1 /* Basic authentication token and access key management 2 * 3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved. 4 * Written by David Howells (dhowells@redhat.com) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/poison.h> 15 #include <linux/sched.h> 16 #include <linux/slab.h> 17 #include <linux/security.h> 18 #include <linux/workqueue.h> 19 #include <linux/random.h> 20 #include <linux/err.h> 21 #include "internal.h" 22 23 struct kmem_cache *key_jar; 24 struct rb_root key_serial_tree; /* tree of keys indexed by serial */ 25 DEFINE_SPINLOCK(key_serial_lock); 26 27 struct rb_root key_user_tree; /* tree of quota records indexed by UID */ 28 DEFINE_SPINLOCK(key_user_lock); 29 30 unsigned int key_quota_root_maxkeys = 200; /* root's key count quota */ 31 unsigned int key_quota_root_maxbytes = 20000; /* root's key space quota */ 32 unsigned int key_quota_maxkeys = 200; /* general key count quota */ 33 unsigned int key_quota_maxbytes = 20000; /* general key space quota */ 34 35 static LIST_HEAD(key_types_list); 36 static DECLARE_RWSEM(key_types_sem); 37 38 /* We serialise key instantiation and link */ 39 DEFINE_MUTEX(key_construction_mutex); 40 41 #ifdef KEY_DEBUGGING 42 void __key_check(const struct key *key) 43 { 44 printk("__key_check: key %p {%08x} should be {%08x}\n", 45 key, key->magic, KEY_DEBUG_MAGIC); 46 BUG(); 47 } 48 #endif 49 50 /* 51 * Get the key quota record for a user, allocating a new record if one doesn't 52 * already exist. 53 */ 54 struct key_user *key_user_lookup(kuid_t uid) 55 { 56 struct key_user *candidate = NULL, *user; 57 struct rb_node *parent = NULL; 58 struct rb_node **p; 59 60 try_again: 61 p = &key_user_tree.rb_node; 62 spin_lock(&key_user_lock); 63 64 /* search the tree for a user record with a matching UID */ 65 while (*p) { 66 parent = *p; 67 user = rb_entry(parent, struct key_user, node); 68 69 if (uid_lt(uid, user->uid)) 70 p = &(*p)->rb_left; 71 else if (uid_gt(uid, user->uid)) 72 p = &(*p)->rb_right; 73 else 74 goto found; 75 } 76 77 /* if we get here, we failed to find a match in the tree */ 78 if (!candidate) { 79 /* allocate a candidate user record if we don't already have 80 * one */ 81 spin_unlock(&key_user_lock); 82 83 user = NULL; 84 candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL); 85 if (unlikely(!candidate)) 86 goto out; 87 88 /* the allocation may have scheduled, so we need to repeat the 89 * search lest someone else added the record whilst we were 90 * asleep */ 91 goto try_again; 92 } 93 94 /* if we get here, then the user record still hadn't appeared on the 95 * second pass - so we use the candidate record */ 96 atomic_set(&candidate->usage, 1); 97 atomic_set(&candidate->nkeys, 0); 98 atomic_set(&candidate->nikeys, 0); 99 candidate->uid = uid; 100 candidate->qnkeys = 0; 101 candidate->qnbytes = 0; 102 spin_lock_init(&candidate->lock); 103 mutex_init(&candidate->cons_lock); 104 105 rb_link_node(&candidate->node, parent, p); 106 rb_insert_color(&candidate->node, &key_user_tree); 107 spin_unlock(&key_user_lock); 108 user = candidate; 109 goto out; 110 111 /* okay - we found a user record for this UID */ 112 found: 113 atomic_inc(&user->usage); 114 spin_unlock(&key_user_lock); 115 kfree(candidate); 116 out: 117 return user; 118 } 119 120 /* 121 * Dispose of a user structure 122 */ 123 void key_user_put(struct key_user *user) 124 { 125 if (atomic_dec_and_lock(&user->usage, &key_user_lock)) { 126 rb_erase(&user->node, &key_user_tree); 127 spin_unlock(&key_user_lock); 128 129 kfree(user); 130 } 131 } 132 133 /* 134 * Allocate a serial number for a key. These are assigned randomly to avoid 135 * security issues through covert channel problems. 