1 /* Basic authentication token and access key management 2 * 3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved. 4 * Written by David Howells (dhowells@redhat.com) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/poison.h> 15 #include <linux/sched.h> 16 #include <linux/slab.h> 17 #include <linux/security.h> 18 #include <linux/workqueue.h> 19 #include <linux/random.h> 20 #include <linux/err.h> 21 #include "internal.h" 22 23 struct kmem_cache *key_jar; 24 struct rb_root key_serial_tree; /* tree of keys indexed by serial */ 25 DEFINE_SPINLOCK(key_serial_lock); 26 27 struct rb_root key_user_tree; /* tree of quota records indexed by UID */ 28 DEFINE_SPINLOCK(key_user_lock); 29 30 unsigned int key_quota_root_maxkeys = 1000000; /* root's key count quota */ 31 unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */ 32 unsigned int key_quota_maxkeys = 200; /* general key count quota */ 33 unsigned int key_quota_maxbytes = 20000; /* general key space quota */ 34 35 static LIST_HEAD(key_types_list); 36 static DECLARE_RWSEM(key_types_sem); 37 38 /* We serialise key instantiation and link */ 39 DEFINE_MUTEX(key_construction_mutex); 40 41 #ifdef KEY_DEBUGGING 42 void __key_check(const struct key *key) 43 { 44 printk("__key_check: key %p {%08x} should be {%08x}\n", 45 key, key->magic, KEY_DEBUG_MAGIC); 46 BUG(); 47 } 48 #endif 49 50 /* 51 * Get the key quota record for a user, allocating a new record if one doesn't 52 * already exist. 53 */ 54 struct key_user *key_user_lookup(kuid_t uid) 55 { 56 struct key_user *candidate = NULL, *user; 57 struct rb_node *parent = NULL; 58 struct rb_node **p; 59 60 try_again: 61 p = &key_user_tree.rb_node; 62 spin_lock(&key_user_lock); 63 64 /* search the tree for a user record with a matching UID */ 65 while (*p) { 66 parent = *p; 67 user = rb_entry(parent, struct key_user, node); 68 69 if (uid_lt(uid, user->uid)) 70 p = &(*p)->rb_left; 71 else if (uid_gt(uid, user->uid)) 72 p = &(*p)->rb_right; 73 else 74 goto found; 75 } 76 77 /* if we get here, we failed to find a match in the tree */ 78 if (!candidate) { 79 /* allocate a candidate user record if we don't already have 80 * one */ 81 spin_unlock(&key_user_lock); 82 83 user = NULL; 84 candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL); 85 if (unlikely(!candidate)) 86 goto out; 87 88 /* the allocation may have scheduled, so we need to repeat the 89 * search lest someone else added the record whilst we were 90 * asleep */ 91 goto try_again; 92 } 93 94 /* if we get here, then the user record still hadn't appeared on the 95 * second pass - so we use the candidate record */ 96 atomic_set(&candidate->usage, 1); 97 atomic_set(&candidate->nkeys, 0); 98 atomic_set(&candidate->nikeys, 0); 99 candidate->uid = uid; 100 candidate->qnkeys = 0; 101 candidate->qnbytes = 0; 102 spin_lock_init(&candidate->lock); 103 mutex_init(&candidate->cons_lock); 104 105 rb_link_node(&candidate->node, parent, p); 106 rb_insert_color(&candidate->node, &key_user_tree); 107 spin_unlock(&key_user_lock); 108 user = candidate; 109 goto out; 110 111 /* okay - we found a user record for this UID */ 112 found: 113 atomic_inc(&user->usage); 114 spin_unlock(&key_user_lock); 115 kfree(candidate); 116 out: 117 return user; 118 } 119 120 /* 121 * Dispose of a user structure 122 */ 123 void key_user_put(struct key_user *user) 124 { 125 if (atomic_dec_and_lock(&user->usage, &key_user_lock)) { 126 rb_erase(&user->node, &key_user_tree); 127 spin_unlock(&key_user_lock); 128 129 kfree(user); 130 } 131 } 132 133 /* 134 * Allocate a serial number for a key. These are assigned randomly to avoid 135 * security issues through covert channel problems. 