1 /*
2  * Copyright (C) 2010 IBM Corporation
3  * Copyright (C) 2010 Politecnico di Torino, Italy
4  *                    TORSEC group -- http://security.polito.it
5  *
6  * Authors:
7  * Mimi Zohar <zohar@us.ibm.com>
8  * Roberto Sassu <roberto.sassu@polito.it>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation, version 2 of the License.
13  *
14  * See Documentation/security/keys-trusted-encrypted.txt
15  */
16 
17 #include <linux/uaccess.h>
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/slab.h>
21 #include <linux/parser.h>
22 #include <linux/string.h>
23 #include <linux/err.h>
24 #include <keys/user-type.h>
25 #include <keys/trusted-type.h>
26 #include <keys/encrypted-type.h>
27 #include <linux/key-type.h>
28 #include <linux/random.h>
29 #include <linux/rcupdate.h>
30 #include <linux/scatterlist.h>
31 #include <linux/ctype.h>
32 #include <crypto/hash.h>
33 #include <crypto/sha.h>
34 #include <crypto/skcipher.h>
35 
36 #include "encrypted.h"
37 #include "ecryptfs_format.h"
38 
39 static const char KEY_TRUSTED_PREFIX[] = "trusted:";
40 static const char KEY_USER_PREFIX[] = "user:";
41 static const char hash_alg[] = "sha256";
42 static const char hmac_alg[] = "hmac(sha256)";
43 static const char blkcipher_alg[] = "cbc(aes)";
44 static const char key_format_default[] = "default";
45 static const char key_format_ecryptfs[] = "ecryptfs";
46 static unsigned int ivsize;
47 static int blksize;
48 
49 #define KEY_TRUSTED_PREFIX_LEN (sizeof (KEY_TRUSTED_PREFIX) - 1)
50 #define KEY_USER_PREFIX_LEN (sizeof (KEY_USER_PREFIX) - 1)
51 #define KEY_ECRYPTFS_DESC_LEN 16
52 #define HASH_SIZE SHA256_DIGEST_SIZE
53 #define MAX_DATA_SIZE 4096
54 #define MIN_DATA_SIZE  20
55 
56 struct sdesc {
57 	struct shash_desc shash;
58 	char ctx[];
59 };
60 
61 static struct crypto_shash *hashalg;
62 static struct crypto_shash *hmacalg;
63 
64 enum {
65 	Opt_err = -1, Opt_new, Opt_load, Opt_update
66 };
67 
68 enum {
69 	Opt_error = -1, Opt_default, Opt_ecryptfs
70 };
71 
72 static const match_table_t key_format_tokens = {
73 	{Opt_default, "default"},
74 	{Opt_ecryptfs, "ecryptfs"},
75 	{Opt_error, NULL}
76 };
77 
78 static const match_table_t key_tokens = {
79 	{Opt_new, "new"},
80 	{Opt_load, "load"},
81 	{Opt_update, "update"},
82 	{Opt_err, NULL}
83 };
84 
85 static int aes_get_sizes(void)
86 {
87 	struct crypto_skcipher *tfm;
88 
89 	tfm = crypto_alloc_skcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
90 	if (IS_ERR(tfm)) {
91 		pr_err("encrypted_key: failed to alloc_cipher (%ld)\n",
92 		       PTR_ERR(tfm));
93 		return PTR_ERR(tfm);
94 	}
95 	ivsize = crypto_skcipher_ivsize(tfm);
96 	blksize = crypto_skcipher_blocksize(tfm);
97 	crypto_free_skcipher(tfm);
98 	return 0;
99 }
100 
101 /*
102  * valid_ecryptfs_desc - verify the description of a new/loaded encrypted key
103  *
104  * The description of a encrypted key with format 'ecryptfs' must contain
105  * exactly 16 hexadecimal characters.
106  *
107  */
108 static int valid_ecryptfs_desc(const char *ecryptfs_desc)
109 {
110 	int i;
111 
112 	if (strlen(ecryptfs_desc) != KEY_ECRYPTFS_DESC_LEN) {
113 		pr_err("encrypted_key: key description must be %d hexadecimal "
114 		       "characters long\n", KEY_ECRYPTFS_DESC_LEN);
115 		return -EINVAL;
116 	}
117 
118 	for (i = 0; i < KEY_ECRYPTFS_DESC_LEN; i++) {
119 		if (!isxdigit(ecryptfs_desc[i])) {
120 			pr_err("encrypted_key: key description must contain "
121 			       "only hexadecimal characters\n");
122 			return -EINVAL;
123 		}
124 	}
125 
126 	return 0;
127 }
128 
129 /*
130  * valid_master_desc - verify the 'key-type:desc' of a new/updated master-key
131  *
132  * key-type:= "trusted:" | "user:"
133  * desc:= master-key description
134  *
135  * Verify that 'key-type' is valid and that 'desc' exists. On key update,
136  * only the master key description is permitted to change, not the key-type.
137  * The key-type remains constant.
138  *
139  * On success returns 0, otherwise -EINVAL.
