1 /* key.c: basic authentication token and access key management 2 * 3 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. 4 * Written by David Howells (dhowells@redhat.com) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/sched.h> 15 #include <linux/slab.h> 16 #include <linux/workqueue.h> 17 #include <linux/err.h> 18 #include "internal.h" 19 20 static kmem_cache_t *key_jar; 21 static key_serial_t key_serial_next = 3; 22 struct rb_root key_serial_tree; /* tree of keys indexed by serial */ 23 DEFINE_SPINLOCK(key_serial_lock); 24 25 struct rb_root key_user_tree; /* tree of quota records indexed by UID */ 26 DEFINE_SPINLOCK(key_user_lock); 27 28 static LIST_HEAD(key_types_list); 29 static DECLARE_RWSEM(key_types_sem); 30 31 static void key_cleanup(void *data); 32 static DECLARE_WORK(key_cleanup_task, key_cleanup, NULL); 33 34 /* we serialise key instantiation and link */ 35 DECLARE_RWSEM(key_construction_sem); 36 37 /* any key who's type gets unegistered will be re-typed to this */ 38 struct key_type key_type_dead = { 39 .name = "dead", 40 }; 41 42 #ifdef KEY_DEBUGGING 43 void __key_check(const struct key *key) 44 { 45 printk("__key_check: key %p {%08x} should be {%08x}\n", 46 key, key->magic, KEY_DEBUG_MAGIC); 47 BUG(); 48 } 49 #endif 50 51 /*****************************************************************************/ 52 /* 53 * get the key quota record for a user, allocating a new record if one doesn't 54 * already exist 55 */ 56 struct key_user *key_user_lookup(uid_t uid) 57 { 58 struct key_user *candidate = NULL, *user; 59 struct rb_node *parent = NULL; 60 struct rb_node **p; 61 62 try_again: 63 p = &key_user_tree.rb_node; 64 spin_lock(&key_user_lock); 65 66 /* search the tree for a user record with a matching UID */ 67 while (*p) { 68 parent = *p; 69 user = rb_entry(parent, struct key_user, node); 70 71 if (uid < user->uid) 72 p = &(*p)->rb_left; 73 else if (uid > user->uid) 74 p = &(*p)->rb_right; 75 else 76 goto found; 77 } 78 79 /* if we get here, we failed to find a match in the tree */ 80 if (!candidate) { 81 /* allocate a candidate user record if we don't already have 82 * one */ 83 spin_unlock(&key_user_lock); 84 85 user = NULL; 86 candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL); 87 if (unlikely(!candidate)) 88 goto out; 89 90 /* the allocation may have scheduled, so we need to repeat the 91 * search lest someone else added the record whilst we were 92 * asleep */ 93 goto try_again; 94 } 95 96 /* if we get here, then the user record still hadn't appeared on the 97 * second pass - so we use the candidate record */ 98 atomic_set(&candidate->usage, 1); 99 atomic_set(&candidate->nkeys, 0); 100 atomic_set(&candidate->nikeys, 0); 101 candidate->uid = uid; 102 candidate->qnkeys = 0; 103 candidate->qnbytes = 0; 104 spin_lock_init(&candidate->lock); 105 INIT_LIST_HEAD(&candidate->consq); 106 107 rb_link_node(&candidate->node, parent, p); 108 rb_insert_color(&candidate->node, &key_user_tree); 109 spin_unlock(&key_user_lock); 110 user = candidate; 111 goto out; 112 113 /* okay - we found a user record for this UID */ 114 found: 115 atomic_inc(&user->usage); 116 spin_unlock(&key_user_lock); 117 if (candidate) 118 kfree(candidate); 119 out: 120 return user; 121 122 } /* end key_user_lookup() */ 123 124 /*****************************************************************************/ 125 /* 126 * dispose of a user structure 127 */ 128 void key_user_put(struct key_user *user) 129 { 130 if (atomic_dec_and_lock(&user->usage, &key_user_lock)) { 131 rb_erase(&user->node, &key_user_tree); 132 spin_unlock(&key_user_lock); 133 134 kfree(user); 135 } 136 137 } /* end key_user_put() */ 138 139 /*****************************************************************************/ 140 /* 141 * insert a key with a fixed serial number 142 */ 143 static void __init __key_insert_serial(struct key *key) 144 { 145 struct rb_node *parent, **p; 146 struct key *xkey; 147 148 parent = NULL; 149 p = &key_serial_tree.rb_node; 150 151 while (*p) { 152 parent = *p; 153 xkey = rb_entry(parent, struct key, serial_node); 154 155 if (key->serial < xkey->serial) 156 p = &(*p)->rb_left; 157 else if (key->serial > xkey->serial) 158 p = &(*p)->rb_right; 159 else 160 BUG(); 161 } 162 163 /* we've found a suitable hole - arrange for this key to occupy it */ 164 rb_link_node(&key->serial_node, parent, p); 165 rb_insert_color(&key->serial_node, &key_serial_tree); 166 167 } /* end __key_insert_serial() */ 168 169 /*****************************************************************************/ 170 /* 171 * assign a key the next unique serial number 172 * - we work through all the serial numbers between 2 and 2^31-1 in turn and 173 * then wrap 174 */ 175 static inline void key_alloc_serial(struct key *key) 176 { 177 struct rb_node *parent, **p; 178 struct key *xkey; 179 180 spin_lock(&key_serial_lock); 181 182 /* propose a likely serial number and look for a hole for it in the 183 * serial number tree */ 184 key->serial = key_serial_next; 185 if (key->serial < 3) 186 key->serial = 3; 187 key_serial_next = key->serial + 1; 188 189 parent = NULL; 190 p = &key_serial_tree.rb_node; 191 192 while (*p) { 193 parent = *p; 194 xkey = rb_entry(parent, struct key, serial_node); 195 196 if (key->serial < xkey->serial) 197 p = &(*p)->rb_left; 198 else if (key->serial > xkey->serial) 199 p = &(*p)->rb_right; 200 else 201 goto serial_exists; 202 } 203 goto insert_here; 204 205 /* we found a key with the proposed serial number - walk the tree from 206 * that point looking for the next unused serial number */ 207 serial_exists: 208 for (;;) { 209 key->serial = key_serial_next; 210 if (key->serial < 2) 211 key->serial = 2; 212 key_serial_next = key->serial + 1; 213 214 if (!parent->rb_parent) 215 p = &key_serial_tree.rb_node; 216 else if (parent->rb_parent->rb_left == parent) 217 p = &parent->rb_parent->rb_left; 218 else 219 p = &parent->rb_parent->rb_right; 220 221 parent = rb_next(parent); 222 if (!parent) 223 break; 224 225 xkey = rb_entry(parent, struct key, serial_node); 226 if (key->serial < xkey->serial) 227 goto insert_here; 228 } 229 230 /* we've found a suitable hole - arrange for this key to occupy it */ 231 insert_here: 232 rb_link_node(&key->serial_node, parent, p); 233 rb_insert_color(&key->serial_node, &key_serial_tree); 234 235 spin_unlock(&key_serial_lock); 236 237 } /* end key_alloc_serial() */ 238 239 /*****************************************************************************/ 240 /* 241 * allocate a key of the specified type 242 * - update the user's quota to reflect the existence of the key 243 * - called from a key-type operation with key_types_sem read-locked by either 244 * key_create_or_update() or by key_duplicate(); this prevents unregistration 245 * of the key type 246 * - upon return the key is as yet uninstantiated; the caller needs to either 247 * instantiate the key or discard it before returning 248 */ 249 struct key *key_alloc(struct key_type *type, const char *desc, 250 uid_t uid, gid_t gid, key_perm_t perm, 251 int not_in_quota) 252 { 253 struct key_user *user = NULL; 254 struct key *key; 255 size_t desclen, quotalen; 256 257 key = ERR_PTR(-EINVAL); 258 if (!desc || !