xref: /openbmc/linux/security/keys/key.c (revision 110e6f26)
1 /* Basic authentication token and access key management
2  *
3  * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/poison.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/security.h>
18 #include <linux/workqueue.h>
19 #include <linux/random.h>
20 #include <linux/err.h>
21 #include "internal.h"
22 
23 struct kmem_cache *key_jar;
24 struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
25 DEFINE_SPINLOCK(key_serial_lock);
26 
27 struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
28 DEFINE_SPINLOCK(key_user_lock);
29 
30 unsigned int key_quota_root_maxkeys = 1000000;	/* root's key count quota */
31 unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
32 unsigned int key_quota_maxkeys = 200;		/* general key count quota */
33 unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
34 
35 static LIST_HEAD(key_types_list);
36 static DECLARE_RWSEM(key_types_sem);
37 
38 /* We serialise key instantiation and link */
39 DEFINE_MUTEX(key_construction_mutex);
40 
41 #ifdef KEY_DEBUGGING
42 void __key_check(const struct key *key)
43 {
44 	printk("__key_check: key %p {%08x} should be {%08x}\n",
45 	       key, key->magic, KEY_DEBUG_MAGIC);
46 	BUG();
47 }
48 #endif
49 
50 /*
51  * Get the key quota record for a user, allocating a new record if one doesn't
52  * already exist.
53  */
54 struct key_user *key_user_lookup(kuid_t uid)
55 {
56 	struct key_user *candidate = NULL, *user;
57 	struct rb_node *parent = NULL;
58 	struct rb_node **p;
59 
60 try_again:
61 	p = &key_user_tree.rb_node;
62 	spin_lock(&key_user_lock);
63 
64 	/* search the tree for a user record with a matching UID */
65 	while (*p) {
66 		parent = *p;
67 		user = rb_entry(parent, struct key_user, node);
68 
69 		if (uid_lt(uid, user->uid))
70 			p = &(*p)->rb_left;
71 		else if (uid_gt(uid, user->uid))
72 			p = &(*p)->rb_right;
73 		else
74 			goto found;
75 	}
76 
77 	/* if we get here, we failed to find a match in the tree */
78 	if (!candidate) {
79 		/* allocate a candidate user record if we don't already have
80 		 * one */
81 		spin_unlock(&key_user_lock);
82 
83 		user = NULL;
84 		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
85 		if (unlikely(!candidate))
86 			goto out;
87 
88 		/* the allocation may have scheduled, so we need to repeat the
89 		 * search lest someone else added the record whilst we were
90 		 * asleep */
91 		goto try_again;
92 	}
93 
94 	/* if we get here, then the user record still hadn't appeared on the
95 	 * second pass - so we use the candidate record */
96 	atomic_set(&candidate->usage, 1);
97 	atomic_set(&candidate->nkeys, 0);
98 	atomic_set(&candidate->nikeys, 0);
99 	candidate->uid = uid;
100 	candidate->qnkeys = 0;
101 	candidate->qnbytes = 0;
102 	spin_lock_init(&candidate->lock);
103 	mutex_init(&candidate->cons_lock);
104 
105 	rb_link_node(&candidate->node, parent, p);
106 	rb_insert_color(&candidate->node, &key_user_tree);
107 	spin_unlock(&key_user_lock);
108 	user = candidate;
109 	goto out;
110 
111 	/* okay - we found a user record for this UID */
112 found:
113 	atomic_inc(&user->usage);
114 	spin_unlock(&key_user_lock);
115 	kfree(candidate);
116 out:
117 	return user;
118 }
119 
120 /*
121  * Dispose of a user structure
122  */
123 void key_user_put(struct key_user *user)
124 {
125 	if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
126 		rb_erase(&user->node, &key_user_tree);
127 		spin_unlock(&key_user_lock);
128 
129 		kfree(user);
130 	}
131 }
132 
133 /*
134  * Allocate a serial number for a key.  These are assigned randomly to avoid
135  * security issues through covert channel problems.