136 */ 137 static inline void key_alloc_serial(struct key *key) 138 { 139 struct rb_node *parent, **p; 140 struct key *xkey; 141 142 /* propose a random serial number and look for a hole for it in the 143 * serial number tree */ 144 do { 145 get_random_bytes(&key->serial, sizeof(key->serial)); 146 147 key->serial >>= 1; /* negative numbers are not permitted */ 148 } while (key->serial < 3); 149 150 spin_lock(&key_serial_lock); 151 152 attempt_insertion: 153 parent = NULL; 154 p = &key_serial_tree.rb_node; 155 156 while (*p) { 157 parent = *p; 158 xkey = rb_entry(parent, struct key, serial_node); 159 160 if (key->serial < xkey->serial) 161 p = &(*p)->rb_left; 162 else if (key->serial > xkey->serial) 163 p = &(*p)->rb_right; 164 else 165 goto serial_exists; 166 } 167 168 /* we've found a suitable hole - arrange for this key to occupy it */ 169 rb_link_node(&key->serial_node, parent, p); 170 rb_insert_color(&key->serial_node, &key_serial_tree); 171 172 spin_unlock(&key_serial_lock); 173 return; 174 175 /* we found a key with the proposed serial number - walk the tree from 176 * that point looking for the next unused serial number */ 177 serial_exists: 178 for (;;) { 179 key->serial++; 180 if (key->serial < 3) { 181 key->serial = 3; 182 goto attempt_insertion; 183 } 184 185 parent = rb_next(parent); 186 if (!parent) 187 goto attempt_insertion; 188 189 xkey = rb_entry(parent, struct key, serial_node); 190 if (key->serial < xkey->serial) 191 goto attempt_insertion; 192 } 193 } 194 195 /** 196 * key_alloc - Allocate a key of the specified type. 197 * @type: The type of key to allocate. 198 * @desc: The key description to allow the key to be searched out. 199 * @uid: The owner of the new key. 200 * @gid: The group ID for the new key's group permissions. 201 * @cred: The credentials specifying UID namespace. 202 * @perm: The permissions mask of the new key. 203 * @flags: Flags specifying quota properties. 204 * 205 * Allocate a key of the specified type with the attributes given. The key is 206 * returned in an uninstantiated state and the caller needs to instantiate the 207 * key before returning. 208 * 209 * The user's key count quota is updated to reflect the creation of the key and 210 * the user's key data quota has the default for the key type reserved. The 211 * instantiation function should amend this as necessary. If insufficient 212 * quota is available, -EDQUOT will be returned. 213 * 214 * The LSM security modules can prevent a key being created, in which case 215 * -EACCES will be returned. 216 * 217 * Returns a pointer to the new key if successful and an error code otherwise. 218 * 219 * Note that the caller needs to ensure the key type isn't uninstantiated. 220 * Internally this can be done by locking key_types_sem. Externally, this can 221 * be done by either never unregistering the key type, or making sure 222 * key_alloc() calls don't race with module unloading. 223 */ 224 struct key *key_alloc(struct key_type *type, const char *desc, 225 kuid_t uid, kgid_t gid, const struct cred *cred, 226 key_perm_t perm, unsigned long flags) 227 { 228 struct key_user *user = NULL; 229 struct key *key; 230 size_t desclen, quotalen; 231 int ret; 232 233 key = ERR_PTR(-EINVAL); 234 if (!desc || !*desc) 235 goto error; 236 237 if (type->vet_description) { 238 ret = type->vet_description(desc); 239 if (ret < 0) { 240 key = ERR_PTR(ret); 241 goto error; 242 } 243 } 244 245 desclen = strlen(desc) + 1; 246 quotalen = desclen + type->def_datalen; 247 248 /* get hold of the key tracking for this user */ 249 user = key_user_lookup(uid); 250 if (!user) 251 goto no_memory_1; 252 253 /* check that the user's quota permits allocation of another key and 254 * its description */ 255 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { 256 unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ? 257 key_quota_root_maxkeys : key_quota_maxkeys; 258 unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ? 