xref: /openbmc/linux/security/keys/key.c (revision 206204a1)
1 /* Basic authentication token and access key management
2  *
3  * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/poison.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/security.h>
18 #include <linux/workqueue.h>
19 #include <linux/random.h>
20 #include <linux/err.h>
21 #include "internal.h"
22 
23 struct kmem_cache *key_jar;
24 struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
25 DEFINE_SPINLOCK(key_serial_lock);
26 
27 struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
28 DEFINE_SPINLOCK(key_user_lock);
29 
30 unsigned int key_quota_root_maxkeys = 200;	/* root's key count quota */
31 unsigned int key_quota_root_maxbytes = 20000;	/* root's key space quota */
32 unsigned int key_quota_maxkeys = 200;		/* general key count quota */
33 unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
34 
35 static LIST_HEAD(key_types_list);
36 static DECLARE_RWSEM(key_types_sem);
37 
38 /* We serialise key instantiation and link */
39 DEFINE_MUTEX(key_construction_mutex);
40 
41 #ifdef KEY_DEBUGGING
42 void __key_check(const struct key *key)
43 {
44 	printk("__key_check: key %p {%08x} should be {%08x}\n",
45 	       key, key->magic, KEY_DEBUG_MAGIC);
46 	BUG();
47 }
48 #endif
49 
50 /*
51  * Get the key quota record for a user, allocating a new record if one doesn't
52  * already exist.
53  */
54 struct key_user *key_user_lookup(kuid_t uid)
55 {
56 	struct key_user *candidate = NULL, *user;
57 	struct rb_node *parent = NULL;
58 	struct rb_node **p;
59 
60 try_again:
61 	p = &key_user_tree.rb_node;
62 	spin_lock(&key_user_lock);
63 
64 	/* search the tree for a user record with a matching UID */
65 	while (*p) {
66 		parent = *p;
67 		user = rb_entry(parent, struct key_user, node);
68 
69 		if (uid_lt(uid, user->uid))
70 			p = &(*p)->rb_left;
71 		else if (uid_gt(uid, user->uid))
72 			p = &(*p)->rb_right;
73 		else
74 			goto found;
75 	}
76 
77 	/* if we get here, we failed to find a match in the tree */
78 	if (!candidate) {
79 		/* allocate a candidate user record if we don't already have
80 		 * one */
81 		spin_unlock(&key_user_lock);
82 
83 		user = NULL;
84 		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
85 		if (unlikely(!candidate))
86 			goto out;
87 
88 		/* the allocation may have scheduled, so we need to repeat the
89 		 * search lest someone else added the record whilst we were
90 		 * asleep */
91 		goto try_again;
92 	}
93 
94 	/* if we get here, then the user record still hadn't appeared on the
95 	 * second pass - so we use the candidate record */
96 	atomic_set(&candidate->usage, 1);
97 	atomic_set(&candidate->nkeys, 0);
98 	atomic_set(&candidate->nikeys, 0);
99 	candidate->uid = uid;
100 	candidate->qnkeys = 0;
101 	candidate->qnbytes = 0;
102 	spin_lock_init(&candidate->lock);
103 	mutex_init(&candidate->cons_lock);
104 
105 	rb_link_node(&candidate->node, parent, p);
106 	rb_insert_color(&candidate->node, &key_user_tree);
107 	spin_unlock(&key_user_lock);
108 	user = candidate;
109 	goto out;
110 
111 	/* okay - we found a user record for this UID */
112 found:
113 	atomic_inc(&user->usage);
114 	spin_unlock(&key_user_lock);
115 	kfree(candidate);
116 out:
117 	return user;
118 }
119 
120 /*
121  * Dispose of a user structure
122  */
123 void key_user_put(struct key_user *user)
124 {
125 	if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
126 		rb_erase(&user->node, &key_user_tree);
127 		spin_unlock(&key_user_lock);
128 
129 		kfree(user);
130 	}
131 }
132 
133 /*
134  * Allocate a serial number for a key.  These are assigned randomly to avoid
135  * security issues through covert channel problems.