136  */
137 static inline void key_alloc_serial(struct key *key)
138 {
139 	struct rb_node *parent, **p;
140 	struct key *xkey;
141 
142 	/* propose a random serial number and look for a hole for it in the
143 	 * serial number tree */
144 	do {
145 		get_random_bytes(&key->serial, sizeof(key->serial));
146 
147 		key->serial >>= 1; /* negative numbers are not permitted */
148 	} while (key->serial < 3);
149 
150 	spin_lock(&key_serial_lock);
151 
152 attempt_insertion:
153 	parent = NULL;
154 	p = &key_serial_tree.rb_node;
155 
156 	while (*p) {
157 		parent = *p;
158 		xkey = rb_entry(parent, struct key, serial_node);
159 
160 		if (key->serial < xkey->serial)
161 			p = &(*p)->rb_left;
162 		else if (key->serial > xkey->serial)
163 			p = &(*p)->rb_right;
164 		else
165 			goto serial_exists;
166 	}
167 
168 	/* we've found a suitable hole - arrange for this key to occupy it */
169 	rb_link_node(&key->serial_node, parent, p);
170 	rb_insert_color(&key->serial_node, &key_serial_tree);
171 
172 	spin_unlock(&key_serial_lock);
173 	return;
174 
175 	/* we found a key with the proposed serial number - walk the tree from
176 	 * that point looking for the next unused serial number */
177 serial_exists:
178 	for (;;) {
179 		key->serial++;
180 		if (key->serial < 3) {
181 			key->serial = 3;
182 			goto attempt_insertion;
183 		}
184 
185 		parent = rb_next(parent);
186 		if (!parent)
187 			goto attempt_insertion;
188 
189 		xkey = rb_entry(parent, struct key, serial_node);
190 		if (key->serial < xkey->serial)
191 			goto attempt_insertion;
192 	}
193 }
194 
195 /**
196  * key_alloc - Allocate a key of the specified type.
197  * @type: The type of key to allocate.
198  * @desc: The key description to allow the key to be searched out.
199  * @uid: The owner of the new key.
200  * @gid: The group ID for the new key's group permissions.
201  * @cred: The credentials specifying UID namespace.
202  * @perm: The permissions mask of the new key.
203  * @flags: Flags specifying quota properties.
204  *
205  * Allocate a key of the specified type with the attributes given.  The key is
206  * returned in an uninstantiated state and the caller needs to instantiate the
207  * key before returning.
208  *
209  * The user's key count quota is updated to reflect the creation of the key and
210  * the user's key data quota has the default for the key type reserved.  The
211  * instantiation function should amend this as necessary.  If insufficient
212  * quota is available, -EDQUOT will be returned.
213  *
214  * The LSM security modules can prevent a key being created, in which case
215  * -EACCES will be returned.
216  *
217  * Returns a pointer to the new key if successful and an error code otherwise.
218  *
219  * Note that the caller needs to ensure the key type isn't uninstantiated.
220  * Internally this can be done by locking key_types_sem.  Externally, this can
221  * be done by either never unregistering the key type, or making sure
222  * key_alloc() calls don't race with module unloading.
223  */
224 struct key *key_alloc(struct key_type *type, const char *desc,
225 		      kuid_t uid, kgid_t gid, const struct cred *cred,
226 		      key_perm_t perm, unsigned long flags)
227 {
228 	struct key_user *user = NULL;
229 	struct key *key;
230 	size_t desclen, quotalen;
231 	int ret;
232 
233 	key = ERR_PTR(-EINVAL);
234 	if (!desc || !*desc)
235 		goto error;
236 
237 	if (type->vet_description) {
238 		ret = type->vet_description(desc);
239 		if (ret < 0) {
240 			key = ERR_PTR(ret);
241 			goto error;
242 		}
243 	}
244 
245 	desclen = strlen(desc);
246 	quotalen = desclen + 1 + type->def_datalen;
247 
248 	/* get hold of the key tracking for this user */
249 	user = key_user_lookup(uid);
250 	if (!user)
251 		goto no_memory_1;
252 
253 	/* check that the user's quota permits allocation of another key and
254 	 * its description */
255 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
256 		unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
257 			key_quota_root_maxkeys : key_quota_maxkeys;
258 		unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
259 			key_quota_root_maxbytes : key_quota_maxbytes;
260 
261 		spin_lock(&user->lock);
262 		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
263 			if (user->qnkeys + 1 >= maxkeys ||
264 			    user->qnbytes + quotalen >= maxbytes ||
265 			    user->qnbytes + quotalen < user->qnbytes)
266 				goto no_quota;
267 		}
268 
269 		user->qnkeys++;
270 		user->qnbytes += quotalen;
271 		spin_unlock(&user->lock);
272 	}
273 
274 	/* allocate and initialise the key and its description */
275 	key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
276 	if (!key)
277 		goto no_memory_2;
278 
279 	key->index_key.desc_len = desclen;
280 	key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
281 	if (!key->index_key.description)
282 		goto no_memory_3;
283 
284 	atomic_set(&key->usage, 1);
285 	init_rwsem(&key->sem);
286 	lockdep_set_class(&key->sem, &type->lock_class);