*desc) 259 goto error; 260 261 desclen = strlen(desc) + 1; 262 quotalen = desclen + type->def_datalen; 263 264 /* get hold of the key tracking for this user */ 265 user = key_user_lookup(uid); 266 if (!user) 267 goto no_memory_1; 268 269 /* check that the user's quota permits allocation of another key and 270 * its description */ 271 if (!not_in_quota) { 272 spin_lock(&user->lock); 273 if (user->qnkeys + 1 >= KEYQUOTA_MAX_KEYS && 274 user->qnbytes + quotalen >= KEYQUOTA_MAX_BYTES 275 ) 276 goto no_quota; 277 278 user->qnkeys++; 279 user->qnbytes += quotalen; 280 spin_unlock(&user->lock); 281 } 282 283 /* allocate and initialise the key and its description */ 284 key = kmem_cache_alloc(key_jar, SLAB_KERNEL); 285 if (!key) 286 goto no_memory_2; 287 288 if (desc) { 289 key->description = kmalloc(desclen, GFP_KERNEL); 290 if (!key->description) 291 goto no_memory_3; 292 293 memcpy(key->description, desc, desclen); 294 } 295 296 atomic_set(&key->usage, 1); 297 rwlock_init(&key->lock); 298 init_rwsem(&key->sem); 299 key->type = type; 300 key->user = user; 301 key->quotalen = quotalen; 302 key->datalen = type->def_datalen; 303 key->uid = uid; 304 key->gid = gid; 305 key->perm = perm; 306 key->flags = 0; 307 key->expiry = 0; 308 key->payload.data = NULL; 309 310 if (!not_in_quota) 311 key->flags |= KEY_FLAG_IN_QUOTA; 312 313 memset(&key->type_data, 0, sizeof(key->type_data)); 314 315 #ifdef KEY_DEBUGGING 316 key->magic = KEY_DEBUG_MAGIC; 317 #endif 318 319 /* publish the key by giving it a serial number */ 320 atomic_inc(&user->nkeys); 321 key_alloc_serial(key); 322 323 error: 324 return key; 325 326 no_memory_3: 327 kmem_cache_free(key_jar, key); 328 no_memory_2: 329 if (!not_in_quota) { 330 spin_lock(&user->lock); 331 user->qnkeys--; 332 user->qnbytes -= quotalen; 333 spin_unlock(&user->lock); 334 } 335 key_user_put(user); 336 no_memory_1: 337 key = ERR_PTR(-ENOMEM); 338 goto error; 339 340 no_quota: 341 spin_unlock(&user->lock); 342 key_user_put(user); 343 key = ERR_PTR(-EDQUOT); 344 goto error; 345 346 } /* end key_alloc() */ 347 348 EXPORT_SYMBOL(key_alloc); 349 350 /*****************************************************************************/ 351 /* 352 * reserve an amount of quota for the key's payload 353 */ 354 int key_payload_reserve(struct key *key, size_t datalen) 355 { 356 int delta = (int) datalen - key->datalen; 357 int ret = 0; 358 359 key_check(key); 360 361 /* contemplate the quota adjustment */ 362 if (delta != 0 && key->flags & KEY_FLAG_IN_QUOTA) { 363 spin_lock(&key->user->lock); 364 365 if (delta > 0 && 366 key->user->qnbytes + delta > KEYQUOTA_MAX_BYTES 367 ) { 368 ret = -EDQUOT; 369 } 370 else { 371 key->user->qnbytes += delta; 372 key->quotalen += delta; 373 } 374 spin_unlock(&key->user->lock); 375 } 376 377 /* change the recorded data length if that didn't generate an error */ 378 if (ret == 0) 379 key->datalen = datalen; 380 381 return ret; 382 383 } /* end key_payload_reserve() */ 384 385 EXPORT_SYMBOL(key_payload_reserve); 386 387 /*****************************************************************************/ 388 /* 389 * instantiate a key and link it into the target keyring atomically 390 * - called with the target keyring's semaphore writelocked 391 */ 392 static int __key_instantiate_and_link(struct key *key, 393 const void *data, 394 size_t datalen, 395 struct key *keyring) 396 { 397 int ret, awaken; 398 399 key_check(key); 400 key_check(keyring); 401 402 awaken = 0; 403 ret = -EBUSY; 404 405 down_write(&key_construction_sem); 406 407 /* can't instantiate twice */ 408 if (!(key->flags & KEY_FLAG_INSTANTIATED)) { 409 /* instantiate the key */ 410 ret = key->type->instantiate(key, data, datalen); 411 412 if (ret == 0) { 413 /* mark the key as being instantiated */ 414 write_lock(&key->lock); 415 416 atomic_inc(&key->user->nikeys); 417 key->flags |= KEY_FLAG_INSTANTIATED; 418 419 if (key->flags & KEY_FLAG_USER_CONSTRUCT) { 420 key->flags &= ~KEY_FLAG_USER_CONSTRUCT; 421 awaken = 1; 422 } 423 424 write_unlock(&key->lock); 425 426 /* and link it into the destination keyring */ 427 if (keyring) 428 ret = __key_link(keyring, key); 429 } 430 } 431 432 up_write(&key_construction_sem); 433 434 /* wake up anyone waiting