136 */ 137 static inline void key_alloc_serial(struct key *key) 138 { 139 struct rb_node *parent, **p; 140 struct key *xkey; 141 142 /* propose a random serial number and look for a hole for it in the 143 * serial number tree */ 144 do { 145 get_random_bytes(&key->serial, sizeof(key->serial)); 146 147 key->serial >>= 1; /* negative numbers are not permitted */ 148 } while (key->serial < 3); 149 150 spin_lock(&key_serial_lock); 151 152 attempt_insertion: 153 parent = NULL; 154 p = &key_serial_tree.rb_node; 155 156 while (*p) { 157 parent = *p; 158 xkey = rb_entry(parent, struct key, serial_node); 159 160 if (key->serial < xkey->serial) 161 p = &(*p)->rb_left; 162 else if (key->serial > xkey->serial) 163 p = &(*p)->rb_right; 164 else 165 goto serial_exists; 166 } 167 168 /* we've found a suitable hole - arrange for this key to occupy it */ 169 rb_link_node(&key->serial_node, parent, p); 170 rb_insert_color(&key->serial_node, &key_serial_tree); 171 172 spin_unlock(&key_serial_lock); 173 return; 174 175 /* we found a key with the proposed serial number - walk the tree from 176 * that point looking for the next unused serial number */ 177 serial_exists: 178 for (;;) { 179 key->serial++; 180 if (key->serial < 3) { 181 key->serial = 3; 182 goto attempt_insertion; 183 } 184 185 parent = rb_next(parent); 186 if (!parent) 187 goto attempt_insertion; 188 189 xkey = rb_entry(parent, struct key, serial_node); 190 if (key->serial < xkey->serial) 191 goto attempt_insertion; 192 } 193 } 194 195 /** 196 * key_alloc - Allocate a key of the specified type. 197 * @type: The type of key to allocate. 198 * @desc: The key description to allow the key to be searched out. 199 * @uid: The owner of the new key. 200 * @gid: The group ID for the new key's group permissions. 201 * @cred: The credentials specifying UID namespace. 202 * @perm: The permissions mask of the new key. 203 * @flags: Flags specifying quota properties. 204 * 205 * Allocate a key of the specified type with the attributes given. The key is 206 * returned in an uninstantiated state and the caller needs to instantiate the 207 * key before returning. 208 * 209 * The user's key count quota is updated to reflect the creation of the key and 210 * the user's key data quota has the default for the key type reserved. The 211 * instantiation function should amend this as necessary. If insufficient 212 * quota is available, -EDQUOT will be returned. 213 * 214 * The LSM security modules can prevent a key being created, in which case 215 * -EACCES will be returned. 216 * 217 * Returns a pointer to the new key if successful and an error code otherwise. 218 * 219 * Note that the caller needs to ensure the key type isn't uninstantiated. 220 * Internally this can be done by locking key_types_sem. Externally, this can 221 * be done by either never unregistering the key type, or making sure 222 * key_alloc() calls don't race with module unloading. 223 */ 224 struct key *key_alloc(struct key_type *type, const char *desc, 225 kuid_t uid, kgid_t gid, const struct cred *cred, 226 key_perm_t perm, unsigned long flags) 227 { 228 struct key_user *user = NULL; 229 struct key *key; 230 size_t desclen, quotalen; 231 int ret; 232 233 key = ERR_PTR(-EINVAL); 234 if (!desc || !*desc) 235 goto error; 236 237 if (type->vet_description) { 238 ret = type->vet_description(desc); 239 if (ret < 0) { 240 key = ERR_PTR(ret); 241 goto error; 242 } 243 } 244 245 desclen = strlen(desc); 246 quotalen = desclen + 1 + type->def_datalen; 247 248 /* get hold of the key tracking for this user */ 249 user = key_user_lookup(uid); 250 if (!user) 251 goto no_memory_1; 252 253 /* check that the user's quota permits allocation of another key and 254 * its description */ 255 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { 256 unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ? 257 key_quota_root_maxkeys : key_quota_maxkeys; 258 unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ? 259 key_quota_root_maxbytes : key_quota_maxbytes; 260 261 spin_lock(&user->lock); 262 if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) { 263 if (user->qnkeys + 1 >= maxkeys || 264 user->qnbytes + quotalen >= maxbytes || 265 user->qnbytes + quotalen < user->qnbytes) 266 goto no_quota; 267 } 268 269 user->qnkeys++; 270 user->qnbytes += quotalen; 271 spin_unlock(&user->lock); 272 } 273 274 /* allocate and initialise the key and its description */ 275 key = kmem_cache_zalloc(key_jar, GFP_KERNEL); 276 if (!key) 277 goto no_memory_2; 278 279 key->index_key.desc_len = desclen; 280 key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL); 