287 	key->index_key.type = type;
288 	key->user = user;
289 	key->quotalen = quotalen;
290 	key->datalen = type->def_datalen;
291 	key->uid = uid;
292 	key->gid = gid;
293 	key->perm = perm;
294 
295 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
296 		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
297 	if (flags & KEY_ALLOC_TRUSTED)
298 		key->flags |= 1 << KEY_FLAG_TRUSTED;
299 	if (flags & KEY_ALLOC_BUILT_IN)
300 		key->flags |= 1 << KEY_FLAG_BUILTIN;
301 
302 #ifdef KEY_DEBUGGING
303 	key->magic = KEY_DEBUG_MAGIC;
304 #endif
305 
306 	/* let the security module know about the key */
307 	ret = security_key_alloc(key, cred, flags);
308 	if (ret < 0)
309 		goto security_error;
310 
311 	/* publish the key by giving it a serial number */
312 	atomic_inc(&user->nkeys);
313 	key_alloc_serial(key);
314 
315 error:
316 	return key;
317 
318 security_error:
319 	kfree(key->description);
320 	kmem_cache_free(key_jar, key);
321 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
322 		spin_lock(&user->lock);
323 		user->qnkeys--;
324 		user->qnbytes -= quotalen;
325 		spin_unlock(&user->lock);
326 	}
327 	key_user_put(user);
328 	key = ERR_PTR(ret);
329 	goto error;
330 
331 no_memory_3:
332 	kmem_cache_free(key_jar, key);
333 no_memory_2:
334 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
335 		spin_lock(&user->lock);
336 		user->qnkeys--;
337 		user->qnbytes -= quotalen;
338 		spin_unlock(&user->lock);
339 	}
340 	key_user_put(user);
341 no_memory_1:
342 	key = ERR_PTR(-ENOMEM);
343 	goto error;
344 
345 no_quota:
346 	spin_unlock(&user->lock);
347 	key_user_put(user);
348 	key = ERR_PTR(-EDQUOT);
349 	goto error;
350 }
351 EXPORT_SYMBOL(key_alloc);
352 
353 /**
354  * key_payload_reserve - Adjust data quota reservation for the key's payload
355  * @key: The key to make the reservation for.
356  * @datalen: The amount of data payload the caller now wants.
357  *
358  * Adjust the amount of the owning user's key data quota that a key reserves.
359  * If the amount is increased, then -EDQUOT may be returned if there isn't
360  * enough free quota available.
361  *
362  * If successful, 0 is returned.
363  */
364 int key_payload_reserve(struct key *key, size_t datalen)
365 {
366 	int delta = (int)datalen - key->datalen;
367 	int ret = 0;
368 
369 	key_check(key);
370 
371 	/* contemplate the quota adjustment */
372 	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
373 		unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
374 			key_quota_root_maxbytes : key_quota_maxbytes;
375 
376 		spin_lock(&key->user->lock);
377 
378 		if (delta > 0 &&
379 		    (key->user->qnbytes + delta >= maxbytes ||
380 		     key->user->qnbytes + delta < key->user->qnbytes)) {
381 			ret = -EDQUOT;
382 		}
383 		else {
384 			key->user->qnbytes += delta;
385 			key->quotalen += delta;
386 		}
387 		spin_unlock(&key->user->lock);
388 	}
389 
390 	/* change the recorded data length if that didn't generate an error */
391 	if (ret == 0)
392 		key->datalen = datalen;
393 
394 	return ret;
395 }
396 EXPORT_SYMBOL(key_payload_reserve);
397 
398 /*
399  * Instantiate a key and link it into the target keyring atomically.  Must be
400  * called with the target keyring's semaphore writelocked.  The target key's
401  * semaphore need not be locked as instantiation is serialised by
402  * key_construction_mutex.
403  */
404 static int __key_instantiate_and_link(struct key *key,
405 				      struct key_preparsed_payload *prep,
406 				      struct key *keyring,
407 				      struct key *authkey,
408 				      struct assoc_array_edit **_edit)
409 {
410 	int ret, awaken;
411 
412 	key_check(key);
413 	key_check(keyring);
414 
415 	awaken = 0;
416 	ret = -EBUSY;
417 
418 	mutex_lock(&key_construction_mutex);
419 
420 	/* can't instantiate twice */
421 	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
422 		/* instantiate the key */
423 		ret = key->type->instantiate(key, prep);
424 
425 		if (ret == 0) {
426 			/* mark the key as being instantiated */
427 			atomic_inc(&key->user->nikeys);
428 			set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
429 
430 			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
431 				awaken = 1;
432 
433 			/* and link it into the destination keyring */
434 			if (keyring) {
435 				if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
436 					set_bit(KEY_FLAG_KEEP, &key->flags);
437 
438 				__key_link(key, _edit);
439 			}
440 
441 			/* disable the authorisation key */
442 			if (authkey)
443 				key_revoke(authkey);
444 
445 			if (prep->expiry != TIME_T_MAX) {
446 				key->expiry = prep->expiry;
447 				key_schedule_gc(prep->expiry + key_gc_delay);
448 			}
449 		}
450 	}
451 
452 	mutex_unlock(&key_construction_mutex);
453 
454 	/* wake up anyone waiting for a key to be constructed */
455 	if (awaken)
456 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
457 
458 	return ret;
459 }
460 
461 /**
462  * key_instantiate_and_link - Instantiate a key and link it into the keyring.