136  */
137 static inline void key_alloc_serial(struct key *key)
138 {
139 	struct rb_node *parent, **p;
140 	struct key *xkey;
141 
142 	/* propose a random serial number and look for a hole for it in the
143 	 * serial number tree */
144 	do {
145 		get_random_bytes(&key->serial, sizeof(key->serial));
146 
147 		key->serial >>= 1; /* negative numbers are not permitted */
148 	} while (key->serial < 3);
149 
150 	spin_lock(&key_serial_lock);
151 
152 attempt_insertion:
153 	parent = NULL;
154 	p = &key_serial_tree.rb_node;
155 
156 	while (*p) {
157 		parent = *p;
158 		xkey = rb_entry(parent, struct key, serial_node);
159 
160 		if (key->serial < xkey->serial)
161 			p = &(*p)->rb_left;
162 		else if (key->serial > xkey->serial)
163 			p = &(*p)->rb_right;
164 		else
165 			goto serial_exists;
166 	}
167 
168 	/* we've found a suitable hole - arrange for this key to occupy it */
169 	rb_link_node(&key->serial_node, parent, p);
170 	rb_insert_color(&key->serial_node, &key_serial_tree);
171 
172 	spin_unlock(&key_serial_lock);
173 	return;
174 
175 	/* we found a key with the proposed serial number - walk the tree from
176 	 * that point looking for the next unused serial number */
177 serial_exists:
178 	for (;;) {
179 		key->serial++;
180 		if (key->serial < 3) {
181 			key->serial = 3;
182 			goto attempt_insertion;
183 		}
184 
185 		parent = rb_next(parent);
186 		if (!parent)
187 			goto attempt_insertion;
188 
189 		xkey = rb_entry(parent, struct key, serial_node);
190 		if (key->serial < xkey->serial)
191 			goto attempt_insertion;
192 	}
193 }
194 
195 /**
196  * key_alloc - Allocate a key of the specified type.
197  * @type: The type of key to allocate.
198  * @desc: The key description to allow the key to be searched out.
199  * @uid: The owner of the new key.
200  * @gid: The group ID for the new key's group permissions.
201  * @cred: The credentials specifying UID namespace.
202  * @perm: The permissions mask of the new key.
203  * @flags: Flags specifying quota properties.
204  *
205  * Allocate a key of the specified type with the attributes given.  The key is
206  * returned in an uninstantiated state and the caller needs to instantiate the
207  * key before returning.
208  *
209  * The user's key count quota is updated to reflect the creation of the key and
210  * the user's key data quota has the default for the key type reserved.  The
211  * instantiation function should amend this as necessary.  If insufficient
212  * quota is available, -EDQUOT will be returned.
213  *
214  * The LSM security modules can prevent a key being created, in which case
215  * -EACCES will be returned.
216  *
217  * Returns a pointer to the new key if successful and an error code otherwise.
218  *
219  * Note that the caller needs to ensure the key type isn't uninstantiated.
220  * Internally this can be done by locking key_types_sem.  Externally, this can
221  * be done by either never unregistering the key type, or making sure
222  * key_alloc() calls don't race with module unloading.
223  */
224 struct key *key_alloc(struct key_type *type, const char *desc,
225 		      kuid_t uid, kgid_t gid, const struct cred *cred,
226 		      key_perm_t perm, unsigned long flags)
227 {
228 	struct key_user *user = NULL;
229 	struct key *key;
230 	size_t desclen, quotalen;
231 	int ret;
232 
233 	key = ERR_PTR(-EINVAL);
234 	if (!desc || !*desc)
235 		goto error;
236 
237 	if (type->vet_description) {
238 		ret = type->vet_description(desc);
239 		if (ret < 0) {
240 			key = ERR_PTR(ret);
241 			goto error;
242 		}
243 	}
244 
245 	desclen = strlen(desc);
246 	quotalen = desclen + 1 + type->def_datalen;
247 
248 	/* get hold of the key tracking for this user */
249 	user = key_user_lookup(uid);
250 	if (!user)
251 		goto no_memory_1;
252 
253 	/* check that the user's quota permits allocation of another key and
254 	 * its description */
255 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
256 		unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
257 			key_quota_root_maxkeys : key_quota_maxkeys;
258 		unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
259 			key_quota_root_maxbytes : key_quota_maxbytes;