281 if (!key->index_key.description) 282 goto no_memory_3; 283 284 atomic_set(&key->usage, 1); 285 init_rwsem(&key->sem); 286 lockdep_set_class(&key->sem, &type->lock_class); 287 key->index_key.type = type; 288 key->user = user; 289 key->quotalen = quotalen; 290 key->datalen = type->def_datalen; 291 key->uid = uid; 292 key->gid = gid; 293 key->perm = perm; 294 295 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) 296 key->flags |= 1 << KEY_FLAG_IN_QUOTA; 297 if (flags & KEY_ALLOC_TRUSTED) 298 key->flags |= 1 << KEY_FLAG_TRUSTED; 299 300 #ifdef KEY_DEBUGGING 301 key->magic = KEY_DEBUG_MAGIC; 302 #endif 303 304 /* let the security module know about the key */ 305 ret = security_key_alloc(key, cred, flags); 306 if (ret < 0) 307 goto security_error; 308 309 /* publish the key by giving it a serial number */ 310 atomic_inc(&user->nkeys); 311 key_alloc_serial(key); 312 313 error: 314 return key; 315 316 security_error: 317 kfree(key->description); 318 kmem_cache_free(key_jar, key); 319 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { 320 spin_lock(&user->lock); 321 user->qnkeys--; 322 user->qnbytes -= quotalen; 323 spin_unlock(&user->lock); 324 } 325 key_user_put(user); 326 key = ERR_PTR(ret); 327 goto error; 328 329 no_memory_3: 330 kmem_cache_free(key_jar, key); 331 no_memory_2: 332 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { 333 spin_lock(&user->lock); 334 user->qnkeys--; 335 user->qnbytes -= quotalen; 336 spin_unlock(&user->lock); 337 } 338 key_user_put(user); 339 no_memory_1: 340 key = ERR_PTR(-ENOMEM); 341 goto error; 342 343 no_quota: 344 spin_unlock(&user->lock); 345 key_user_put(user); 346 key = ERR_PTR(-EDQUOT); 347 goto error; 348 } 349 EXPORT_SYMBOL(key_alloc); 350 351 /** 352 * key_payload_reserve - Adjust data quota reservation for the key's payload 353 * @key: The key to make the reservation for. 354 * @datalen: The amount of data payload the caller now wants. 355 * 356 * Adjust the amount of the owning user's key data quota that a key reserves. 357 * If the amount is increased, then -EDQUOT may be returned if there isn't 358 * enough free quota available. 359 * 360 * If successful, 0 is returned. 361 */ 362 int key_payload_reserve(struct key *key, size_t datalen) 363 { 364 int delta = (int)datalen - key->datalen; 365 int ret = 0; 366 367 key_check(key); 368 369 /* contemplate the quota adjustment */ 370 if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) { 371 unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ? 372 key_quota_root_maxbytes : key_quota_maxbytes; 373 374 spin_lock(&key->user->lock); 375 376 if (delta > 0 && 377 (key->user->qnbytes + delta >= maxbytes || 378 key->user->qnbytes + delta < key->user->qnbytes)) { 379 ret = -EDQUOT; 380 } 381 else { 382 key->user->qnbytes += delta; 383 key->quotalen += delta; 384 } 385 spin_unlock(&key->user->lock); 386 } 387 388 /* change the recorded data length if that didn't generate an error */ 389 if (ret == 0) 390 key->datalen = datalen; 391 392 return ret; 393 } 394 EXPORT_SYMBOL(key_payload_reserve); 395 396 /* 397 * Instantiate a key and link it into the target keyring atomically. Must be 398 * called with the target keyring's semaphore writelocked. The target key's 399 * semaphore need not be locked as instantiation is serialised by 400 * key_construction_mutex. 401 */ 402 static int __key_instantiate_and_link(struct key *key, 403 struct key_preparsed_payload *prep, 404 struct key *keyring, 405 struct key *authkey, 406 struct assoc_array_edit **_edit) 407 { 408 int ret, awaken; 409 410 key_check(key); 411 key_check(keyring); 412 413 awaken = 0; 414 ret = -EBUSY; 415 416 mutex_lock(&key_construction_mutex); 417 418 /* can't instantiate twice */ 419 if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) { 420 /* instantiate the key */ 421 ret = key->type->instantiate(key, prep); 422 423 if (ret == 0) { 424 /* mark the key as being instantiated */ 425 atomic_inc(&key->user->nikeys); 426 set_bit(KEY_FLAG_INSTANTIATED, &key->flags); 427 428 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) 429 awaken = 1; 430 431 /* and