463  * @key: The key to instantiate.
464  * @data: The data to use to instantiate the keyring.
465  * @datalen: The length of @data.
466  * @keyring: Keyring to create a link in on success (or NULL).
467  * @authkey: The authorisation token permitting instantiation.
468  *
469  * Instantiate a key that's in the uninstantiated state using the provided data
470  * and, if successful, link it in to the destination keyring if one is
471  * supplied.
472  *
473  * If successful, 0 is returned, the authorisation token is revoked and anyone
474  * waiting for the key is woken up.  If the key was already instantiated,
475  * -EBUSY will be returned.
476  */
477 int key_instantiate_and_link(struct key *key,
478 			     const void *data,
479 			     size_t datalen,
480 			     struct key *keyring,
481 			     struct key *authkey)
482 {
483 	struct key_preparsed_payload prep;
484 	struct assoc_array_edit *edit;
485 	int ret;
486 
487 	memset(&prep, 0, sizeof(prep));
488 	prep.data = data;
489 	prep.datalen = datalen;
490 	prep.quotalen = key->type->def_datalen;
491 	prep.expiry = TIME_T_MAX;
492 	if (key->type->preparse) {
493 		ret = key->type->preparse(&prep);
494 		if (ret < 0)
495 			goto error;
496 	}
497 
498 	if (keyring) {
499 		ret = __key_link_begin(keyring, &key->index_key, &edit);
500 		if (ret < 0)
501 			goto error;
502 	}
503 
504 	ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
505 
506 	if (keyring)
507 		__key_link_end(keyring, &key->index_key, edit);
508 
509 error:
510 	if (key->type->preparse)
511 		key->type->free_preparse(&prep);
512 	return ret;
513 }
514 
515 EXPORT_SYMBOL(key_instantiate_and_link);
516 
517 /**
518  * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
519  * @key: The key to instantiate.
520  * @timeout: The timeout on the negative key.
521  * @error: The error to return when the key is hit.
522  * @keyring: Keyring to create a link in on success (or NULL).
523  * @authkey: The authorisation token permitting instantiation.
524  *
525  * Negatively instantiate a key that's in the uninstantiated state and, if
526  * successful, set its timeout and stored error and link it in to the
527  * destination keyring if one is supplied.  The key and any links to the key
528  * will be automatically garbage collected after the timeout expires.
529  *
530  * Negative keys are used to rate limit repeated request_key() calls by causing
531  * them to return the stored error code (typically ENOKEY) until the negative
532  * key expires.
533  *
534  * If successful, 0 is returned, the authorisation token is revoked and anyone
535  * waiting for the key is woken up.  If the key was already instantiated,
536  * -EBUSY will be returned.
537  */
538 int key_reject_and_link(struct key *key,
539 			unsigned timeout,
540 			unsigned error,
541 			struct key *keyring,
542 			struct key *authkey)
543 {
544 	struct assoc_array_edit *edit;
545 	struct timespec now;
546 	int ret, awaken, link_ret = 0;
547 
548 	key_check(key);
549 	key_check(keyring);
550 
551 	awaken = 0;
552 	ret = -EBUSY;
553 
554 	if (keyring)
555 		link_ret = __key_link_begin(keyring, &key->index_key, &edit);
556 
557 	mutex_lock(&key_construction_mutex);
558 
559 	/* can't instantiate twice */
560 	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
561 		/* mark the key as being negatively instantiated */
562 		atomic_inc(&key->user->nikeys);
563 		key->reject_error = -error;
564 		smp_wmb();
565 		set_bit(KEY_FLAG_NEGATIVE, &key->flags);
566 		set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
567 		now = current_kernel_time();
568 		key->expiry = now.tv_sec + timeout;
569 		key_schedule_gc(key->expiry + key_gc_delay);
570 
571 		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
572 			awaken = 1;
573 
574 		ret = 0;
575 
576 		/* and link it into the destination keyring */
577 		if (keyring && link_ret == 0)
578 			__key_link(key, &edit);
579 
580 		/* disable the authorisation key */
581 		if (authkey)
582 			key_revoke(authkey);
583 	}
584 
585 	mutex_unlock(&key_construction_mutex);
586 
587 	if (keyring)
588 		__key_link_end(keyring, &key->index_key, edit);
589 
590 	/* wake up anyone waiting for a key to be constructed */
591 	if (awaken)
592 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
593 
594 	return ret == 0 ? link_ret : ret;
595 }
596 EXPORT_SYMBOL(key_reject_and_link);
597 
598 /**
599  * key_put - Discard a reference to a key.