260 
261 		spin_lock(&user->lock);
262 		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
263 			if (user->qnkeys + 1 >= maxkeys ||
264 			    user->qnbytes + quotalen >= maxbytes ||
265 			    user->qnbytes + quotalen < user->qnbytes)
266 				goto no_quota;
267 		}
268 
269 		user->qnkeys++;
270 		user->qnbytes += quotalen;
271 		spin_unlock(&user->lock);
272 	}
273 
274 	/* allocate and initialise the key and its description */
275 	key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
276 	if (!key)
277 		goto no_memory_2;
278 
279 	if (desc) {
280 		key->index_key.desc_len = desclen;
281 		key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
282 		if (!key->description)
283 			goto no_memory_3;
284 	}
285 
286 	atomic_set(&key->usage, 1);
287 	init_rwsem(&key->sem);
288 	lockdep_set_class(&key->sem, &type->lock_class);
289 	key->index_key.type = type;
290 	key->user = user;
291 	key->quotalen = quotalen;
292 	key->datalen = type->def_datalen;
293 	key->uid = uid;
294 	key->gid = gid;
295 	key->perm = perm;
296 
297 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
298 		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
299 	if (flags & KEY_ALLOC_TRUSTED)
300 		key->flags |= 1 << KEY_FLAG_TRUSTED;
301 
302 #ifdef KEY_DEBUGGING
303 	key->magic = KEY_DEBUG_MAGIC;
304 #endif
305 
306 	/* let the security module know about the key */
307 	ret = security_key_alloc(key, cred, flags);
308 	if (ret < 0)
309 		goto security_error;
310 
311 	/* publish the key by giving it a serial number */
312 	atomic_inc(&user->nkeys);
313 	key_alloc_serial(key);
314 
315 error:
316 	return key;
317 
318 security_error:
319 	kfree(key->description);
320 	kmem_cache_free(key_jar, key);
321 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
322 		spin_lock(&user->lock);
323 		user->qnkeys--;
324 		user->qnbytes -= quotalen;
325 		spin_unlock(&user->lock);
326 	}
327 	key_user_put(user);
328 	key = ERR_PTR(ret);
329 	goto error;
330 
331 no_memory_3:
332 	kmem_cache_free(key_jar, key);
333 no_memory_2:
334 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
335 		spin_lock(&user->lock);
336 		user->qnkeys--;
337 		user->qnbytes -= quotalen;
338 		spin_unlock(&user->lock);
339 	}
340 	key_user_put(user);
341 no_memory_1:
342 	key = ERR_PTR(-ENOMEM);
343 	goto error;
344 
345 no_quota:
346 	spin_unlock(&user->lock);
347 	key_user_put(user);
348 	key = ERR_PTR(-EDQUOT);
349 	goto error;
350 }
351 EXPORT_SYMBOL(key_alloc);
352 
353 /**
354  * key_payload_reserve - Adjust data quota reservation for the key's payload
355  * @key: The key to make the reservation for.
356  * @datalen: The amount of data payload the caller now wants.
357  *
358  * Adjust the amount of the owning user's key data quota that a key reserves.
359  * If the amount is increased, then -EDQUOT may be returned if there isn't
360  * enough free quota available.
361  *
362  * If successful, 0 is returned.
363  */
364 int key_payload_reserve(struct key *key, size_t datalen)
365 {
366 	int delta = (int)datalen - key->datalen;
367 	int ret = 0;
368 
369 	key_check(key);
370 
371 	/* contemplate the quota adjustment */
372 	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
373 		unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
374 			key_quota_root_maxbytes : key_quota_maxbytes;
375 
376 		spin_lock(&key->user->lock);
377 
378 		if (delta > 0 &&
379 		    (key->user->qnbytes + delta >= maxbytes ||
380 		     key->user->qnbytes + delta < key->user->qnbytes)) {
381 			ret = -EDQUOT;
382 		}
383 		else {
384 			key->user->qnbytes += delta;
385 			key->quotalen += delta;
386 		}
387 		spin_unlock(&key->user->lock);
388 	}
389 
390 	/* change the recorded data length if that didn't generate an error */
391 	if (ret == 0)
392 		key->datalen = datalen;
393 
394 	return ret;
395 }
396 EXPORT_SYMBOL(key_payload_reserve);
397 
398 /*
399  * Instantiate a key and link it into the target keyring atomically.  Must be
400  * called with the target keyring's semaphore writelocked.  The target key's
401  * semaphore need not be locked as instantiation is serialised by
402  * key_construction_mutex.