link it into the destination keyring */ 432 if (keyring) { 433 if (test_bit(KEY_FLAG_KEEP, &keyring->flags)) 434 set_bit(KEY_FLAG_KEEP, &key->flags); 435 436 __key_link(key, _edit); 437 } 438 439 /* disable the authorisation key */ 440 if (authkey) 441 key_revoke(authkey); 442 443 if (prep->expiry != TIME_T_MAX) { 444 key->expiry = prep->expiry; 445 key_schedule_gc(prep->expiry + key_gc_delay); 446 } 447 } 448 } 449 450 mutex_unlock(&key_construction_mutex); 451 452 /* wake up anyone waiting for a key to be constructed */ 453 if (awaken) 454 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT); 455 456 return ret; 457 } 458 459 /** 460 * key_instantiate_and_link - Instantiate a key and link it into the keyring. 461 * @key: The key to instantiate. 462 * @data: The data to use to instantiate the keyring. 463 * @datalen: The length of @data. 464 * @keyring: Keyring to create a link in on success (or NULL). 465 * @authkey: The authorisation token permitting instantiation. 466 * 467 * Instantiate a key that's in the uninstantiated state using the provided data 468 * and, if successful, link it in to the destination keyring if one is 469 * supplied. 470 * 471 * If successful, 0 is returned, the authorisation token is revoked and anyone 472 * waiting for the key is woken up. If the key was already instantiated, 473 * -EBUSY will be returned. 474 */ 475 int key_instantiate_and_link(struct key *key, 476 const void *data, 477 size_t datalen, 478 struct key *keyring, 479 struct key *authkey) 480 { 481 struct key_preparsed_payload prep; 482 struct assoc_array_edit *edit; 483 int ret; 484 485 memset(&prep, 0, sizeof(prep)); 486 prep.data = data; 487 prep.datalen = datalen; 488 prep.quotalen = key->type->def_datalen; 489 prep.expiry = TIME_T_MAX; 490 if (key->type->preparse) { 491 ret = key->type->preparse(&prep); 492 if (ret < 0) 493 goto error; 494 } 495 496 if (keyring) { 497 ret = __key_link_begin(keyring, &key->index_key, &edit); 498 if (ret < 0) 499 goto error; 500 } 501 502 ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit); 503 504 if (keyring) 505 __key_link_end(keyring, &key->index_key, edit); 506 507 error: 508 if (key->type->preparse) 509 key->type->free_preparse(&prep); 510 return ret; 511 } 512 513 EXPORT_SYMBOL(key_instantiate_and_link); 514 515 /** 516 * key_reject_and_link - Negatively instantiate a key and link it into the keyring. 517 * @key: The key to instantiate. 518 * @timeout: The timeout on the negative key. 519 * @error: The error to return when the key is hit. 520 * @keyring: Keyring to create a link in on success (or NULL). 521 * @authkey: The authorisation token permitting instantiation. 522 * 523 * Negatively instantiate a key that's in the uninstantiated state and, if 524 * successful, set its timeout and stored error and link it in to the 525 * destination keyring if one is supplied. The key and any links to the key 526 * will be automatically garbage collected after the timeout expires. 527 * 528 * Negative keys are used to rate limit repeated request_key() calls by causing 529 * them to return the stored error code (typically ENOKEY) until the negative 530 * key expires. 531 * 532 * If successful, 0 is returned, the authorisation token is revoked and anyone 533 * waiting for the key is woken up. If the key was already instantiated, 534 * -EBUSY will be returned. 535 */ 536 int key_reject_and_link(struct key *key, 537 unsigned timeout, 538 unsigned error, 539 struct key *keyring, 540 struct key *authkey) 541 { 542 struct assoc_array_edit *edit; 543 struct timespec now; 544 int ret, awaken, link_ret = 0; 545 546 key_check(key); 547 key_check(keyring); 548 549 awaken = 0; 550 ret = -EBUSY; 551 552 if (keyring) 553 link_ret = __key_link_begin(keyring, &key->index_key, &edit); 554 555 mutex_lock(&key_construction_mutex); 556 557 /* can't instantiate twice */ 558 if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) { 559 /* mark the key as being negatively instantiated */ 560 atomic_inc(&key->user->nikeys); 561 key->reject_error = -error; 562 smp_wmb(); 563 set_bit(KEY_FLAG_NEGATIVE, &key->flags); 564 