600  * @key: The key to discard a reference from.
601  *
602  * Discard a reference to a key, and when all the references are gone, we
603  * schedule the cleanup task to come and pull it out of the tree in process
604  * context at some later time.
605  */
606 void key_put(struct key *key)
607 {
608 	if (key) {
609 		key_check(key);
610 
611 		if (atomic_dec_and_test(&key->usage))
612 			schedule_work(&key_gc_work);
613 	}
614 }
615 EXPORT_SYMBOL(key_put);
616 
617 /*
618  * Find a key by its serial number.
619  */
620 struct key *key_lookup(key_serial_t id)
621 {
622 	struct rb_node *n;
623 	struct key *key;
624 
625 	spin_lock(&key_serial_lock);
626 
627 	/* search the tree for the specified key */
628 	n = key_serial_tree.rb_node;
629 	while (n) {
630 		key = rb_entry(n, struct key, serial_node);
631 
632 		if (id < key->serial)
633 			n = n->rb_left;
634 		else if (id > key->serial)
635 			n = n->rb_right;
636 		else
637 			goto found;
638 	}
639 
640 not_found:
641 	key = ERR_PTR(-ENOKEY);
642 	goto error;
643 
644 found:
645 	/* pretend it doesn't exist if it is awaiting deletion */
646 	if (atomic_read(&key->usage) == 0)
647 		goto not_found;
648 
649 	/* this races with key_put(), but that doesn't matter since key_put()
650 	 * doesn't actually change the key
651 	 */
652 	__key_get(key);
653 
654 error:
655 	spin_unlock(&key_serial_lock);
656 	return key;
657 }
658 
659 /*
660  * Find and lock the specified key type against removal.
661  *
662  * We return with the sem read-locked if successful.  If the type wasn't
663  * available -ENOKEY is returned instead.
664  */
665 struct key_type *key_type_lookup(const char *type)
666 {
667 	struct key_type *ktype;
668 
669 	down_read(&key_types_sem);
670 
671 	/* look up the key type to see if it's one of the registered kernel
672 	 * types */
673 	list_for_each_entry(ktype, &key_types_list, link) {
674 		if (strcmp(ktype->name, type) == 0)
675 			goto found_kernel_type;
676 	}
677 
678 	up_read(&key_types_sem);
679 	ktype = ERR_PTR(-ENOKEY);
680 
681 found_kernel_type:
682 	return ktype;
683 }
684 
685 void key_set_timeout(struct key *key, unsigned timeout)
686 {
687 	struct timespec now;
688 	time_t expiry = 0;
689 
690 	/* make the changes with the locks held to prevent races */
691 	down_write(&key->sem);
692 
693 	if (timeout > 0) {
694 		now = current_kernel_time();
695 		expiry = now.tv_sec + timeout;
696 	}
697 
698 	key->expiry = expiry;
699 	key_schedule_gc(key->expiry + key_gc_delay);
700 
701 	up_write(&key->sem);
702 }
703 EXPORT_SYMBOL_GPL(key_set_timeout);
704 
705 /*
706  * Unlock a key type locked by key_type_lookup().
707  */
708 void key_type_put(struct key_type *ktype)
709 {
710 	up_read(&key_types_sem);
711 }
712 
713 /*
714  * Attempt to update an existing key.
715  *
716  * The key is given to us with an incremented refcount that we need to discard
717  * if we get an error.
718  */
719 static inline key_ref_t __key_update(key_ref_t key_ref,
720 				     struct key_preparsed_payload *prep)
721 {
722 	struct key *key = key_ref_to_ptr(key_ref);
723 	int ret;
724 
725 	/* need write permission on the key to update it */
726 	ret = key_permission(key_ref, KEY_NEED_WRITE);
727 	if (ret < 0)
728 		goto error;
729 
730 	ret = -EEXIST;
731 	if (!key->type->update)
732 		goto error;
733 
734 	down_write(&key->sem);
735 
736 	ret = key->type->update(key, prep);
737 	if (ret == 0)
738 		/* updating a negative key instantiates it */
739 		clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
740 
741 	up_write(&key->sem);
742 
743 	if (ret < 0)
744 		goto error;
745 out:
746 	return key_ref;
747 
748 error:
749 	key_put(key);
750 	key_ref = ERR_PTR(ret);
751 	goto out;
752 }
753 
754 /**
755  * key_create_or_update - Update or create and instantiate a key.