for a key to be constructed */ 435 if (awaken) 436 wake_up_all(&request_key_conswq); 437 438 return ret; 439 440 } /* end __key_instantiate_and_link() */ 441 442 /*****************************************************************************/ 443 /* 444 * instantiate a key and link it into the target keyring atomically 445 */ 446 int key_instantiate_and_link(struct key *key, 447 const void *data, 448 size_t datalen, 449 struct key *keyring) 450 { 451 int ret; 452 453 if (keyring) 454 down_write(&keyring->sem); 455 456 ret = __key_instantiate_and_link(key, data, datalen, keyring); 457 458 if (keyring) 459 up_write(&keyring->sem); 460 461 return ret; 462 } /* end key_instantiate_and_link() */ 463 464 EXPORT_SYMBOL(key_instantiate_and_link); 465 466 /*****************************************************************************/ 467 /* 468 * negatively instantiate a key and link it into the target keyring atomically 469 */ 470 int key_negate_and_link(struct key *key, 471 unsigned timeout, 472 struct key *keyring) 473 { 474 struct timespec now; 475 int ret, awaken; 476 477 key_check(key); 478 key_check(keyring); 479 480 awaken = 0; 481 ret = -EBUSY; 482 483 if (keyring) 484 down_write(&keyring->sem); 485 486 down_write(&key_construction_sem); 487 488 /* can't instantiate twice */ 489 if (!(key->flags & KEY_FLAG_INSTANTIATED)) { 490 /* mark the key as being negatively instantiated */ 491 write_lock(&key->lock); 492 493 atomic_inc(&key->user->nikeys); 494 key->flags |= KEY_FLAG_INSTANTIATED | KEY_FLAG_NEGATIVE; 495 now = current_kernel_time(); 496 key->expiry = now.tv_sec + timeout; 497 498 if (key->flags & KEY_FLAG_USER_CONSTRUCT) { 499 key->flags &= ~KEY_FLAG_USER_CONSTRUCT; 500 awaken = 1; 501 } 502 503 write_unlock(&key->lock); 504 ret = 0; 505 506 /* and link it into the destination keyring */ 507 if (keyring) 508 ret = __key_link(keyring, key); 509 } 510 511 up_write(&key_construction_sem); 512 513 if (keyring) 514 up_write(&keyring->sem); 515 516 /* wake up anyone waiting for a key to be constructed */ 517 if (awaken) 518 wake_up_all(&request_key_conswq); 519 520 return ret; 521 522 } /* end key_negate_and_link() */ 523 524 EXPORT_SYMBOL(key_negate_and_link); 525 526 /*****************************************************************************/ 527 /* 528 * do cleaning up in process context so that we don't have to disable 529 * interrupts all over the place 530 */ 531 static void key_cleanup(void *data) 532 { 533 struct rb_node *_n; 534 struct key *key; 535 536 go_again: 537 /* look for a dead key in the tree */ 538 spin_lock(&key_serial_lock); 539 540 for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) { 541 key = rb_entry(_n, struct key, serial_node); 542 543 if (atomic_read(&key->usage) == 0) 544 goto found_dead_key; 545 } 546 547 spin_unlock(&key_serial_lock); 548 return; 549 550 found_dead_key: 551 /* we found a dead key - once we've removed it from the tree, we can 552 * drop the lock */ 553 rb_erase(&key->serial_node, &key_serial_tree); 554 spin_unlock(&key_serial_lock); 555 556 /* deal with the user's key tracking and quota */ 557 if (key->flags & KEY_FLAG_IN_QUOTA) { 558 spin_lock(&key->user->lock); 559 key->user->qnkeys--; 560 key->user->qnbytes -= key->quotalen; 561 spin_unlock(&key->user->lock); 562 } 563 564 atomic_dec(&key->user->nkeys); 565 if (key->flags & KEY_FLAG_INSTANTIATED) 566 atomic_dec(&key->user->nikeys); 567 568 key_user_put(key->user); 569 570 /* now throw away the key memory */ 571 if (key->type->destroy) 572 key->type->destroy(key); 573 574 kfree(key->description); 575 576 #ifdef KEY_DEBUGGING 577 key->magic = KEY_DEBUG_MAGIC_X; 578 #endif 579 kmem_cache_free(key_jar, key); 580 581 /* there may, of course, be more than one key to destroy */ 582 goto go_again; 583 584 } /* end key_cleanup() */ 