403  */
404 static int __key_instantiate_and_link(struct key *key,
405 				      struct key_preparsed_payload *prep,
406 				      struct key *keyring,
407 				      struct key *authkey,
408 				      struct assoc_array_edit **_edit)
409 {
410 	int ret, awaken;
411 
412 	key_check(key);
413 	key_check(keyring);
414 
415 	awaken = 0;
416 	ret = -EBUSY;
417 
418 	mutex_lock(&key_construction_mutex);
419 
420 	/* can't instantiate twice */
421 	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
422 		/* instantiate the key */
423 		ret = key->type->instantiate(key, prep);
424 
425 		if (ret == 0) {
426 			/* mark the key as being instantiated */
427 			atomic_inc(&key->user->nikeys);
428 			set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
429 
430 			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
431 				awaken = 1;
432 
433 			/* and link it into the destination keyring */
434 			if (keyring)
435 				__key_link(key, _edit);
436 
437 			/* disable the authorisation key */
438 			if (authkey)
439 				key_revoke(authkey);
440 		}
441 	}
442 
443 	mutex_unlock(&key_construction_mutex);
444 
445 	/* wake up anyone waiting for a key to be constructed */
446 	if (awaken)
447 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
448 
449 	return ret;
450 }
451 
452 /**
453  * key_instantiate_and_link - Instantiate a key and link it into the keyring.
454  * @key: The key to instantiate.
455  * @data: The data to use to instantiate the keyring.
456  * @datalen: The length of @data.
457  * @keyring: Keyring to create a link in on success (or NULL).
458  * @authkey: The authorisation token permitting instantiation.
459  *
460  * Instantiate a key that's in the uninstantiated state using the provided data
461  * and, if successful, link it in to the destination keyring if one is
462  * supplied.
463  *
464  * If successful, 0 is returned, the authorisation token is revoked and anyone
465  * waiting for the key is woken up.  If the key was already instantiated,
466  * -EBUSY will be returned.
467  */
468 int key_instantiate_and_link(struct key *key,
469 			     const void *data,
470 			     size_t datalen,
471 			     struct key *keyring,
472 			     struct key *authkey)
473 {
474 	struct key_preparsed_payload prep;
475 	struct assoc_array_edit *edit;
476 	int ret;
477 
478 	memset(&prep, 0, sizeof(prep));
479 	prep.data = data;
480 	prep.datalen = datalen;
481 	prep.quotalen = key->type->def_datalen;
482 	if (key->type->preparse) {
483 		ret = key->type->preparse(&prep);
484 		if (ret < 0)
485 			goto error;
486 	}
487 
488 	if (keyring) {
489 		ret = __key_link_begin(keyring, &key->index_key, &edit);
490 		if (ret < 0)
491 			goto error_free_preparse;
492 	}
493 
494 	ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
495 
496 	if (keyring)
497 		__key_link_end(keyring, &key->index_key, edit);
498 
499 error_free_preparse:
500 	if (key->type->preparse)
501 		key->type->free_preparse(&prep);
502 error:
503 	return ret;
504 }
505 
506 EXPORT_SYMBOL(key_instantiate_and_link);
507 
508 /**
509  * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
510  * @key: The key to instantiate.
511  * @timeout: The timeout on the negative key.
512  * @error: The error to return when the key is hit.
513  * @keyring: Keyring to create a link in on success (or NULL).
514  * @authkey: The authorisation token permitting instantiation.
515  *
516  * Negatively instantiate a key that's in the uninstantiated state and, if
517  * successful, set its timeout and stored error and link it in to the
518  * destination keyring if one is supplied.  The key and any links to the key
519  * will be automatically garbage collected after the timeout expires.
520  *
521  * Negative keys are used to rate limit repeated request_key() calls by causing
522  * them to return the stored error code (typically ENOKEY) until the negative
523  * key expires.
524  *
525  * If successful, 0 is returned, the authorisation token is revoked and anyone
526  * waiting for the key is woken up.  If the key was already instantiated,
527  * -EBUSY will be returned.