259 key_quota_root_maxbytes : key_quota_maxbytes; 260 261 spin_lock(&user->lock); 262 if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) { 263 if (user->qnkeys + 1 >= maxkeys || 264 user->qnbytes + quotalen >= maxbytes || 265 user->qnbytes + quotalen < user->qnbytes) 266 goto no_quota; 267 } 268 269 user->qnkeys++; 270 user->qnbytes += quotalen; 271 spin_unlock(&user->lock); 272 } 273 274 /* allocate and initialise the key and its description */ 275 key = kmem_cache_alloc(key_jar, GFP_KERNEL); 276 if (!key) 277 goto no_memory_2; 278 279 if (desc) { 280 key->description = kmemdup(desc, desclen, GFP_KERNEL); 281 if (!key->description) 282 goto no_memory_3; 283 } 284 285 atomic_set(&key->usage, 1); 286 init_rwsem(&key->sem); 287 lockdep_set_class(&key->sem, &type->lock_class); 288 key->type = type; 289 key->user = user; 290 key->quotalen = quotalen; 291 key->datalen = type->def_datalen; 292 key->uid = uid; 293 key->gid = gid; 294 key->perm = perm; 295 key->flags = 0; 296 key->expiry = 0; 297 key->payload.data = NULL; 298 key->security = NULL; 299 300 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) 301 key->flags |= 1 << KEY_FLAG_IN_QUOTA; 302 303 memset(&key->type_data, 0, sizeof(key->type_data)); 304 305 #ifdef KEY_DEBUGGING 306 key->magic = KEY_DEBUG_MAGIC; 307 #endif 308 309 /* let the security module know about the key */ 310 ret = security_key_alloc(key, cred, flags); 311 if (ret < 0) 312 goto security_error; 313 314 /* publish the key by giving it a serial number */ 315 atomic_inc(&user->nkeys); 316 key_alloc_serial(key); 317 318 error: 319 return key; 320 321 security_error: 322 kfree(key->description); 323 kmem_cache_free(key_jar, key); 324 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { 325 spin_lock(&user->lock); 326 user->qnkeys--; 327 user->qnbytes -= quotalen; 328 spin_unlock(&user->lock); 329 } 330 key_user_put(user); 331 key = ERR_PTR(ret); 332 goto error; 333 334 no_memory_3: 335 kmem_cache_free(key_jar, key); 336 no_memory_2: 337 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { 338 spin_lock(&user->lock); 339 user->qnkeys--; 340 user->qnbytes -= quotalen; 341 spin_unlock(&user->lock); 342 } 343 key_user_put(user); 344 no_memory_1: 345 key = ERR_PTR(-ENOMEM); 346 goto error; 347 348 no_quota: 349 spin_unlock(&user->lock); 350 key_user_put(user); 351 key = ERR_PTR(-EDQUOT); 352 goto error; 353 } 354 EXPORT_SYMBOL(key_alloc); 355 356 /** 357 * key_payload_reserve - Adjust data quota reservation for the key's payload 358 * @key: The key to make the reservation for. 359 * @datalen: The amount of data payload the caller now wants. 360 * 361 * Adjust the amount of the owning user's key data quota that a key reserves. 362 * If the amount is increased, then -EDQUOT may be returned if there isn't 363 * enough free quota available. 364 * 365 * If successful, 0 is returned. 366 */ 367 int key_payload_reserve(struct key *key, size_t datalen) 368 { 369 int delta = (int)datalen - key->datalen; 370 int ret = 0; 371 372 key_check(key); 373 374 /* contemplate the quota adjustment */ 375 if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) { 376 unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ? 377 key_quota_root_maxbytes : key_quota_maxbytes; 378 379 spin_lock(&key->user->lock); 380 381 if (delta > 0 && 382 (key->user->qnbytes + delta >= maxbytes || 383 key->user->qnbytes + delta < key->user->qnbytes)) { 384 ret = -EDQUOT; 385 } 386 else { 387 key->user->qnbytes += delta; 388 key->quotalen += delta; 389 } 390 spin_unlock(&key->user->lock); 391 } 392 393 /* change the recorded data length if that didn't generate an error */ 394 if (ret == 0) 395 key->datalen = datalen; 396 397 return ret; 398 } 399 EXPORT_SYMBOL(key_payload_reserve); 400 401 /* 402 * Instantiate a key and link it into the target keyring atomically. Must be 403 * called with the target keyring's semaphore writelocked. The target key's 404 * semaphore need not be locked as instantiation is serialised by 405 * key_construction_mutex. 