set_bit(KEY_FLAG_INSTANTIATED, &key->flags); 565 now = current_kernel_time(); 566 key->expiry = now.tv_sec + timeout; 567 key_schedule_gc(key->expiry + key_gc_delay); 568 569 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) 570 awaken = 1; 571 572 ret = 0; 573 574 /* and link it into the destination keyring */ 575 if (keyring && link_ret == 0) 576 __key_link(key, &edit); 577 578 /* disable the authorisation key */ 579 if (authkey) 580 key_revoke(authkey); 581 } 582 583 mutex_unlock(&key_construction_mutex); 584 585 if (keyring) 586 __key_link_end(keyring, &key->index_key, edit); 587 588 /* wake up anyone waiting for a key to be constructed */ 589 if (awaken) 590 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT); 591 592 return ret == 0 ? link_ret : ret; 593 } 594 EXPORT_SYMBOL(key_reject_and_link); 595 596 /** 597 * key_put - Discard a reference to a key. 598 * @key: The key to discard a reference from. 599 * 600 * Discard a reference to a key, and when all the references are gone, we 601 * schedule the cleanup task to come and pull it out of the tree in process 602 * context at some later time. 603 */ 604 void key_put(struct key *key) 605 { 606 if (key) { 607 key_check(key); 608 609 if (atomic_dec_and_test(&key->usage)) 610 schedule_work(&key_gc_work); 611 } 612 } 613 EXPORT_SYMBOL(key_put); 614 615 /* 616 * Find a key by its serial number. 617 */ 618 struct key *key_lookup(key_serial_t id) 619 { 620 struct rb_node *n; 621 struct key *key; 622 623 spin_lock(&key_serial_lock); 624 625 /* search the tree for the specified key */ 626 n = key_serial_tree.rb_node; 627 while (n) { 628 key = rb_entry(n, struct key, serial_node); 629 630 if (id < key->serial) 631 n = n->rb_left; 632 else if (id > key->serial) 633 n = n->rb_right; 634 else 635 goto found; 636 } 637 638 not_found: 639 key = ERR_PTR(-ENOKEY); 640 goto error; 641 642 found: 643 /* pretend it doesn't exist if it is awaiting deletion */ 644 if (atomic_read(&key->usage) == 0) 645 goto not_found; 646 647 /* this races with key_put(), but that doesn't matter since key_put() 648 * doesn't actually change the key 649 */ 650 __key_get(key); 651 652 error: 653 spin_unlock(&key_serial_lock); 654 return key; 655 } 656 657 /* 658 * Find and lock the specified key type against removal. 659 * 660 * We return with the sem read-locked if successful. If the type wasn't 661 * available -ENOKEY is returned instead. 662 */ 663 struct key_type *key_type_lookup(const char *type) 664 { 665 struct key_type *ktype; 666 667 down_read(&key_types_sem); 668 669 /* look up the key type to see if it's one of the registered kernel 670 * types */ 671 list_for_each_entry(ktype, &key_types_list, link) { 672 if (strcmp(ktype->name, type) == 0) 673 goto found_kernel_type; 674 } 675 676 up_read(&key_types_sem); 677 ktype = ERR_PTR(-ENOKEY); 678 679 found_kernel_type: 680 return ktype; 681 } 682 683 void key_set_timeout(struct key *key, unsigned timeout) 684 { 685 struct timespec now; 686 time_t expiry = 0; 687 688 /* make the changes with the locks held to prevent races */ 689 down_write(&key->sem); 690 691 if (timeout > 0) { 692 now = current_kernel_time(); 693 expiry = now.tv_sec + timeout; 694 } 695 696 key->expiry = expiry; 697 key_schedule_gc(key->expiry + key_gc_delay); 698 699 up_write(&key->sem); 700 } 701 EXPORT_SYMBOL_GPL(key_set_timeout); 702 703 /* 704 * Unlock a key type locked by key_type_lookup(). 705 */ 706 void key_type_put(struct key_type *ktype) 707 { 708 up_read(&key_types_sem); 709 } 710 711 /* 712 * Attempt to update an existing key. 713 * 714 * The key is given to us with an incremented refcount that we need to discard 715 * if we get an error. 