->index_key, edit); 524 525 error: 526 if (key->type->preparse) 527 key->type->free_preparse(&prep); 528 return ret; 529 } 530 531 EXPORT_SYMBOL(key_instantiate_and_link); 532 533 /** 534 * key_reject_and_link - Negatively instantiate a key and link it into the keyring. 535 * @key: The key to instantiate. 536 * @timeout: The timeout on the negative key. 537 * @error: The error to return when the key is hit. 538 * @keyring: Keyring to create a link in on success (or NULL). 539 * @authkey: The authorisation token permitting instantiation. 540 * 541 * Negatively instantiate a key that's in the uninstantiated state and, if 542 * successful, set its timeout and stored error and link it in to the 543 * destination keyring if one is supplied. The key and any links to the key 544 * will be automatically garbage collected after the timeout expires. 545 * 546 * Negative keys are used to rate limit repeated request_key() calls by causing 547 * them to return the stored error code (typically ENOKEY) until the negative 548 * key expires. 549 * 550 * If successful, 0 is returned, the authorisation token is revoked and anyone 551 * waiting for the key is woken up. If the key was already instantiated, 552 * -EBUSY will be returned. 553 */ 554 int key_reject_and_link(struct key *key, 555 unsigned timeout, 556 unsigned error, 557 struct key *keyring, 558 struct key *authkey) 559 { 560 struct assoc_array_edit *edit; 561 struct timespec now; 562 int ret, awaken, link_ret = 0; 563 564 key_check(key); 565 key_check(keyring); 566 567 awaken = 0; 568 ret = -EBUSY; 569 570 if (keyring) { 571 if (keyring->restrict_link) 572 return -EPERM; 573 574 link_ret = __key_link_begin(keyring, &key->index_key, &edit); 575 } 576 577 mutex_lock(&key_construction_mutex); 578 579 /* can't instantiate twice */ 580 if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) { 581 /* mark the key as being negatively instantiated */ 582 atomic_inc(&key->user->nikeys); 583 key->reject_error = -error; 584 smp_wmb(); 585 set_bit(KEY_FLAG_NEGATIVE, &key->flags); 586 set_bit(KEY_FLAG_INSTANTIATED, &key->flags); 587 now = current_kernel_time(); 588 key->expiry = now.tv_sec + timeout; 589 key_schedule_gc(key->expiry + key_gc_delay); 590 591 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) 592 awaken = 1; 593 594 ret = 0; 595 596 /* and link it into the destination keyring */ 597 if (keyring && link_ret == 0) 598 __key_link(key, &edit); 599 600 /* disable the authorisation key */ 601 if (authkey) 602 key_revoke(authkey); 603 } 604 605 mutex_unlock(&key_construction_mutex); 606 607 if (keyring && link_ret == 0) 608 __key_link_end(keyring, &key->index_key, edit); 609 610 /* wake up anyone waiting for a key to be constructed */ 611 if (awaken) 612 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT); 613 614 return ret == 0 ? link_ret : ret; 615 } 616 EXPORT_SYMBOL(key_reject_and_link); 617 618 /** 619 * key_put - Discard a reference to a key. 620 * @key: The key to discard a reference from. 621 * 622 * Discard a reference to a key, and when all the references are gone, we 623 * schedule the cleanup task to come and pull it out of the tree in process 624 * context at some later time. 625 */ 626 void key_put(struct key *key) 627 { 628 if (key) { 629 key_check(key); 630 631 if (refcount_dec_and_test(&key->usage)) 632 schedule_work(&key_gc_work); 633 } 634 } 635 EXPORT_SYMBOL(key_put); 636 637 /* 638 * Find a key by its serial number. 