406 */ 407 static int __key_instantiate_and_link(struct key *key, 408 struct key_preparsed_payload *prep, 409 struct key *keyring, 410 struct key *authkey, 411 unsigned long *_prealloc) 412 { 413 int ret, awaken; 414 415 key_check(key); 416 key_check(keyring); 417 418 awaken = 0; 419 ret = -EBUSY; 420 421 mutex_lock(&key_construction_mutex); 422 423 /* can't instantiate twice */ 424 if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) { 425 /* instantiate the key */ 426 ret = key->type->instantiate(key, prep); 427 428 if (ret == 0) { 429 /* mark the key as being instantiated */ 430 atomic_inc(&key->user->nikeys); 431 set_bit(KEY_FLAG_INSTANTIATED, &key->flags); 432 433 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) 434 awaken = 1; 435 436 /* and link it into the destination keyring */ 437 if (keyring) 438 __key_link(keyring, key, _prealloc); 439 440 /* disable the authorisation key */ 441 if (authkey) 442 key_revoke(authkey); 443 } 444 } 445 446 mutex_unlock(&key_construction_mutex); 447 448 /* wake up anyone waiting for a key to be constructed */ 449 if (awaken) 450 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT); 451 452 return ret; 453 } 454 455 /** 456 * key_instantiate_and_link - Instantiate a key and link it into the keyring. 457 * @key: The key to instantiate. 458 * @data: The data to use to instantiate the keyring. 459 * @datalen: The length of @data. 460 * @keyring: Keyring to create a link in on success (or NULL). 461 * @authkey: The authorisation token permitting instantiation. 462 * 463 * Instantiate a key that's in the uninstantiated state using the provided data 464 * and, if successful, link it in to the destination keyring if one is 465 * supplied. 466 * 467 * If successful, 0 is returned, the authorisation token is revoked and anyone 468 * waiting for the key is woken up. If the key was already instantiated, 469 * -EBUSY will be returned. 470 */ 471 int key_instantiate_and_link(struct key *key, 472 const void *data, 473 size_t datalen, 474 struct key *keyring, 475 struct key *authkey) 476 { 477 struct key_preparsed_payload prep; 478 unsigned long prealloc; 479 int ret; 480 481 memset(&prep, 0, sizeof(prep)); 482 prep.data = data; 483 prep.datalen = datalen; 484 prep.quotalen = key->type->def_datalen; 485 if (key->type->preparse) { 486 ret = key->type->preparse(&prep); 487 if (ret < 0) 488 goto error; 489 } 490 491 if (keyring) { 492 ret = __key_link_begin(keyring, key->type, key->description, 493 &prealloc); 494 if (ret < 0) 495 goto error_free_preparse; 496 } 497 498 ret = __key_instantiate_and_link(key, &prep, keyring, authkey, 499 &prealloc); 500 501 if (keyring) 502 __key_link_end(keyring, key->type, prealloc); 503 504 error_free_preparse: 505 if (key->type->preparse) 506 key->type->free_preparse(&prep); 507 error: 508 return ret; 509 } 510 511 EXPORT_SYMBOL(key_instantiate_and_link); 512 513 /** 514 * key_reject_and_link - Negatively instantiate a key and link it into the keyring. 515 * @key: The key to instantiate. 516 * @timeout: The timeout on the negative key. 517 * @error: The error to return when the key is hit. 518 * @keyring: Keyring to create a link in on success (or NULL). 519 * @authkey: The authorisation token permitting instantiation. 520 * 521 * Negatively instantiate a key that's in the uninstantiated state and, if 522 * successful, set its timeout and stored error and link it in to the 523 * destination keyring if one is supplied. The key and any links to the key 524 * will be automatically garbage collected after the timeout expires. 525 * 526 * Negative keys are used to rate limit repeated request_key() calls by causing 527 * them to return the stored error code (typically ENOKEY) until the negative 528 * key expires. 529 * 530 * If successful, 0 is returned, the authorisation token is revoked and anyone 531 * waiting for the key is woken up. If the key was already instantiated, 532 * -EBUSY will be returned. 