756  * @keyring_ref: A pointer to the destination keyring with possession flag.
757  * @type: The type of key.
758  * @description: The searchable description for the key.
759  * @payload: The data to use to instantiate or update the key.
760  * @plen: The length of @payload.
761  * @perm: The permissions mask for a new key.
762  * @flags: The quota flags for a new key.
763  *
764  * Search the destination keyring for a key of the same description and if one
765  * is found, update it, otherwise create and instantiate a new one and create a
766  * link to it from that keyring.
767  *
768  * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
769  * concocted.
770  *
771  * Returns a pointer to the new key if successful, -ENODEV if the key type
772  * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
773  * caller isn't permitted to modify the keyring or the LSM did not permit
774  * creation of the key.
775  *
776  * On success, the possession flag from the keyring ref will be tacked on to
777  * the key ref before it is returned.
778  */
779 key_ref_t key_create_or_update(key_ref_t keyring_ref,
780 			       const char *type,
781 			       const char *description,
782 			       const void *payload,
783 			       size_t plen,
784 			       key_perm_t perm,
785 			       unsigned long flags)
786 {
787 	struct keyring_index_key index_key = {
788 		.description	= description,
789 	};
790 	struct key_preparsed_payload prep;
791 	struct assoc_array_edit *edit;
792 	const struct cred *cred = current_cred();
793 	struct key *keyring, *key = NULL;
794 	key_ref_t key_ref;
795 	int ret;
796 
797 	/* look up the key type to see if it's one of the registered kernel
798 	 * types */
799 	index_key.type = key_type_lookup(type);
800 	if (IS_ERR(index_key.type)) {
801 		key_ref = ERR_PTR(-ENODEV);
802 		goto error;
803 	}
804 
805 	key_ref = ERR_PTR(-EINVAL);
806 	if (!index_key.type->instantiate ||
807 	    (!index_key.description && !index_key.type->preparse))
808 		goto error_put_type;
809 
810 	keyring = key_ref_to_ptr(keyring_ref);
811 
812 	key_check(keyring);
813 
814 	key_ref = ERR_PTR(-ENOTDIR);
815 	if (keyring->type != &key_type_keyring)
816 		goto error_put_type;
817 
818 	memset(&prep, 0, sizeof(prep));
819 	prep.data = payload;
820 	prep.datalen = plen;
821 	prep.quotalen = index_key.type->def_datalen;
822 	prep.trusted = flags & KEY_ALLOC_TRUSTED;
823 	prep.expiry = TIME_T_MAX;
824 	if (index_key.type->preparse) {
825 		ret = index_key.type->preparse(&prep);
826 		if (ret < 0) {
827 			key_ref = ERR_PTR(ret);
828 			goto error_free_prep;
829 		}
830 		if (!index_key.description)
831 			index_key.description = prep.description;
832 		key_ref = ERR_PTR(-EINVAL);
833 		if (!index_key.description)
834 			goto error_free_prep;
835 	}
836 	index_key.desc_len = strlen(index_key.description);
837 
838 	key_ref = ERR_PTR(-EPERM);
839 	if (!prep.trusted && test_bit(KEY_FLAG_TRUSTED_ONLY, &keyring->flags))
840 		goto error_free_prep;
841 	flags |= prep.trusted ? KEY_ALLOC_TRUSTED : 0;
842 
843 	ret = __key_link_begin(keyring, &index_key, &edit);
844 	if (ret < 0) {
845 		key_ref = ERR_PTR(ret);
846 		goto error_free_prep;
847 	}
848 
849 	/* if we're going to allocate a new key, we're going to have
850 	 * to modify the keyring */
851 	ret = key_permission(keyring_ref, KEY_NEED_WRITE);
852 	if (ret < 0) {
853 		key_ref = ERR_PTR(ret);
854 		goto error_link_end;
855 	}
856 
857 	/* if it's possible to update this type of key, search for an existing
858 	 * key of the same type and description in the destination keyring and
859 	 * update that instead if possible
860 	 */
861 	if (index_key.type->update) {
862 		key_ref = find_key_to_update(keyring_ref, &index_key);
863 		if (key_ref)
864 			goto found_matching_key;
865 	}
866 
867 	/* if the client doesn't provide, decide on the permissions we want */
868 	if (perm == KEY_PERM_UNDEF) {
869 		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
870 		perm |= KEY_USR_VIEW;
871 
872 		if (index_key.type->read)
873 			perm |= KEY_POS_READ;
874 
875 		if (index_key.type == &key_type_keyring ||
876 		    index_key.type->update)
877 			perm |= KEY_POS_WRITE;