585 586 /*****************************************************************************/ 587 /* 588 * dispose of a reference to a key 589 * - when all the references are gone, we schedule the cleanup task to come and 590 * pull it out of the tree in definite process context 591 */ 592 void key_put(struct key *key) 593 { 594 if (key) { 595 key_check(key); 596 597 if (atomic_dec_and_test(&key->usage)) 598 schedule_work(&key_cleanup_task); 599 } 600 601 } /* end key_put() */ 602 603 EXPORT_SYMBOL(key_put); 604 605 /*****************************************************************************/ 606 /* 607 * find a key by its serial number 608 */ 609 struct key *key_lookup(key_serial_t id) 610 { 611 struct rb_node *n; 612 struct key *key; 613 614 spin_lock(&key_serial_lock); 615 616 /* search the tree for the specified key */ 617 n = key_serial_tree.rb_node; 618 while (n) { 619 key = rb_entry(n, struct key, serial_node); 620 621 if (id < key->serial) 622 n = n->rb_left; 623 else if (id > key->serial) 624 n = n->rb_right; 625 else 626 goto found; 627 } 628 629 not_found: 630 key = ERR_PTR(-ENOKEY); 631 goto error; 632 633 found: 634 /* pretent doesn't exist if it's dead */ 635 if (atomic_read(&key->usage) == 0 || 636 (key->flags & KEY_FLAG_DEAD) || 637 key->type == &key_type_dead) 638 goto not_found; 639 640 /* this races with key_put(), but that doesn't matter since key_put() 641 * doesn't actually change the key 642 */ 643 atomic_inc(&key->usage); 644 645 error: 646 spin_unlock(&key_serial_lock); 647 return key; 648 649 } /* end key_lookup() */ 650 651 /*****************************************************************************/ 652 /* 653 * find and lock the specified key type against removal 654 * - we return with the sem readlocked 655 */ 656 struct key_type *key_type_lookup(const char *type) 657 { 658 struct key_type *ktype; 659 660 down_read(&key_types_sem); 661 662 /* look up the key type to see if it's one of the registered kernel 663 * types */ 664 list_for_each_entry(ktype, &key_types_list, link) { 665 if (strcmp(ktype->name, type) == 0) 666 goto found_kernel_type; 667 } 668 669 up_read(&key_types_sem); 670 ktype = ERR_PTR(-ENOKEY); 671 672 found_kernel_type: 673 return ktype; 674 675 } /* end key_type_lookup() */ 676 677 /*****************************************************************************/ 678 /* 679 * unlock a key type 680 */ 681 void key_type_put(struct key_type *ktype) 682 { 683 up_read(&key_types_sem); 684 685 } /* end key_type_put() */ 686 687 /*****************************************************************************/ 688 /* 689 * attempt to update an existing key 690 * - the key has an incremented refcount 691 * - we need to put the key if we get an error 692 */ 693 static inline struct key *__key_update(struct key *key, const void *payload, 694 size_t plen) 695 { 696 int ret; 697 698 /* need write permission on the key to update it */ 699 ret = -EACCES; 700 if (!key_permission(key, KEY_WRITE)) 701 goto error; 702 703 ret = -EEXIST; 704 if (!key->type->update) 705 goto error; 706 707 down_write(&key->sem); 708 709 ret = key->type->update(key, payload, plen); 710 711 if (ret == 0) { 712 /* updating a negative key instantiates it */ 713 write_lock(&key->lock); 714 key->flags &= ~KEY_FLAG_NEGATIVE; 715 write_unlock(&key->lock); 716 } 717 718 up_write(&key->sem); 719 720 if (ret < 0) 721 goto error; 722 out: 723 return key; 724 725 error: 726 key_put(key); 727 key = ERR_PTR(ret); 728 goto out; 729 730 } /* end __key_update() */ 731 732 /*****************************************************************************/ 733 /* 734 * search the specified keyring for a key of the same description; if one is 735 * found, update it, otherwise add a new one 736 */ 737 struct key *key_create_or_update(struct key *keyring, 