528  */
529 int key_reject_and_link(struct key *key,
530 			unsigned timeout,
531 			unsigned error,
532 			struct key *keyring,
533 			struct key *authkey)
534 {
535 	struct assoc_array_edit *edit;
536 	struct timespec now;
537 	int ret, awaken, link_ret = 0;
538 
539 	key_check(key);
540 	key_check(keyring);
541 
542 	awaken = 0;
543 	ret = -EBUSY;
544 
545 	if (keyring)
546 		link_ret = __key_link_begin(keyring, &key->index_key, &edit);
547 
548 	mutex_lock(&key_construction_mutex);
549 
550 	/* can't instantiate twice */
551 	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
552 		/* mark the key as being negatively instantiated */
553 		atomic_inc(&key->user->nikeys);
554 		key->type_data.reject_error = -error;
555 		smp_wmb();
556 		set_bit(KEY_FLAG_NEGATIVE, &key->flags);
557 		set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
558 		now = current_kernel_time();
559 		key->expiry = now.tv_sec + timeout;
560 		key_schedule_gc(key->expiry + key_gc_delay);
561 
562 		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
563 			awaken = 1;
564 
565 		ret = 0;
566 
567 		/* and link it into the destination keyring */
568 		if (keyring && link_ret == 0)
569 			__key_link(key, &edit);
570 
571 		/* disable the authorisation key */
572 		if (authkey)
573 			key_revoke(authkey);
574 	}
575 
576 	mutex_unlock(&key_construction_mutex);
577 
578 	if (keyring)
579 		__key_link_end(keyring, &key->index_key, edit);
580 
581 	/* wake up anyone waiting for a key to be constructed */
582 	if (awaken)
583 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
584 
585 	return ret == 0 ? link_ret : ret;
586 }
587 EXPORT_SYMBOL(key_reject_and_link);
588 
589 /**
590  * key_put - Discard a reference to a key.
591  * @key: The key to discard a reference from.
592  *
593  * Discard a reference to a key, and when all the references are gone, we
594  * schedule the cleanup task to come and pull it out of the tree in process
595  * context at some later time.
596  */
597 void key_put(struct key *key)
598 {
599 	if (key) {
600 		key_check(key);
601 
602 		if (atomic_dec_and_test(&key->usage))
603 			schedule_work(&key_gc_work);
604 	}
605 }
606 EXPORT_SYMBOL(key_put);
607 
608 /*
609  * Find a key by its serial number.
610  */
611 struct key *key_lookup(key_serial_t id)
612 {
613 	struct rb_node *n;
614 	struct key *key;
615 
616 	spin_lock(&key_serial_lock);
617 
618 	/* search the tree for the specified key */
619 	n = key_serial_tree.rb_node;
620 	while (n) {
621 		key = rb_entry(n, struct key, serial_node);
622 
623 		if (id < key->serial)
624 			n = n->rb_left;
625 		else if (id > key->serial)
626 			n = n->rb_right;
627 		else
628 			goto found;
629 	}
630 
631 not_found:
632 	key = ERR_PTR(-ENOKEY);
633 	goto error;
634 
635 found:
636 	/* pretend it doesn't exist if it is awaiting deletion */
637 	if (atomic_read(&key->usage) == 0)
638 		goto not_found;
639 
640 	/* this races with key_put(), but that doesn't matter since key_put()
641 	 * doesn't actually change the key
642 	 */
643 	__key_get(key);
644 
645 error:
646 	spin_unlock(&key_serial_lock);
647 	return key;
648 }
649 
650 /*
651  * Find and lock the specified key type against removal.
652  *
653  * We return with the sem read-locked if successful.  If the type wasn't
654  * available -ENOKEY is returned instead.
655  */
656 struct key_type *key_type_lookup(const char *type)
657 {
658 	struct key_type *ktype;
659 
660 	down_read(&key_types_sem);
661 
662 	/* look up the key type to see if it's one of the registered kernel
663 	 * types */
664 	list_for_each_entry(ktype, &key_types_list, link) {
665 		if (strcmp(ktype->name, type) == 0)
666 			goto found_kernel_type;
667 	}
668 
669 	up_read(&key_types_sem);
670 	ktype = ERR_PTR(-ENOKEY);
671 
672 found_kernel_type:
673 	return ktype;
674 }
675 
676 void key_set_timeout(struct key *key, unsigned timeout)
677 {
678 	struct timespec now;
679 	time_t expiry = 0;
680 
681 	/* make the changes with the locks held to prevent races */
682 	down_write(&key->sem);
683 
684 	if (timeout > 0) {
685 		now = current_kernel_time();
686 		expiry = now.tv_sec + timeout;
687 	}
688 
689 	key->expiry = expiry;
690 	key_schedule_gc(key->expiry + key_gc_delay);
691 
692 	up_write(&key->sem);
693 }
694 EXPORT_SYMBOL_GPL(key_set_timeout);
695 
696 /*
697  * Unlock a key type locked by key_type_lookup().
698  */
699 void key_type_put(struct key_type *ktype)
700 {
701 	up_read(&key_types_sem);
702 }
703 
704 /*
705  * Attempt to update an existing key.