533 */ 534 int key_reject_and_link(struct key *key, 535 unsigned timeout, 536 unsigned error, 537 struct key *keyring, 538 struct key *authkey) 539 { 540 unsigned long prealloc; 541 struct timespec now; 542 int ret, awaken, link_ret = 0; 543 544 key_check(key); 545 key_check(keyring); 546 547 awaken = 0; 548 ret = -EBUSY; 549 550 if (keyring) 551 link_ret = __key_link_begin(keyring, key->type, 552 key->description, &prealloc); 553 554 mutex_lock(&key_construction_mutex); 555 556 /* can't instantiate twice */ 557 if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) { 558 /* mark the key as being negatively instantiated */ 559 atomic_inc(&key->user->nikeys); 560 set_bit(KEY_FLAG_NEGATIVE, &key->flags); 561 set_bit(KEY_FLAG_INSTANTIATED, &key->flags); 562 key->type_data.reject_error = -error; 563 now = current_kernel_time(); 564 key->expiry = now.tv_sec + timeout; 565 key_schedule_gc(key->expiry + key_gc_delay); 566 567 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) 568 awaken = 1; 569 570 ret = 0; 571 572 /* and link it into the destination keyring */ 573 if (keyring && link_ret == 0) 574 __key_link(keyring, key, &prealloc); 575 576 /* disable the authorisation key */ 577 if (authkey) 578 key_revoke(authkey); 579 } 580 581 mutex_unlock(&key_construction_mutex); 582 583 if (keyring) 584 __key_link_end(keyring, key->type, prealloc); 585 586 /* wake up anyone waiting for a key to be constructed */ 587 if (awaken) 588 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT); 589 590 return ret == 0 ? link_ret : ret; 591 } 592 EXPORT_SYMBOL(key_reject_and_link); 593 594 /** 595 * key_put - Discard a reference to a key. 596 * @key: The key to discard a reference from. 597 * 598 * Discard a reference to a key, and when all the references are gone, we 599 * schedule the cleanup task to come and pull it out of the tree in process 600 * context at some later time. 601 */ 602 void key_put(struct key *key) 603 { 604 if (key) { 605 key_check(key); 606 607 if (atomic_dec_and_test(&key->usage)) 608 schedule_work(&key_gc_work); 609 } 610 } 611 EXPORT_SYMBOL(key_put); 612 613 /* 614 * Find a key by its serial number. 615 */ 616 struct key *key_lookup(key_serial_t id) 617 { 618 struct rb_node *n; 619 struct key *key; 620 621 spin_lock(&key_serial_lock); 622 623 /* search the tree for the specified key */ 624 n = key_serial_tree.rb_node; 625 while (n) { 626 key = rb_entry(n, struct key, serial_node); 627 628 if (id < key->serial) 629 n = n->rb_left; 630 else if (id > key->serial) 631 n = n->rb_right; 632 else 633 goto found; 634 } 635 636 not_found: 637 key = ERR_PTR(-ENOKEY); 638 goto error; 639 640 found: 641 /* pretend it doesn't exist if it is awaiting deletion */ 642 if (atomic_read(&key->usage) == 0) 643 goto not_found; 644 645 /* this races with key_put(), but that doesn't matter since key_put() 646 * doesn't actually change the key 647 */ 648 atomic_inc(&key->usage); 649 650 error: 651 spin_unlock(&key_serial_lock); 652 return key; 653 } 654 655 /* 656 * Find and lock the specified key type against removal. 657 * 658 * We return with the sem read-locked if successful. If the type wasn't 659 * available -ENOKEY is returned instead. 660 */ 661 struct key_type *key_type_lookup(const char *type) 662 { 663 struct key_type *ktype; 664 665 down_read(&key_types_sem); 666 667 /* look up the key type to see if it's one of the registered kernel 668 * types */ 669 list_for_each_entry(ktype, &key_types_list, link) { 670 if (strcmp(ktype->name, type) == 0) 671 goto found_kernel_type; 672 } 673 674 up_read(&key_types_sem); 675 ktype = ERR_PTR(-ENOKEY); 676 677 found_kernel_type: 678 return ktype; 679 } 680 681 void key_set_timeout(struct key *key, unsigned timeout) 682 { 683 struct timespec now; 684 time_t expiry = 0; 685 686 /* make the changes with the locks held to prevent races */ 687 down_write(&key->sem); 688 689 if (timeout > 0) { 690 now = current_kernel_time(); 691 expiry = now.tv_sec + timeout; 692 } 693 694 key->expiry = expiry; 695 key_schedule_gc(key->expiry + key_gc_delay); 696 697 up_write(&key->sem); 698 } 699 EXPORT_SYMBOL_GPL(key_set_timeout); 700 701 /* 702 * Unlock a key type locked by key_type_lookup(). 