716 */ 717 static inline key_ref_t __key_update(key_ref_t key_ref, 718 struct key_preparsed_payload *prep) 719 { 720 struct key *key = key_ref_to_ptr(key_ref); 721 int ret; 722 723 /* need write permission on the key to update it */ 724 ret = key_permission(key_ref, KEY_NEED_WRITE); 725 if (ret < 0) 726 goto error; 727 728 ret = -EEXIST; 729 if (!key->type->update) 730 goto error; 731 732 down_write(&key->sem); 733 734 ret = key->type->update(key, prep); 735 if (ret == 0) 736 /* updating a negative key instantiates it */ 737 clear_bit(KEY_FLAG_NEGATIVE, &key->flags); 738 739 up_write(&key->sem); 740 741 if (ret < 0) 742 goto error; 743 out: 744 return key_ref; 745 746 error: 747 key_put(key); 748 key_ref = ERR_PTR(ret); 749 goto out; 750 } 751 752 /** 753 * key_create_or_update - Update or create and instantiate a key. 754 * @keyring_ref: A pointer to the destination keyring with possession flag. 755 * @type: The type of key. 756 * @description: The searchable description for the key. 757 * @payload: The data to use to instantiate or update the key. 758 * @plen: The length of @payload. 759 * @perm: The permissions mask for a new key. 760 * @flags: The quota flags for a new key. 761 * 762 * Search the destination keyring for a key of the same description and if one 763 * is found, update it, otherwise create and instantiate a new one and create a 764 * link to it from that keyring. 765 * 766 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be 767 * concocted. 768 * 769 * Returns a pointer to the new key if successful, -ENODEV if the key type 770 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the 771 * caller isn't permitted to modify the keyring or the LSM did not permit 772 * creation of the key. 773 * 774 * On success, the possession flag from the keyring ref will be tacked on to 775 * the key ref before it is returned. 776 */ 777 key_ref_t key_create_or_update(key_ref_t keyring_ref, 778 const char *type, 779 const char *description, 780 const void *payload, 781 size_t plen, 782 key_perm_t perm, 783 unsigned long flags) 784 { 785 struct keyring_index_key index_key = { 786 .description = description, 787 }; 788 struct key_preparsed_payload prep; 789 struct assoc_array_edit *edit; 790 const struct cred *cred = current_cred(); 791 struct key *keyring, *key = NULL; 792 key_ref_t key_ref; 793 int ret; 794 795 /* look up the key type to see if it's one of the registered kernel 796 * types */ 797 index_key.type = key_type_lookup(type); 798 if (IS_ERR(index_key.type)) { 799 key_ref = ERR_PTR(-ENODEV); 800 goto error; 801 } 802 803 key_ref = ERR_PTR(-EINVAL); 804 if (!index_key.type->instantiate || 805 (!index_key.description && !index_key.type->preparse)) 806 goto error_put_type; 807 808 keyring = key_ref_to_ptr(keyring_ref); 809 810 key_check(keyring); 811 812 key_ref = ERR_PTR(-ENOTDIR); 813 if (keyring->type != &key_type_keyring) 814 goto error_put_type; 815 816 memset(&prep, 0, sizeof(prep)); 817 prep.data = payload; 818 prep.datalen = plen; 819 prep.quotalen = index_key.type->def_datalen; 820 prep.trusted = flags & KEY_ALLOC_TRUSTED; 821 prep.expiry = TIME_T_MAX; 822 if (index_key.type->preparse) { 823 ret = index_key.type->preparse(&prep); 824 if (ret < 0) { 825 key_ref = ERR_PTR(ret); 826 goto error_free_prep; 827 } 828 if (!index_key.description) 829 index_key.description = prep.description; 830 key_ref = ERR_PTR(-EINVAL); 831 if (!index_key.description) 832 goto error_free_prep; 833 } 834 index_key.desc_len = strlen(index_key.description); 835 836 key_ref = ERR_PTR(-EPERM); 837 if (!prep.trusted && test_bit(KEY_FLAG_TRUSTED_ONLY, &keyring->flags)) 838 goto error_free_prep; 839 flags |= prep.trusted ? KEY_ALLOC_TRUSTED : 0; 840 841 ret = __key_link_begin(keyring, &index_key, &edit); 842 if (ret < 0) { 843 key_ref = ERR_PTR(ret); 844 goto error_free_prep; 845 } 846 847 /* if we're going to allocate a new key, we're going to have 848 * to modify the keyring */ 849 ret = key_permission(keyring_ref, KEY_NEED_WRITE); 850 if (ret < 0) { 851 key_ref = ERR_PTR(ret); 852 goto error_link_end; 853 } 854 855 /* if it's possible to update this type of key, search for an existing 856 * key of the same type and description in the destination keyring and 857 * update that instead if possible 858 */ 859 if (index_key.type->update) { 860 key_ref = find_key_to_update(keyring_ref, &index_key); 861 if (key_ref) 862 goto found_matching_key; 863 } 864 865 /* if the client doesn't provide, decide on the permissions we want */ 866 if (perm == KEY_PERM_UNDEF) { 867 perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR; 