706  *
707  * The key is given to us with an incremented refcount that we need to discard
708  * if we get an error.
709  */
710 static inline key_ref_t __key_update(key_ref_t key_ref,
711 				     struct key_preparsed_payload *prep)
712 {
713 	struct key *key = key_ref_to_ptr(key_ref);
714 	int ret;
715 
716 	/* need write permission on the key to update it */
717 	ret = key_permission(key_ref, KEY_NEED_WRITE);
718 	if (ret < 0)
719 		goto error;
720 
721 	ret = -EEXIST;
722 	if (!key->type->update)
723 		goto error;
724 
725 	down_write(&key->sem);
726 
727 	ret = key->type->update(key, prep);
728 	if (ret == 0)
729 		/* updating a negative key instantiates it */
730 		clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
731 
732 	up_write(&key->sem);
733 
734 	if (ret < 0)
735 		goto error;
736 out:
737 	return key_ref;
738 
739 error:
740 	key_put(key);
741 	key_ref = ERR_PTR(ret);
742 	goto out;
743 }
744 
745 /**
746  * key_create_or_update - Update or create and instantiate a key.
747  * @keyring_ref: A pointer to the destination keyring with possession flag.
748  * @type: The type of key.
749  * @description: The searchable description for the key.
750  * @payload: The data to use to instantiate or update the key.
751  * @plen: The length of @payload.
752  * @perm: The permissions mask for a new key.
753  * @flags: The quota flags for a new key.
754  *
755  * Search the destination keyring for a key of the same description and if one
756  * is found, update it, otherwise create and instantiate a new one and create a
757  * link to it from that keyring.
758  *
759  * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
760  * concocted.
761  *
762  * Returns a pointer to the new key if successful, -ENODEV if the key type
763  * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
764  * caller isn't permitted to modify the keyring or the LSM did not permit
765  * creation of the key.
766  *
767  * On success, the possession flag from the keyring ref will be tacked on to
768  * the key ref before it is returned.
769  */
770 key_ref_t key_create_or_update(key_ref_t keyring_ref,
771 			       const char *type,
772 			       const char *description,
773 			       const void *payload,
774 			       size_t plen,
775 			       key_perm_t perm,
776 			       unsigned long flags)
777 {
778 	struct keyring_index_key index_key = {
779 		.description	= description,
780 	};
781 	struct key_preparsed_payload prep;
782 	struct assoc_array_edit *edit;
783 	const struct cred *cred = current_cred();
784 	struct key *keyring, *key = NULL;
785 	key_ref_t key_ref;
786 	int ret;
787 
788 	/* look up the key type to see if it's one of the registered kernel
789 	 * types */
790 	index_key.type = key_type_lookup(type);
791 	if (IS_ERR(index_key.type)) {
792 		key_ref = ERR_PTR(-ENODEV);
793 		goto error;
794 	}
795 
796 	key_ref = ERR_PTR(-EINVAL);
797 	if (!index_key.type->match || !index_key.type->instantiate ||
798 	    (!index_key.description && !index_key.type->preparse))
799 		goto error_put_type;
800 
801 	keyring = key_ref_to_ptr(keyring_ref);
802 
803 	key_check(keyring);
804 
805 	key_ref = ERR_PTR(-ENOTDIR);
806 	if (keyring->type != &key_type_keyring)
807 		goto error_put_type;
808 
809 	memset(&prep, 0, sizeof(prep));
810 	prep.data = payload;
811 	prep.datalen = plen;
812 	prep.quotalen = index_key.type->def_datalen;
813 	prep.trusted = flags & KEY_ALLOC_TRUSTED;
814 	if (index_key.type->preparse) {
815 		ret = index_key.type->preparse(&prep);
816 		if (ret < 0) {
817 			key_ref = ERR_PTR(ret);
818 			goto error_put_type;
819 		}
820 		if (!index_key.description)
821 			index_key.description = prep.description;
822 		key_ref = ERR_PTR(-EINVAL);
823 		if (!index_key.description)
824 			goto error_free_prep;
825 	}
826 	index_key.desc_len = strlen(index_key.description);
827 
828 	key_ref = ERR_PTR(-EPERM);
829 	if (!prep.trusted && test_bit(KEY_FLAG_TRUSTED_ONLY, &keyring->flags))
830 		goto error_free_prep;
831 	flags |= prep.trusted ? KEY_ALLOC_TRUSTED : 0;
832 
833 	ret = __key_link_begin(keyring, &index_key, &edit);
834 	if (ret < 0) {
835 		key_ref = ERR_PTR(ret);
836 		goto error_free_prep;