703 */ 704 void key_type_put(struct key_type *ktype) 705 { 706 up_read(&key_types_sem); 707 } 708 709 /* 710 * Attempt to update an existing key. 711 * 712 * The key is given to us with an incremented refcount that we need to discard 713 * if we get an error. 714 */ 715 static inline key_ref_t __key_update(key_ref_t key_ref, 716 struct key_preparsed_payload *prep) 717 { 718 struct key *key = key_ref_to_ptr(key_ref); 719 int ret; 720 721 /* need write permission on the key to update it */ 722 ret = key_permission(key_ref, KEY_WRITE); 723 if (ret < 0) 724 goto error; 725 726 ret = -EEXIST; 727 if (!key->type->update) 728 goto error; 729 730 down_write(&key->sem); 731 732 ret = key->type->update(key, prep); 733 if (ret == 0) 734 /* updating a negative key instantiates it */ 735 clear_bit(KEY_FLAG_NEGATIVE, &key->flags); 736 737 up_write(&key->sem); 738 739 if (ret < 0) 740 goto error; 741 out: 742 return key_ref; 743 744 error: 745 key_put(key); 746 key_ref = ERR_PTR(ret); 747 goto out; 748 } 749 750 /** 751 * key_create_or_update - Update or create and instantiate a key. 752 * @keyring_ref: A pointer to the destination keyring with possession flag. 753 * @type: The type of key. 754 * @description: The searchable description for the key. 755 * @payload: The data to use to instantiate or update the key. 756 * @plen: The length of @payload. 757 * @perm: The permissions mask for a new key. 758 * @flags: The quota flags for a new key. 759 * 760 * Search the destination keyring for a key of the same description and if one 761 * is found, update it, otherwise create and instantiate a new one and create a 762 * link to it from that keyring. 763 * 764 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be 765 * concocted. 766 * 767 * Returns a pointer to the new key if successful, -ENODEV if the key type 768 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the 769 * caller isn't permitted to modify the keyring or the LSM did not permit 770 * creation of the key. 771 * 772 * On success, the possession flag from the keyring ref will be tacked on to 773 * the key ref before it is returned. 774 */ 775 key_ref_t key_create_or_update(key_ref_t keyring_ref, 776 const char *type, 777 const char *description, 778 const void *payload, 779 size_t plen, 780 key_perm_t perm, 781 unsigned long flags) 782 { 783 unsigned long prealloc; 784 struct key_preparsed_payload prep; 785 const struct cred *cred = current_cred(); 786 struct key_type *ktype; 787 struct key *keyring, *key = NULL; 788 key_ref_t key_ref; 789 int ret; 790 791 /* look up the key type to see if it's one of the registered kernel 792 * types */ 793 ktype = key_type_lookup(type); 794 if (IS_ERR(ktype)) { 795 key_ref = ERR_PTR(-ENODEV); 796 goto error; 797 } 798 799 key_ref = ERR_PTR(-EINVAL); 800 if (!ktype->match || !ktype->instantiate || 801 (!description && !ktype->preparse)) 802 goto error_put_type; 803 804 keyring = key_ref_to_ptr(keyring_ref); 805 806 key_check(keyring); 807 808 key_ref = ERR_PTR(-ENOTDIR); 809 if (keyring->type != &key_type_keyring) 810 goto error_put_type; 811 812 memset(&prep, 0, sizeof(prep)); 813 prep.data = payload; 814 prep.datalen = plen; 815 prep.quotalen = ktype->def_datalen; 816 if (ktype->preparse) { 817 ret = ktype->preparse(&prep); 818 if (ret < 0) { 819 key_ref = ERR_PTR(ret); 820 goto error_put_type; 821 } 822 if (!description) 823 description = prep.description; 824 key_ref = ERR_PTR(-EINVAL); 825 if (!description) 826 goto error_free_prep; 827 } 828 829 ret = __key_link_begin(keyring, ktype, description, &prealloc); 830 if (ret < 0) { 831 key_ref = ERR_PTR(ret); 832 goto