639 */ 640 struct key *key_lookup(key_serial_t id) 641 { 642 struct rb_node *n; 643 struct key *key; 644 645 spin_lock(&key_serial_lock); 646 647 /* search the tree for the specified key */ 648 n = key_serial_tree.rb_node; 649 while (n) { 650 key = rb_entry(n, struct key, serial_node); 651 652 if (id < key->serial) 653 n = n->rb_left; 654 else if (id > key->serial) 655 n = n->rb_right; 656 else 657 goto found; 658 } 659 660 not_found: 661 key = ERR_PTR(-ENOKEY); 662 goto error; 663 664 found: 665 /* A key is allowed to be looked up only if someone still owns a 666 * reference to it - otherwise it's awaiting the gc. 667 */ 668 if (!refcount_inc_not_zero(&key->usage)) 669 goto not_found; 670 671 error: 672 spin_unlock(&key_serial_lock); 673 return key; 674 } 675 676 /* 677 * Find and lock the specified key type against removal. 678 * 679 * We return with the sem read-locked if successful. If the type wasn't 680 * available -ENOKEY is returned instead. 681 */ 682 struct key_type *key_type_lookup(const char *type) 683 { 684 struct key_type *ktype; 685 686 down_read(&key_types_sem); 687 688 /* look up the key type to see if it's one of the registered kernel 689 * types */ 690 list_for_each_entry(ktype, &key_types_list, link) { 691 if (strcmp(ktype->name, type) == 0) 692 goto found_kernel_type; 693 } 694 695 up_read(&key_types_sem); 696 ktype = ERR_PTR(-ENOKEY); 697 698 found_kernel_type: 699 return ktype; 700 } 701 702 void key_set_timeout(struct key *key, unsigned timeout) 703 { 704 struct timespec now; 705 time_t expiry = 0; 706 707 /* make the changes with the locks held to prevent races */ 708 down_write(&key->sem); 709 710 if (timeout > 0) { 711 now = current_kernel_time(); 712 expiry = now.tv_sec + timeout; 713 } 714 715 key->expiry = expiry; 716 key_schedule_gc(key->expiry + key_gc_delay); 717 718 up_write(&key->sem); 719 } 720 EXPORT_SYMBOL_GPL(key_set_timeout); 721 722 /* 723 * Unlock a key type locked by key_type_lookup(). 724 */ 725 void key_type_put(struct key_type *ktype) 726 { 727 up_read(&key_types_sem); 728 } 729 730 /* 731 * Attempt to update an existing key. 732 * 733 * The key is given to us with an incremented refcount that we need to discard 734 * if we get an error. 735 */ 736 static inline key_ref_t __key_update(key_ref_t key_ref, 737 struct key_preparsed_payload *prep) 738 { 739 struct key *key = key_ref_to_ptr(key_ref); 740 int ret; 741 742 /* need write permission on the key to update it */ 743 ret = key_permission(key_ref, KEY_NEED_WRITE); 744 if (ret < 0) 745 goto error; 746 747 ret = -EEXIST; 748 if (!key->type->update) 749 goto error; 750 751 down_write(&key->sem); 752 753 ret = key->type->update(key, prep); 754 if (ret == 0) 755 /* updating a negative key instantiates it */ 756 clear_bit(KEY_FLAG_NEGATIVE, &key->flags); 757 758 up_write(&key->sem); 759 760 if (ret < 0) 761 goto error; 762 out: 763 return key_ref; 764 765 error: 766 key_put(key); 767 key_ref = ERR_PTR(ret); 768 goto out; 769 } 770 771 /** 772 * key_create_or_update - Update or create and instantiate a key. 773 * @keyring_ref: A pointer to the destination keyring with possession flag. 774 * @type: The type of key. 775 * @description: The searchable description for the key. 776 * @payload: The data to use to instantiate or update the key. 777 * @plen: The length of @payload. 778 * @perm: The permissions mask for a new key. 779 * @flags: The quota flags for a new key. 780 * 781 * Search the destination keyring for a key of the same description and if one 782 * is found, update it, otherwise create and instantiate a new one and create a 783 * link to it from that keyring. 784 * 785 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be 786 * concocted. 787 * 788 * Returns a pointer to the new key if successful, -ENODEV if the key type 789 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the 790 * caller isn't permitted to modify the keyring or the LSM did not permit 791 * creation of the key. 792 * 793 * On success, the possession flag from the keyring ref will be tacked on to 794 * the key ref before it is returned. 