837 	}
838 
839 	/* if we're going to allocate a new key, we're going to have
840 	 * to modify the keyring */
841 	ret = key_permission(keyring_ref, KEY_NEED_WRITE);
842 	if (ret < 0) {
843 		key_ref = ERR_PTR(ret);
844 		goto error_link_end;
845 	}
846 
847 	/* if it's possible to update this type of key, search for an existing
848 	 * key of the same type and description in the destination keyring and
849 	 * update that instead if possible
850 	 */
851 	if (index_key.type->update) {
852 		key_ref = find_key_to_update(keyring_ref, &index_key);
853 		if (key_ref)
854 			goto found_matching_key;
855 	}
856 
857 	/* if the client doesn't provide, decide on the permissions we want */
858 	if (perm == KEY_PERM_UNDEF) {
859 		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
860 		perm |= KEY_USR_VIEW;
861 
862 		if (index_key.type->read)
863 			perm |= KEY_POS_READ;
864 
865 		if (index_key.type == &key_type_keyring ||
866 		    index_key.type->update)
867 			perm |= KEY_POS_WRITE;
868 	}
869 
870 	/* allocate a new key */
871 	key = key_alloc(index_key.type, index_key.description,
872 			cred->fsuid, cred->fsgid, cred, perm, flags);
873 	if (IS_ERR(key)) {
874 		key_ref = ERR_CAST(key);
875 		goto error_link_end;
876 	}
877 
878 	/* instantiate it and link it into the target keyring */
879 	ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
880 	if (ret < 0) {
881 		key_put(key);
882 		key_ref = ERR_PTR(ret);
883 		goto error_link_end;
884 	}
885 
886 	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
887 
888 error_link_end:
889 	__key_link_end(keyring, &index_key, edit);
890 error_free_prep:
891 	if (index_key.type->preparse)
892 		index_key.type->free_preparse(&prep);
893 error_put_type:
894 	key_type_put(index_key.type);
895 error:
896 	return key_ref;
897 
898  found_matching_key:
899 	/* we found a matching key, so we're going to try to update it
900 	 * - we can drop the locks first as we have the key pinned
901 	 */
902 	__key_link_end(keyring, &index_key, edit);
903 
904 	key_ref = __key_update(key_ref, &prep);
905 	goto error_free_prep;
906 }
907 EXPORT_SYMBOL(key_create_or_update);
908 
909 /**
910  * key_update - Update a key's contents.
911  * @key_ref: The pointer (plus possession flag) to the key.
912  * @payload: The data to be used to update the key.
913  * @plen: The length of @payload.
914  *
915  * Attempt to update the contents of a key with the given payload data.  The
916  * caller must be granted Write permission on the key.  Negative keys can be
917  * instantiated by this method.
918  *
919  * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
920  * type does not support updating.  The key type may return other errors.
921  */
922 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
923 {
924 	struct key_preparsed_payload prep;
925 	struct key *key = key_ref_to_ptr(key_ref);
926 	int ret;
927 
928 	key_check(key);
929 
930 	/* the key must be writable */
931 	ret = key_permission(key_ref, KEY_NEED_WRITE);
932 	if (ret < 0)
933 		goto error;
934 
935 	/* attempt to update it if supported */
936 	ret = -EOPNOTSUPP;
937 	if (!key->type->update)
938 		goto error;
939 
940 	memset(&prep, 0, sizeof(prep));
941 	prep.data = payload;
942 	prep.datalen = plen;
943 	prep.quotalen = key->type->def_datalen;
944 	if (key->type->preparse) {
945 		ret = key->type->preparse(&prep);
946 		if (ret < 0)
947 			goto error;
948 	}
949 
950 	down_write(&key->sem);
951 
952 	ret = key->type->update(key, &prep);
953 	if (ret == 0)
954 		/* updating a negative key instantiates it */
955 		clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
956 
957 	up_write(&key->sem);
958 
959 	if (key->type->preparse)
960 		key->type->free_preparse(&prep);
961 error:
962 	return ret;
963 }
964 EXPORT_SYMBOL(key_update);
965 
966 /**
967  * key_revoke - Revoke a key.
968  * @key: The key to be revoked.
969  *
970  * Mark a key as being revoked and ask the type to free up its resources.  The
971  * revocation timeout is set and the key and all its links will be
972  * automatically garbage collected after key_gc_delay amount of time if they
973  * are not manually dealt with first.