error_free_prep; 833 } 834 835 /* if we're going to allocate a new key, we're going to have 836 * to modify the keyring */ 837 ret = key_permission(keyring_ref, KEY_WRITE); 838 if (ret < 0) { 839 key_ref = ERR_PTR(ret); 840 goto error_link_end; 841 } 842 843 /* if it's possible to update this type of key, search for an existing 844 * key of the same type and description in the destination keyring and 845 * update that instead if possible 846 */ 847 if (ktype->update) { 848 key_ref = __keyring_search_one(keyring_ref, ktype, description, 849 0); 850 if (!IS_ERR(key_ref)) 851 goto found_matching_key; 852 } 853 854 /* if the client doesn't provide, decide on the permissions we want */ 855 if (perm == KEY_PERM_UNDEF) { 856 perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR; 857 perm |= KEY_USR_VIEW; 858 859 if (ktype->read) 860 perm |= KEY_POS_READ; 861 862 if (ktype == &key_type_keyring || ktype->update) 863 perm |= KEY_POS_WRITE; 864 } 865 866 /* allocate a new key */ 867 key = key_alloc(ktype, description, cred->fsuid, cred->fsgid, cred, 868 perm, flags); 869 if (IS_ERR(key)) { 870 key_ref = ERR_CAST(key); 871 goto error_link_end; 872 } 873 874 /* instantiate it and link it into the target keyring */ 875 ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &prealloc); 876 if (ret < 0) { 877 key_put(key); 878 key_ref = ERR_PTR(ret); 879 goto error_link_end; 880 } 881 882 key_ref = make_key_ref(key, is_key_possessed(keyring_ref)); 883 884 error_link_end: 885 __key_link_end(keyring, ktype, prealloc); 886 error_free_prep: 887 if (ktype->preparse) 888 ktype->free_preparse(&prep); 889 error_put_type: 890 key_type_put(ktype); 891 error: 892 return key_ref; 893 894 found_matching_key: 895 /* we found a matching key, so we're going to try to update it 896 * - we can drop the locks first as we have the key pinned 897 */ 898 __key_link_end(keyring, ktype, prealloc); 899 900 key_ref = __key_update(key_ref, &prep); 901 goto error_free_prep; 902 } 903 EXPORT_SYMBOL(key_create_or_update); 904 905 /** 906 * key_update - Update a key's contents. 907 * @key_ref: The pointer (plus possession flag) to the key. 908 * @payload: The data to be used to update the key. 909 * @plen: The length of @payload. 910 * 911 * Attempt to update the contents of a key with the given payload data. The 912 * caller must be granted Write permission on the key. Negative keys can be 913 * instantiated by this method. 914 * 915 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key 916 * type does not support updating. The key type may return other errors. 917 */ 918 int key_update(key_ref_t key_ref, const void *payload, size_t plen) 919 { 920 struct key_preparsed_payload prep; 921 struct key *key = key_ref_to_ptr(key_ref); 922 int ret; 923 924 key_check(key); 925 926 /* the key must be writable */ 927 ret = key_permission(key_ref, KEY_WRITE); 928 if (ret < 0) 929 goto error; 930 931 /* attempt to update it if supported */ 932 ret = -EOPNOTSUPP; 933 if (!key->type->update) 934 goto error; 935 936 memset(&prep, 0, sizeof(prep)); 937 prep.data = payload; 938 prep.datalen = plen; 939 prep.quotalen = key->type->def_datalen; 940 if (key->type->preparse) { 941 ret = key->type->preparse(&prep); 942 if (ret < 0) 943 goto error; 944 } 945 946 down_write(&key->sem); 947 948 ret = key->type->update(key, &prep); 949 if (ret == 0) 950 /* updating a negative key instantiates it */ 951 clear_bit(KEY_FLAG_NEGATIVE, &key->flags); 952 953 up_write(&key->sem); 954 955 if (key->type->preparse) 956 key->type->free_preparse(&prep); 957 error: 958 return ret; 959 } 960 EXPORT_SYMBOL(key_update); 961 962 /** 963 * key_revoke - Revoke a key. 964 * @key: The key to be revoked. 965 * 966 * Mark a key as being revoked and ask the type to free up its resources. The 967 * revocation timeout is set and the key and all its links will be 968 * automatically garbage collected after key_gc_delay amount of time if they 969 * are not manually dealt with first. 