795 */ 796 key_ref_t key_create_or_update(key_ref_t keyring_ref, 797 const char *type, 798 const char *description, 799 const void *payload, 800 size_t plen, 801 key_perm_t perm, 802 unsigned long flags) 803 { 804 struct keyring_index_key index_key = { 805 .description = description, 806 }; 807 struct key_preparsed_payload prep; 808 struct assoc_array_edit *edit; 809 const struct cred *cred = current_cred(); 810 struct key *keyring, *key = NULL; 811 key_ref_t key_ref; 812 int ret; 813 struct key_restriction *restrict_link = NULL; 814 815 /* look up the key type to see if it's one of the registered kernel 816 * types */ 817 index_key.type = key_type_lookup(type); 818 if (IS_ERR(index_key.type)) { 819 key_ref = ERR_PTR(-ENODEV); 820 goto error; 821 } 822 823 key_ref = ERR_PTR(-EINVAL); 824 if (!index_key.type->instantiate || 825 (!index_key.description && !index_key.type->preparse)) 826 goto error_put_type; 827 828 keyring = key_ref_to_ptr(keyring_ref); 829 830 key_check(keyring); 831 832 key_ref = ERR_PTR(-EPERM); 833 if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION)) 834 restrict_link = keyring->restrict_link; 835 836 key_ref = ERR_PTR(-ENOTDIR); 837 if (keyring->type != &key_type_keyring) 838 goto error_put_type; 839 840 memset(&prep, 0, sizeof(prep)); 841 prep.data = payload; 842 prep.datalen = plen; 843 prep.quotalen = index_key.type->def_datalen; 844 prep.expiry = TIME_T_MAX; 845 if (index_key.type->preparse) { 846 ret = index_key.type->preparse(&prep); 847 if (ret < 0) { 848 key_ref = ERR_PTR(ret); 849 goto error_free_prep; 850 } 851 if (!index_key.description) 852 index_key.description = prep.description; 853 key_ref = ERR_PTR(-EINVAL); 854 if (!index_key.description) 855 goto error_free_prep; 856 } 857 index_key.desc_len = strlen(index_key.description); 858 859 ret = __key_link_begin(keyring, &index_key, &edit); 860 if (ret < 0) { 861 key_ref = ERR_PTR(ret); 862 goto error_free_prep; 863 } 864 865 if (restrict_link && restrict_link->check) { 866 ret = restrict_link->check(keyring, index_key.type, 867 &prep.payload, restrict_link->key); 868 if (ret < 0) { 869 key_ref = ERR_PTR(ret); 870 goto error_link_end; 871 } 872 } 873 874 /* if we're going to allocate a new key, we're going to have 875 * to modify the keyring */ 876 ret = key_permission(keyring_ref, KEY_NEED_WRITE); 877 if (ret < 0) { 878 key_ref = ERR_PTR(ret); 879 goto error_link_end; 880 } 881 882 /* if it's possible to update this type of key, search for an existing 883 * key of the same type and description in the destination keyring and 884 * update that instead if possible 885 */ 886 if (index_key.type->update) { 887 key_ref = find_key_to_update(keyring_ref, &index_key); 888 if (key_ref) 889 goto found_matching_key; 890 } 891 892 /* if the client doesn't provide, decide on the permissions we want */ 893 if (perm == KEY_PERM_UNDEF) { 894 perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR; 895 perm |= KEY_USR_VIEW; 896 897 if (index_key.type->read) 898 perm |= KEY_POS_READ; 899 900 if (index_key.type == &key_type_keyring || 901 index_key.type->update) 902 perm |= KEY_POS_WRITE; 903 } 904 905 /* allocate a new key */ 906 key = key_alloc(index_key.type, index_key.description, 907 cred->fsuid, cred->fsgid, cred, perm, flags, NULL); 908 if (IS_ERR(key)) { 909 key_ref = ERR_CAST(key); 910 goto error_link_end; 911 } 912 913 /* instantiate it and link it into the target keyring */ 914 ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit); 915 if (ret < 0) { 916 key_put(key); 917 key_ref = ERR_PTR(ret); 918 goto error_link_end; 919 } 920 921 key_ref = make_key_ref(key, is_key_possessed(keyring_ref)); 922 923 error_link_end: 924 __key_link_end(keyring, &index_key, edit); 925 error_free_prep: 926 if (index_key.type->preparse) 927 index_key.type->free_preparse(&prep); 928 error_put_type: 929 key_type_put(index_key.type); 930 error: 931 return key_ref; 932 933 found_matching_key: 934 /* we found a matching key, so we're going to try to update it 935 * - we can drop the locks first as we have the key pinned 936 */ 937 __key_link_end(keyring, &index_key, edit); 938 939 key_ref = __key_update(key_ref, &prep); 940 goto error_free_prep; 941 } 942 EXPORT_SYMBOL(key_create_or_update); 943 944 /** 945 * key_update - Update a key's contents. 946 * @key_ref: The pointer (plus possession flag) to the key. 947 * @payload: The data to be used to update the key. 948 * @plen: The length of @payload. 949 * 950 * Attempt to update the contents of a key with the given payload data. The 951 * caller must be granted Write permission on the key. Negative keys can be 952 * instantiated by this method. 953 * 954 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key 955 * type does not support updating. The key type may return other errors. 956 */ 957 int key_update(key_ref_t key_ref, const void *payload, size_t plen) 958 { 959 struct key_preparsed_payload prep; 960 struct key *key = key_ref_to_ptr(key_ref); 961 int ret; 962 963 key_check(key); 964 965 /* the key must be writable */ 966 ret = key_permission(key_ref, KEY_NEED_WRITE); 967 if (ret < 0) 968 return ret; 969 970 /* attempt to update it if supported */ 971 if (!key->type->update) 972 return -EOPNOTSUPP; 973 974 memset(&prep, 0, sizeof(prep)); 975 prep.data = payload; 976 prep.datalen = plen; 977 prep.quotalen = key->type->def_datalen; 978 prep.expiry = TIME_T_MAX; 979 if (key->type->preparse) { 980 ret = key->type->preparse(&prep); 981 if (ret < 0) 982 goto error; 983 } 984 985 down_write(&key->sem); 986 987 ret = key->type->update(key, &prep); 988 if (ret == 0) 989 /* updating a negative key instantiates it */ 990 clear_bit(KEY_FLAG_NEGATIVE, &key->flags); 991 992 up_write(&key->sem); 993 994 error: 995 if (key->type->preparse) 996 key->type->free_preparse(&prep); 997 return ret; 998 } 999 EXPORT_SYMBOL(key_update); 1000 1001 /** 1002 * key_revoke - Revoke a key. 1003 * @key: The key to be revoked. 1004 * 1005 * Mark a key as being revoked and ask the type to free up its resources. The 1006 * revocation timeout is set and the key and all its links will be 1007 * automatically garbage collected after key_gc_delay amount of time if they 1008 * are not manually dealt with first. 1009 */ 1010 void key_revoke(struct key *key) 1011 { 1012 struct timespec now; 1013 time_t time; 1014 1015 key_check(key); 1016 1017 /* make sure no one's trying to change or use the key when we mark it 1018 * - we tell lockdep that we might nest because we might be revoking an 1019 * authorisation key whilst holding the sem on a key we've just 1020 * instantiated 1021 */ 1022 down_write_nested(&key->sem, 1); 1023 if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) && 1024 key->type->revoke) 1025 key->type->revoke(key); 1026 1027 /* set the death time to no more than the expiry time */ 1028 now = current_kernel_time(); 1029 time = now.tv_sec; 1030 if (key->revoked_at == 0 || key->revoked_at > time) { 1031 key->revoked_at = time; 1032 key_schedule_gc(key->revoked_at + key_gc_delay); 1033 } 1034 1035 up_write(&key->sem); 1036 } 1037 EXPORT_SYMBOL(key_revoke); 1038 1039 /** 1040 * key_invalidate - Invalidate a key. 1041 * @key: The key to be invalidated. 1042 * 1043 * Mark a key as being invalidated and have it cleaned up immediately. The key 1044 * is ignored by all searches and other operations from this point. 