868 perm |= KEY_USR_VIEW; 869 870 if (index_key.type->read) 871 perm |= KEY_POS_READ; 872 873 if (index_key.type == &key_type_keyring || 874 index_key.type->update) 875 perm |= KEY_POS_WRITE; 876 } 877 878 /* allocate a new key */ 879 key = key_alloc(index_key.type, index_key.description, 880 cred->fsuid, cred->fsgid, cred, perm, flags); 881 if (IS_ERR(key)) { 882 key_ref = ERR_CAST(key); 883 goto error_link_end; 884 } 885 886 /* instantiate it and link it into the target keyring */ 887 ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit); 888 if (ret < 0) { 889 key_put(key); 890 key_ref = ERR_PTR(ret); 891 goto error_link_end; 892 } 893 894 key_ref = make_key_ref(key, is_key_possessed(keyring_ref)); 895 896 error_link_end: 897 __key_link_end(keyring, &index_key, edit); 898 error_free_prep: 899 if (index_key.type->preparse) 900 index_key.type->free_preparse(&prep); 901 error_put_type: 902 key_type_put(index_key.type); 903 error: 904 return key_ref; 905 906 found_matching_key: 907 /* we found a matching key, so we're going to try to update it 908 * - we can drop the locks first as we have the key pinned 909 */ 910 __key_link_end(keyring, &index_key, edit); 911 912 key_ref = __key_update(key_ref, &prep); 913 goto error_free_prep; 914 } 915 EXPORT_SYMBOL(key_create_or_update); 916 917 /** 918 * key_update - Update a key's contents. 919 * @key_ref: The pointer (plus possession flag) to the key. 920 * @payload: The data to be used to update the key. 921 * @plen: The length of @payload. 922 * 923 * Attempt to update the contents of a key with the given payload data. The 924 * caller must be granted Write permission on the key. Negative keys can be 925 * instantiated by this method. 926 * 927 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key 928 * type does not support updating. The key type may return other errors. 929 */ 930 int key_update(key_ref_t key_ref, const void *payload, size_t plen) 931 { 932 struct key_preparsed_payload prep; 933 struct key *key = key_ref_to_ptr(key_ref); 934 int ret; 935 936 key_check(key); 937 938 /* the key must be writable */ 939 ret = key_permission(key_ref, KEY_NEED_WRITE); 940 if (ret < 0) 941 goto error; 942 943 /* attempt to update it if supported */ 944 ret = -EOPNOTSUPP; 945 if (!key->type->update) 946 goto error; 947 948 memset(&prep, 0, sizeof(prep)); 949 prep.data = payload; 950 prep.datalen = plen; 951 prep.quotalen = key->type->def_datalen; 952 prep.expiry = TIME_T_MAX; 953 if (key->type->preparse) { 954 ret = key->type->preparse(&prep); 955 if (ret < 0) 956 goto error; 957 } 958 959 down_write(&key->sem); 960 961 ret = key->type->update(key, &prep); 962 if (ret == 0) 963 /* updating a negative key instantiates it */ 964 clear_bit(KEY_FLAG_NEGATIVE, &key->flags); 965 966 up_write(&key->sem); 967 968 error: 969 if (key->type->preparse) 970 key->type->free_preparse(&prep); 971 return ret; 972 } 973 EXPORT_SYMBOL(key_update); 974 975 /** 976 * key_revoke - Revoke a key. 977 * @key: The key to be revoked. 978 * 979 * Mark a key as being revoked and ask the type to free up its resources. The 980 * revocation timeout is set and the key and all its links will be 981 * automatically garbage collected after key_gc_delay amount of time if they 982 * are not manually dealt with first. 983 */ 984 void key_revoke(struct key *key) 985 { 986 struct timespec now; 987 time_t time; 988 989 key_check(key); 990 991 /* make sure no one's trying to change or use the key when we mark it 992 * - we tell lockdep that we might nest because we might be revoking an 993 * authorisation key whilst holding the sem on a key we've just 994 * instantiated 995 */ 996 down_write_nested(&key->sem, 1); 997 if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) && 998 key->type->revoke) 999 key->type->revoke(key); 1000 1001 /* set the death time to no more than the expiry time */ 1002 now = current_kernel_time(); 1003 time = now.tv_sec; 1004 if (key->revoked_at == 0 || key->revoked_at > time) { 1005 key->revoked_at = time; 1006 key_schedule_gc(key->revoked_at + key_gc_delay); 1007 } 1008 1009 up_write(&key->sem); 1010 } 1011 EXPORT_SYMBOL(key_revoke); 1012 1013 /** 1014 * key_invalidate - Invalidate a key. 1015 * @key: The key to be invalidated. 