878 	}
879 
880 	/* allocate a new key */
881 	key = key_alloc(index_key.type, index_key.description,
882 			cred->fsuid, cred->fsgid, cred, perm, flags);
883 	if (IS_ERR(key)) {
884 		key_ref = ERR_CAST(key);
885 		goto error_link_end;
886 	}
887 
888 	/* instantiate it and link it into the target keyring */
889 	ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
890 	if (ret < 0) {
891 		key_put(key);
892 		key_ref = ERR_PTR(ret);
893 		goto error_link_end;
894 	}
895 
896 	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
897 
898 error_link_end:
899 	__key_link_end(keyring, &index_key, edit);
900 error_free_prep:
901 	if (index_key.type->preparse)
902 		index_key.type->free_preparse(&prep);
903 error_put_type:
904 	key_type_put(index_key.type);
905 error:
906 	return key_ref;
907 
908  found_matching_key:
909 	/* we found a matching key, so we're going to try to update it
910 	 * - we can drop the locks first as we have the key pinned
911 	 */
912 	__key_link_end(keyring, &index_key, edit);
913 
914 	key_ref = __key_update(key_ref, &prep);
915 	goto error_free_prep;
916 }
917 EXPORT_SYMBOL(key_create_or_update);
918 
919 /**
920  * key_update - Update a key's contents.
921  * @key_ref: The pointer (plus possession flag) to the key.
922  * @payload: The data to be used to update the key.
923  * @plen: The length of @payload.
924  *
925  * Attempt to update the contents of a key with the given payload data.  The
926  * caller must be granted Write permission on the key.  Negative keys can be
927  * instantiated by this method.
928  *
929  * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
930  * type does not support updating.  The key type may return other errors.
931  */
932 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
933 {
934 	struct key_preparsed_payload prep;
935 	struct key *key = key_ref_to_ptr(key_ref);
936 	int ret;
937 
938 	key_check(key);
939 
940 	/* the key must be writable */
941 	ret = key_permission(key_ref, KEY_NEED_WRITE);
942 	if (ret < 0)
943 		goto error;
944 
945 	/* attempt to update it if supported */
946 	ret = -EOPNOTSUPP;
947 	if (!key->type->update)
948 		goto error;
949 
950 	memset(&prep, 0, sizeof(prep));
951 	prep.data = payload;
952 	prep.datalen = plen;
953 	prep.quotalen = key->type->def_datalen;
954 	prep.expiry = TIME_T_MAX;
955 	if (key->type->preparse) {
956 		ret = key->type->preparse(&prep);
957 		if (ret < 0)
958 			goto error;
959 	}
960 
961 	down_write(&key->sem);
962 
963 	ret = key->type->update(key, &prep);
964 	if (ret == 0)
965 		/* updating a negative key instantiates it */
966 		clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
967 
968 	up_write(&key->sem);
969 
970 error:
971 	if (key->type->preparse)
972 		key->type->free_preparse(&prep);
973 	return ret;
974 }
975 EXPORT_SYMBOL(key_update);
976 
977 /**
978  * key_revoke - Revoke a key.
979  * @key: The key to be revoked.
980  *
981  * Mark a key as being revoked and ask the type to free up its resources.  The
982  * revocation timeout is set and the key and all its links will be
983  * automatically garbage collected after key_gc_delay amount of time if they
984  * are not manually dealt with first.
985  */
986 void key_revoke(struct key *key)
987 {
988 	struct timespec now;
989 	time_t time;
990 
991 	key_check(key);
992 
993 	/* make sure no one's trying to change or use the key when we mark it
994 	 * - we tell lockdep that we might nest because we might be revoking an
995 	 *   authorisation key whilst holding the sem on a key we've just
996 	 *   instantiated
997 	 */
998 	down_write_nested(&key->sem, 1);
999 	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
1000 	    key->type->revoke)
1001 		key->type->revoke(key);
1002 
1003 	/* set the death time to no more than the expiry time */
1004 	now = current_kernel_time();
1005 	time = now.tv_sec;
1006 	if (key->revoked_at == 0 || key->revoked_at > time) {
1007 		key->revoked_at = time;
1008 		key_schedule_gc(key->revoked_at + key_gc_delay);
1009 	}
1010 
1011 	up_write(&key->sem);
1012 }
1013 EXPORT_SYMBOL(key_revoke);
1014 
1015 /**
1016  * key_invalidate - Invalidate a key.