974  */
975 void key_revoke(struct key *key)
976 {
977 	struct timespec now;
978 	time_t time;
979 
980 	key_check(key);
981 
982 	/* make sure no one's trying to change or use the key when we mark it
983 	 * - we tell lockdep that we might nest because we might be revoking an
984 	 *   authorisation key whilst holding the sem on a key we've just
985 	 *   instantiated
986 	 */
987 	down_write_nested(&key->sem, 1);
988 	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
989 	    key->type->revoke)
990 		key->type->revoke(key);
991 
992 	/* set the death time to no more than the expiry time */
993 	now = current_kernel_time();
994 	time = now.tv_sec;
995 	if (key->revoked_at == 0 || key->revoked_at > time) {
996 		key->revoked_at = time;
997 		key_schedule_gc(key->revoked_at + key_gc_delay);
998 	}
999 
1000 	up_write(&key->sem);
1001 }
1002 EXPORT_SYMBOL(key_revoke);
1003 
1004 /**
1005  * key_invalidate - Invalidate a key.
1006  * @key: The key to be invalidated.
1007  *
1008  * Mark a key as being invalidated and have it cleaned up immediately.  The key
1009  * is ignored by all searches and other operations from this point.
1010  */
1011 void key_invalidate(struct key *key)
1012 {
1013 	kenter("%d", key_serial(key));
1014 
1015 	key_check(key);
1016 
1017 	if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1018 		down_write_nested(&key->sem, 1);
1019 		if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
1020 			key_schedule_gc_links();
1021 		up_write(&key->sem);
1022 	}
1023 }
1024 EXPORT_SYMBOL(key_invalidate);
1025 
1026 /**
1027  * register_key_type - Register a type of key.
1028  * @ktype: The new key type.
1029  *
1030  * Register a new key type.
1031  *
1032  * Returns 0 on success or -EEXIST if a type of this name already exists.
1033  */
1034 int register_key_type(struct key_type *ktype)
1035 {
1036 	struct key_type *p;
1037 	int ret;
1038 
1039 	memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1040 
1041 	ret = -EEXIST;
1042 	down_write(&key_types_sem);
1043 
1044 	/* disallow key types with the same name */
1045 	list_for_each_entry(p, &key_types_list, link) {
1046 		if (strcmp(p->name, ktype->name) == 0)
1047 			goto out;
1048 	}
1049 
1050 	/* store the type */
1051 	list_add(&ktype->link, &key_types_list);
1052 
1053 	pr_notice("Key type %s registered\n", ktype->name);
1054 	ret = 0;
1055 
1056 out:
1057 	up_write(&key_types_sem);
1058 	return ret;
1059 }
1060 EXPORT_SYMBOL(register_key_type);
1061 
1062 /**
1063  * unregister_key_type - Unregister a type of key.
1064  * @ktype: The key type.
1065  *
1066  * Unregister a key type and mark all the extant keys of this type as dead.
1067  * Those keys of this type are then destroyed to get rid of their payloads and
1068  * they and their links will be garbage collected as soon as possible.
1069  */
1070 void unregister_key_type(struct key_type *ktype)
1071 {
1072 	down_write(&key_types_sem);
1073 	list_del_init(&ktype->link);
1074 	downgrade_write(&key_types_sem);
1075 	key_gc_keytype(ktype);
1076 	pr_notice("Key type %s unregistered\n", ktype->name);
1077 	up_read(&key_types_sem);
1078 }
1079 EXPORT_SYMBOL(unregister_key_type);
1080 
1081 /*
1082  * Initialise the key management state.
1083  */
1084 void __init key_init(void)
1085 {
1086 	/* allocate a slab in which we can store keys */
1087 	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1088 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1089 
1090 	/* add the special key types */
1091 	list_add_tail(&key_type_keyring.link, &key_types_list);
1092 	list_add_tail(&key_type_dead.link, &key_types_list);
1093 	list_add_tail(&key_type_user.link, &key_types_list);
1094 	list_add_tail(&key_type_logon.link, &key_types_list);
1095 
1096 	/* record the root user tracking */
1097 	rb_link_node(&root_key_user.node,
1098 		     NULL,
1099 		     &key_user_tree.rb_node);
1100 
1101 	rb_insert_color(&root_key_user.node,
1102 			&key_user_tree);
1103 }
1104