738 const char *type, 739 const char *description, 740 const void *payload, 741 size_t plen, 742 int not_in_quota) 743 { 744 struct key_type *ktype; 745 struct key *key = NULL; 746 key_perm_t perm; 747 int ret; 748 749 key_check(keyring); 750 751 /* look up the key type to see if it's one of the registered kernel 752 * types */ 753 ktype = key_type_lookup(type); 754 if (IS_ERR(ktype)) { 755 key = ERR_PTR(-ENODEV); 756 goto error; 757 } 758 759 ret = -EINVAL; 760 if (!ktype->match || !ktype->instantiate) 761 goto error_2; 762 763 /* search for an existing key of the same type and description in the 764 * destination keyring 765 */ 766 down_write(&keyring->sem); 767 768 key = __keyring_search_one(keyring, ktype, description, 0); 769 if (!IS_ERR(key)) 770 goto found_matching_key; 771 772 /* if we're going to allocate a new key, we're going to have to modify 773 * the keyring */ 774 ret = -EACCES; 775 if (!key_permission(keyring, KEY_WRITE)) 776 goto error_3; 777 778 /* decide on the permissions we want */ 779 perm = KEY_USR_VIEW | KEY_USR_SEARCH | KEY_USR_LINK; 780 781 if (ktype->read) 782 perm |= KEY_USR_READ; 783 784 if (ktype == &key_type_keyring || ktype->update) 785 perm |= KEY_USR_WRITE; 786 787 /* allocate a new key */ 788 key = key_alloc(ktype, description, current->fsuid, current->fsgid, 789 perm, not_in_quota); 790 if (IS_ERR(key)) { 791 ret = PTR_ERR(key); 792 goto error_3; 793 } 794 795 /* instantiate it and link it into the target keyring */ 796 ret = __key_instantiate_and_link(key, payload, plen, keyring); 797 if (ret < 0) { 798 key_put(key); 799 key = ERR_PTR(ret); 800 } 801 802 error_3: 803 up_write(&keyring->sem); 804 error_2: 805 key_type_put(ktype); 806 error: 807 return key; 808 809 found_matching_key: 810 /* we found a matching key, so we're going to try to update it 811 * - we can drop the locks first as we have the key pinned 812 */ 813 up_write(&keyring->sem); 814 key_type_put(ktype); 815 816 key = __key_update(key, payload, plen); 817 goto error; 818 819 } /* end key_create_or_update() */ 820 821 EXPORT_SYMBOL(key_create_or_update); 822 823 /*****************************************************************************/ 824 /* 825 * update a key 826 */ 827 int key_update(struct key *key, const void *payload, size_t plen) 828 { 829 int ret; 830 831 key_check(key); 832 833 /* the key must be writable */ 834 ret = -EACCES; 835 if (!key_permission(key, KEY_WRITE)) 836 goto error; 837 838 /* attempt to update it if supported */ 839 ret = -EOPNOTSUPP; 840 if (key->type->update) { 841 down_write(&key->sem); 842 ret = key->type->update(key, payload, plen); 843 844 if (ret == 0) { 845 /* updating a negative key instantiates it */ 846 write_lock(&key->lock); 847 key->flags &= ~KEY_FLAG_NEGATIVE; 848 write_unlock(&key->lock); 849 } 850 851 up_write(&key->sem); 852 } 853 854 error: 855 return ret; 856 857 } /* end key_update() */ 858 859 EXPORT_SYMBOL(key_update); 860 861 /*****************************************************************************/ 862 /* 863 * duplicate a key, potentially with a revised description 864 * - must be supported by the keytype (keyrings for instance can be duplicated) 865 */ 866 struct key *key_duplicate(struct key *source, const char *desc) 867 { 868 struct key *key; 869 int ret; 870 871 key_check(source); 872 873 if (!desc) 874 desc = source->description; 875 876 down_read(&key_types_sem); 877 878 ret = -EINVAL; 879 if (!source->type->duplicate) 880 goto error; 881 882 /* allocate and instantiate a key */ 883 key = key_alloc(source->type, desc, current->fsuid, current->fsgid, 884 source->perm, 0); 885 if (IS_ERR(key)) 886 goto error_k; 887 888 down_read(&source->sem); 889 ret = key->type->duplicate(key, source); 890 up_read(&source->sem); 891 if (ret < 0) 892 goto error2; 893 894 