1017  * @key: The key to be invalidated.
1018  *
1019  * Mark a key as being invalidated and have it cleaned up immediately.  The key
1020  * is ignored by all searches and other operations from this point.
1021  */
1022 void key_invalidate(struct key *key)
1023 {
1024 	kenter("%d", key_serial(key));
1025 
1026 	key_check(key);
1027 
1028 	if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1029 		down_write_nested(&key->sem, 1);
1030 		if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
1031 			key_schedule_gc_links();
1032 		up_write(&key->sem);
1033 	}
1034 }
1035 EXPORT_SYMBOL(key_invalidate);
1036 
1037 /**
1038  * generic_key_instantiate - Simple instantiation of a key from preparsed data
1039  * @key: The key to be instantiated
1040  * @prep: The preparsed data to load.
1041  *
1042  * Instantiate a key from preparsed data.  We assume we can just copy the data
1043  * in directly and clear the old pointers.
1044  *
1045  * This can be pointed to directly by the key type instantiate op pointer.
1046  */
1047 int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1048 {
1049 	int ret;
1050 
1051 	pr_devel("==>%s()\n", __func__);
1052 
1053 	ret = key_payload_reserve(key, prep->quotalen);
1054 	if (ret == 0) {
1055 		rcu_assign_keypointer(key, prep->payload.data[0]);
1056 		key->payload.data[1] = prep->payload.data[1];
1057 		key->payload.data[2] = prep->payload.data[2];
1058 		key->payload.data[3] = prep->payload.data[3];
1059 		prep->payload.data[0] = NULL;
1060 		prep->payload.data[1] = NULL;
1061 		prep->payload.data[2] = NULL;
1062 		prep->payload.data[3] = NULL;
1063 	}
1064 	pr_devel("<==%s() = %d\n", __func__, ret);
1065 	return ret;
1066 }
1067 EXPORT_SYMBOL(generic_key_instantiate);
1068 
1069 /**
1070  * register_key_type - Register a type of key.
1071  * @ktype: The new key type.
1072  *
1073  * Register a new key type.
1074  *
1075  * Returns 0 on success or -EEXIST if a type of this name already exists.
1076  */
1077 int register_key_type(struct key_type *ktype)
1078 {
1079 	struct key_type *p;
1080 	int ret;
1081 
1082 	memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1083 
1084 	ret = -EEXIST;
1085 	down_write(&key_types_sem);
1086 
1087 	/* disallow key types with the same name */
1088 	list_for_each_entry(p, &key_types_list, link) {
1089 		if (strcmp(p->name, ktype->name) == 0)
1090 			goto out;
1091 	}
1092 
1093 	/* store the type */
1094 	list_add(&ktype->link, &key_types_list);
1095 
1096 	pr_notice("Key type %s registered\n", ktype->name);
1097 	ret = 0;
1098 
1099 out:
1100 	up_write(&key_types_sem);
1101 	return ret;
1102 }
1103 EXPORT_SYMBOL(register_key_type);
1104 
1105 /**
1106  * unregister_key_type - Unregister a type of key.
1107  * @ktype: The key type.
1108  *
1109  * Unregister a key type and mark all the extant keys of this type as dead.
1110  * Those keys of this type are then destroyed to get rid of their payloads and
1111  * they and their links will be garbage collected as soon as possible.
1112  */
1113 void unregister_key_type(struct key_type *ktype)
1114 {
1115 	down_write(&key_types_sem);
1116 	list_del_init(&ktype->link);
1117 	downgrade_write(&key_types_sem);
1118 	key_gc_keytype(ktype);
1119 	pr_notice("Key type %s unregistered\n", ktype->name);
1120 	up_read(&key_types_sem);
1121 }
1122 EXPORT_SYMBOL(unregister_key_type);
1123 
1124 /*
1125  * Initialise the key management state.
1126  */
1127 void __init key_init(void)
1128 {
1129 	/* allocate a slab in which we can store keys */
1130 	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1131 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1132 
1133 	/* add the special key types */
1134 	list_add_tail(&key_type_keyring.link, &key_types_list);
1135 	list_add_tail(&key_type_dead.link, &key_types_list);
1136 	list_add_tail(&key_type_user.link, &key_types_list);
1137 	list_add_tail(&key_type_logon.link, &key_types_list);
1138 
1139 	/* record the root user tracking */
1140 	rb_link_node(&root_key_user.node,
1141 		     NULL,
1142 		     &key_user_tree.rb_node);
1143 
1144 	rb_insert_color(&root_key_user.node,
1145 			&key_user_tree);
1146 }
1147