970 */ 971 void key_revoke(struct key *key) 972 { 973 struct timespec now; 974 time_t time; 975 976 key_check(key); 977 978 /* make sure no one's trying to change or use the key when we mark it 979 * - we tell lockdep that we might nest because we might be revoking an 980 * authorisation key whilst holding the sem on a key we've just 981 * instantiated 982 */ 983 down_write_nested(&key->sem, 1); 984 if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) && 985 key->type->revoke) 986 key->type->revoke(key); 987 988 /* set the death time to no more than the expiry time */ 989 now = current_kernel_time(); 990 time = now.tv_sec; 991 if (key->revoked_at == 0 || key->revoked_at > time) { 992 key->revoked_at = time; 993 key_schedule_gc(key->revoked_at + key_gc_delay); 994 } 995 996 up_write(&key->sem); 997 } 998 EXPORT_SYMBOL(key_revoke); 999 1000 /** 1001 * key_invalidate - Invalidate a key. 1002 * @key: The key to be invalidated. 1003 * 1004 * Mark a key as being invalidated and have it cleaned up immediately. The key 1005 * is ignored by all searches and other operations from this point. 1006 */ 1007 void key_invalidate(struct key *key) 1008 { 1009 kenter("%d", key_serial(key)); 1010 1011 key_check(key); 1012 1013 if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) { 1014 down_write_nested(&key->sem, 1); 1015 if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags)) 1016 key_schedule_gc_links(); 1017 up_write(&key->sem); 1018 } 1019 } 1020 EXPORT_SYMBOL(key_invalidate); 1021 1022 /** 1023 * register_key_type - Register a type of key. 1024 * @ktype: The new key type. 1025 * 1026 * Register a new key type. 1027 * 1028 * Returns 0 on success or -EEXIST if a type of this name already exists. 1029 */ 1030 int register_key_type(struct key_type *ktype) 1031 { 1032 struct key_type *p; 1033 int ret; 1034 1035 memset(&ktype->lock_class, 0, sizeof(ktype->lock_class)); 1036 1037 ret = -EEXIST; 1038 down_write(&key_types_sem); 1039 1040 /* disallow key types with the same name */ 1041 list_for_each_entry(p, &key_types_list, link) { 1042 if (strcmp(p->name, ktype->name) == 0) 1043 goto out; 1044 } 1045 1046 /* store the type */ 1047 list_add(&ktype->link, &key_types_list); 1048 1049 pr_notice("Key type %s registered\n", ktype->name); 1050 ret = 0; 1051 1052 out: 1053 up_write(&key_types_sem); 1054 return ret; 1055 } 1056 EXPORT_SYMBOL(register_key_type); 1057 1058 /** 1059 * unregister_key_type - Unregister a type of key. 1060 * @ktype: The key type. 1061 * 1062 * Unregister a key type and mark all the extant keys of this type as dead. 1063 * Those keys of this type are then destroyed to get rid of their payloads and 1064 * they and their links will be garbage collected as soon as possible. 1065 */ 1066 void unregister_key_type(struct key_type *ktype) 1067 { 1068 down_write(&key_types_sem); 1069 list_del_init(&ktype->link); 1070 downgrade_write(&key_types_sem); 1071 key_gc_keytype(ktype); 1072 pr_notice("Key type %s unregistered\n", ktype->name); 1073 up_read(&key_types_sem); 1074 } 1075 EXPORT_SYMBOL(unregister_key_type); 1076 1077 /* 1078 * Initialise the key management state. 1079 */ 1080 void __init key_init(void) 1081 { 1082 /* allocate a slab in which we can store keys */ 1083 key_jar = kmem_cache_create("key_jar", sizeof(struct key), 1084 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 1085 1086 /* add the special key types */ 1087 list_add_tail(&key_type_keyring.link, &key_types_list); 1088 list_add_tail(&key_type_dead.link, &key_types_list); 1089 list_add_tail(&key_type_user.link, &key_types_list); 1090 list_add_tail(&key_type_logon.link, &key_types_list); 1091 1092 /* record the root user tracking */ 1093 rb_link_node(&root_key_user.node, 1094 NULL, 1095 &key_user_tree.rb_node); 1096 1097 rb_insert_color(&root_key_user.node, 1098 &key_user_tree); 1099 } 1100