1016 * 1017 * Mark a key as being invalidated and have it cleaned up immediately. The key 1018 * is ignored by all searches and other operations from this point. 1019 */ 1020 void key_invalidate(struct key *key) 1021 { 1022 kenter("%d", key_serial(key)); 1023 1024 key_check(key); 1025 1026 if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) { 1027 down_write_nested(&key->sem, 1); 1028 if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags)) 1029 key_schedule_gc_links(); 1030 up_write(&key->sem); 1031 } 1032 } 1033 EXPORT_SYMBOL(key_invalidate); 1034 1035 /** 1036 * generic_key_instantiate - Simple instantiation of a key from preparsed data 1037 * @key: The key to be instantiated 1038 * @prep: The preparsed data to load. 1039 * 1040 * Instantiate a key from preparsed data. We assume we can just copy the data 1041 * in directly and clear the old pointers. 1042 * 1043 * This can be pointed to directly by the key type instantiate op pointer. 1044 */ 1045 int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep) 1046 { 1047 int ret; 1048 1049 pr_devel("==>%s()\n", __func__); 1050 1051 ret = key_payload_reserve(key, prep->quotalen); 1052 if (ret == 0) { 1053 rcu_assign_keypointer(key, prep->payload.data[0]); 1054 key->payload.data[1] = prep->payload.data[1]; 1055 key->payload.data[2] = prep->payload.data[2]; 1056 key->payload.data[3] = prep->payload.data[3]; 1057 prep->payload.data[0] = NULL; 1058 prep->payload.data[1] = NULL; 1059 prep->payload.data[2] = NULL; 1060 prep->payload.data[3] = NULL; 1061 } 1062 pr_devel("<==%s() = %d\n", __func__, ret); 1063 return ret; 1064 } 1065 EXPORT_SYMBOL(generic_key_instantiate); 1066 1067 /** 1068 * register_key_type - Register a type of key. 1069 * @ktype: The new key type. 1070 * 1071 * Register a new key type. 1072 * 1073 * Returns 0 on success or -EEXIST if a type of this name already exists. 1074 */ 1075 int register_key_type(struct key_type *ktype) 1076 { 1077 struct key_type *p; 1078 int ret; 1079 1080 memset(&ktype->lock_class, 0, sizeof(ktype->lock_class)); 1081 1082 ret = -EEXIST; 1083 down_write(&key_types_sem); 1084 1085 /* disallow key types with the same name */ 1086 list_for_each_entry(p, &key_types_list, link) { 1087 if (strcmp(p->name, ktype->name) == 0) 1088 goto out; 1089 } 1090 1091 /* store the type */ 1092 list_add(&ktype->link, &key_types_list); 1093 1094 pr_notice("Key type %s registered\n", ktype->name); 1095 ret = 0; 1096 1097 out: 1098 up_write(&key_types_sem); 1099 return ret; 1100 } 1101 EXPORT_SYMBOL(register_key_type); 1102 1103 /** 1104 * unregister_key_type - Unregister a type of key. 1105 * @ktype: The key type. 1106 * 1107 * Unregister a key type and mark all the extant keys of this type as dead. 1108 * Those keys of this type are then destroyed to get rid of their payloads and 1109 * they and their links will be garbage collected as soon as possible. 1110 */ 1111 void unregister_key_type(struct key_type *ktype) 1112 { 1113 down_write(&key_types_sem); 1114 list_del_init(&ktype->link); 1115 downgrade_write(&key_types_sem); 1116 key_gc_keytype(ktype); 1117 pr_notice("Key type %s unregistered\n", ktype->name); 1118 up_read(&key_types_sem); 1119 } 1120 EXPORT_SYMBOL(unregister_key_type); 1121 1122 /* 1123 * Initialise the key management state. 1124 */ 1125 void __init key_init(void) 1126 { 1127 /* allocate a slab in which we can store keys */ 1128 key_jar = kmem_cache_create("key_jar", sizeof(struct key), 1129 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 1130 1131 /* add the special key types */ 1132 list_add_tail(&key_type_keyring.link, &key_types_list); 1133 list_add_tail(&key_type_dead.link, &key_types_list); 1134 list_add_tail(&key_type_user.link, &key_types_list); 1135 list_add_tail(&key_type_logon.link, &key_types_list); 1136 1137 /* record the root user tracking */ 1138 rb_link_node(&root_key_user.node, 1139 NULL, 1140 &key_user_tree.rb_node); 1141 1142 rb_insert_color(&root_key_user.node, 1143 &key_user_tree); 1144 } 1145