1045 */ 1046 void key_invalidate(struct key *key) 1047 { 1048 kenter("%d", key_serial(key)); 1049 1050 key_check(key); 1051 1052 if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) { 1053 down_write_nested(&key->sem, 1); 1054 if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags)) 1055 key_schedule_gc_links(); 1056 up_write(&key->sem); 1057 } 1058 } 1059 EXPORT_SYMBOL(key_invalidate); 1060 1061 /** 1062 * generic_key_instantiate - Simple instantiation of a key from preparsed data 1063 * @key: The key to be instantiated 1064 * @prep: The preparsed data to load. 1065 * 1066 * Instantiate a key from preparsed data. We assume we can just copy the data 1067 * in directly and clear the old pointers. 1068 * 1069 * This can be pointed to directly by the key type instantiate op pointer. 1070 */ 1071 int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep) 1072 { 1073 int ret; 1074 1075 pr_devel("==>%s()\n", __func__); 1076 1077 ret = key_payload_reserve(key, prep->quotalen); 1078 if (ret == 0) { 1079 rcu_assign_keypointer(key, prep->payload.data[0]); 1080 key->payload.data[1] = prep->payload.data[1]; 1081 key->payload.data[2] = prep->payload.data[2]; 1082 key->payload.data[3] = prep->payload.data[3]; 1083 prep->payload.data[0] = NULL; 1084 prep->payload.data[1] = NULL; 1085 prep->payload.data[2] = NULL; 1086 prep->payload.data[3] = NULL; 1087 } 1088 pr_devel("<==%s() = %d\n", __func__, ret); 1089 return ret; 1090 } 1091 EXPORT_SYMBOL(generic_key_instantiate); 1092 1093 /** 1094 * register_key_type - Register a type of key. 1095 * @ktype: The new key type. 1096 * 1097 * Register a new key type. 1098 * 1099 * Returns 0 on success or -EEXIST if a type of this name already exists. 1100 */ 1101 int register_key_type(struct key_type *ktype) 1102 { 1103 struct key_type *p; 1104 int ret; 1105 1106 memset(&ktype->lock_class, 0, sizeof(ktype->lock_class)); 1107 1108 ret = -EEXIST; 1109 down_write(&key_types_sem); 1110 1111 /* disallow key types with the same name */ 1112 list_for_each_entry(p, &key_types_list, link) { 1113 if (strcmp(p->name, ktype->name) == 0) 1114 goto out; 1115 } 1116 1117 /* store the type */ 1118 list_add(&ktype->link, &key_types_list); 1119 1120 pr_notice("Key type %s registered\n", ktype->name); 1121 ret = 0; 1122 1123 out: 1124 up_write(&key_types_sem); 1125 return ret; 1126 } 1127 EXPORT_SYMBOL(register_key_type); 1128 1129 /** 1130 * unregister_key_type - Unregister a type of key. 1131 * @ktype: The key type. 1132 * 1133 * Unregister a key type and mark all the extant keys of this type as dead. 1134 * Those keys of this type are then destroyed to get rid of their payloads and 1135 * they and their links will be garbage collected as soon as possible. 1136 */ 1137 void unregister_key_type(struct key_type *ktype) 1138 { 1139 down_write(&key_types_sem); 1140 list_del_init(&ktype->link); 1141 downgrade_write(&key_types_sem); 1142 key_gc_keytype(ktype); 1143 pr_notice("Key type %s unregistered\n", ktype->name); 1144 up_read(&key_types_sem); 1145 } 1146 EXPORT_SYMBOL(unregister_key_type); 1147 1148 /* 1149 * Initialise the key management state. 1150 */ 1151 void __init key_init(void) 1152 { 1153 /* allocate a slab in which we can store keys */ 1154 key_jar = kmem_cache_create("key_jar", sizeof(struct key), 1155 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 1156 1157 /* add the special key types */ 1158 list_add_tail(&key_type_keyring.link, &key_types_list); 1159 list_add_tail(&key_type_dead.link, &key_types_list); 1160 list_add_tail(&key_type_user.link, &key_types_list); 1161 list_add_tail(&key_type_logon.link, &key_types_list); 1162 1163 /* record the root user tracking */ 1164 rb_link_node(&root_key_user.node, 1165 NULL, 1166 &key_user_tree.rb_node); 1167 1168 rb_insert_color(&root_key_user.node, 1169 &key_user_tree); 1170 } 1171