atomic_inc(&key->user->nikeys); 895 896 write_lock(&key->lock); 897 key->flags |= KEY_FLAG_INSTANTIATED; 898 write_unlock(&key->lock); 899 900 error_k: 901 up_read(&key_types_sem); 902 out: 903 return key; 904 905 error2: 906 key_put(key); 907 error: 908 up_read(&key_types_sem); 909 key = ERR_PTR(ret); 910 goto out; 911 912 } /* end key_duplicate() */ 913 914 /*****************************************************************************/ 915 /* 916 * revoke a key 917 */ 918 void key_revoke(struct key *key) 919 { 920 key_check(key); 921 922 /* make sure no one's trying to change or use the key when we mark 923 * it */ 924 down_write(&key->sem); 925 write_lock(&key->lock); 926 key->flags |= KEY_FLAG_REVOKED; 927 write_unlock(&key->lock); 928 up_write(&key->sem); 929 930 } /* end key_revoke() */ 931 932 EXPORT_SYMBOL(key_revoke); 933 934 /*****************************************************************************/ 935 /* 936 * register a type of key 937 */ 938 int register_key_type(struct key_type *ktype) 939 { 940 struct key_type *p; 941 int ret; 942 943 ret = -EEXIST; 944 down_write(&key_types_sem); 945 946 /* disallow key types with the same name */ 947 list_for_each_entry(p, &key_types_list, link) { 948 if (strcmp(p->name, ktype->name) == 0) 949 goto out; 950 } 951 952 /* store the type */ 953 list_add(&ktype->link, &key_types_list); 954 ret = 0; 955 956 out: 957 up_write(&key_types_sem); 958 return ret; 959 960 } /* end register_key_type() */ 961 962 EXPORT_SYMBOL(register_key_type); 963 964 /*****************************************************************************/ 965 /* 966 * unregister a type of key 967 */ 968 void unregister_key_type(struct key_type *ktype) 969 { 970 struct rb_node *_n; 971 struct key *key; 972 973 down_write(&key_types_sem); 974 975 /* withdraw the key type */ 976 list_del_init(&ktype->link); 977 978 /* need to withdraw all keys of this type */ 979 spin_lock(&key_serial_lock); 980 981 for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) { 982 key = rb_entry(_n, struct key, serial_node); 983 984 if (key->type != ktype) 985 continue; 986 987 write_lock(&key->lock); 988 key->type = &key_type_dead; 989 write_unlock(&key->lock); 990 991 /* there shouldn't be anyone looking at the description or 992 * payload now */ 993 if (ktype->destroy) 994 ktype->destroy(key); 995 memset(&key->payload, 0xbd, sizeof(key->payload)); 996 } 997 998 spin_unlock(&key_serial_lock); 999 up_write(&key_types_sem); 1000 1001 } /* end unregister_key_type() */ 1002 1003 EXPORT_SYMBOL(unregister_key_type); 1004 1005 /*****************************************************************************/ 1006 /* 1007 * initialise the key management stuff 1008 */ 1009 void __init key_init(void) 1010 { 1011 /* allocate a slab in which we can store keys */ 1012 key_jar = kmem_cache_create("key_jar", sizeof(struct key), 1013 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL); 1014 1015 /* add the special key types */ 1016 list_add_tail(&key_type_keyring.link, &key_types_list); 1017 list_add_tail(&key_type_dead.link, &key_types_list); 1018 list_add_tail(&key_type_user.link, &key_types_list); 1019 1020 /* record the root user tracking */ 1021 rb_link_node(&root_key_user.node, 1022 NULL, 1023 &key_user_tree.rb_node); 1024 1025 rb_insert_color(&root_key_user.node, 1026 &key_user_tree); 1027 1028 /* record root's user standard keyrings */ 1029 key_check(&root_user_keyring); 1030 key_check(&root_session_keyring); 1031 1032 __key_insert_serial(&root_user_keyring); 1033 __key_insert_serial(&root_session_keyring); 1034 1035 keyring_publish_name(&root_user_keyring); 1036 keyring_publish_name(&root_session_keyring); 1037 1038 /* link the two root keyrings together */ 1039 key_link(&root_session_keyring, &root_user_keyring); 1040 } /* end key_init() */ 1041