140  */
141 static int valid_master_desc(const char *new_desc, const char *orig_desc)
142 {
143 	if (!memcmp(new_desc, KEY_TRUSTED_PREFIX, KEY_TRUSTED_PREFIX_LEN)) {
144 		if (strlen(new_desc) == KEY_TRUSTED_PREFIX_LEN)
145 			goto out;
146 		if (orig_desc)
147 			if (memcmp(new_desc, orig_desc, KEY_TRUSTED_PREFIX_LEN))
148 				goto out;
149 	} else if (!memcmp(new_desc, KEY_USER_PREFIX, KEY_USER_PREFIX_LEN)) {
150 		if (strlen(new_desc) == KEY_USER_PREFIX_LEN)
151 			goto out;
152 		if (orig_desc)
153 			if (memcmp(new_desc, orig_desc, KEY_USER_PREFIX_LEN))
154 				goto out;
155 	} else
156 		goto out;
157 	return 0;
158 out:
159 	return -EINVAL;
160 }
161 
162 /*
163  * datablob_parse - parse the keyctl data
164  *
165  * datablob format:
166  * new [<format>] <master-key name> <decrypted data length>
167  * load [<format>] <master-key name> <decrypted data length>
168  *     <encrypted iv + data>
169  * update <new-master-key name>
170  *
171  * Tokenizes a copy of the keyctl data, returning a pointer to each token,
172  * which is null terminated.
173  *
174  * On success returns 0, otherwise -EINVAL.
175  */
176 static int datablob_parse(char *datablob, const char **format,
177 			  char **master_desc, char **decrypted_datalen,
178 			  char **hex_encoded_iv)
179 {
180 	substring_t args[MAX_OPT_ARGS];
181 	int ret = -EINVAL;
182 	int key_cmd;
183 	int key_format;
184 	char *p, *keyword;
185 
186 	keyword = strsep(&datablob, " \t");
187 	if (!keyword) {
188 		pr_info("encrypted_key: insufficient parameters specified\n");
189 		return ret;
190 	}
191 	key_cmd = match_token(keyword, key_tokens, args);
192 
193 	/* Get optional format: default | ecryptfs */
194 	p = strsep(&datablob, " \t");
195 	if (!p) {
196 		pr_err("encrypted_key: insufficient parameters specified\n");
197 		return ret;
198 	}
199 
200 	key_format = match_token(p, key_format_tokens, args);
201 	switch (key_format) {
202 	case Opt_ecryptfs:
203 	case Opt_default:
204 		*format = p;
205 		*master_desc = strsep(&datablob, " \t");
206 		break;
207 	case Opt_error:
208 		*master_desc = p;
209 		break;
210 	}
211 
212 	if (!*master_desc) {
213 		pr_info("encrypted_key: master key parameter is missing\n");
214 		goto out;
215 	}
216 
217 	if (valid_master_desc(*master_desc, NULL) < 0) {
218 		pr_info("encrypted_key: master key parameter \'%s\' "
219 			"is invalid\n", *master_desc);
220 		goto out;
221 	}
222 
223 	if (decrypted_datalen) {
224 		*decrypted_datalen = strsep(&datablob, " \t");
225 		if (!*decrypted_datalen) {
226 			pr_info("encrypted_key: keylen parameter is missing\n");
227 			goto out;
228 		}
229 	}
230 
231 	switch (key_cmd) {
232 	case Opt_new:
233 		if (!decrypted_datalen) {
234 			pr_info("encrypted_key: keyword \'%s\' not allowed "
235 				"when called from .update method\n", keyword);
236 			break;
237 		}
238 		ret = 0;
239 		break;
240 	case Opt_load:
241 		if (!decrypted_datalen) {
242 			pr_info("encrypted_key: keyword \'%s\' not allowed "
243 				"when called from .update method\n", keyword);
244 			break;
245 		}
246 		*hex_encoded_iv = strsep(&datablob, " \t");
247 		if (!*hex_encoded_iv) {
248 			pr_info("encrypted_key: hex blob is missing\n");
249 			break;
250 		}
251 		ret = 0;
252 		break;
253 	case Opt_update:
254 		if (decrypted_datalen) {
255 			pr_info("encrypted_key: keyword \'%s\' not allowed "
256 				"when called from .instantiate method\n",
257 				keyword);
258 			break;
259 		}
260 		ret = 0;
261 		break;
262 	case Opt_err:
263 		pr_info("encrypted_key: keyword \'%s\' not recognized\n",
264 			keyword);
265 		break;
266 	}
267 out:
268 	return ret;
269 }
270 
271 /*
272  * datablob_format - format as an ascii string, before copying to userspace
273  */
274 static char *datablob_format(struct encrypted_key_payload *epayload,
275 			     size_t asciiblob_len)
276 {
277 	char *ascii_buf, *bufp;
278 	u8 *iv = epayload->iv;
279 	int len;
280 	int i;
281 
282 	ascii_buf = kmalloc(asciiblob_len + 1, GFP_KERNEL);
283 	if (!ascii_buf)
284 		goto out;
285 
286 	ascii_buf[asciiblob_len] = '\0';
287 
288 	/* copy datablob master_desc and datalen strings */
289 	len = sprintf(ascii_buf, "%s %s %s ", epayload->format,
290 		      epayload->master_desc, epayload->datalen);
291 
292 	/* convert the hex encoded iv, encrypted-data and HMAC to ascii */
293 	bufp = &ascii_buf[len];
294 	for (i = 0; i < (asciiblob_len - len) / 2; i++)
295 		bufp = hex_byte_pack(bufp, iv[i]);
296 out:
297 	return ascii_buf;
298 }
299 
300 /*
301  * request_user_key - request the user key
302  *
303  * Use a user provided key to encrypt/decrypt an encrypted-key.
304  */
305 static struct key *request_user_key(const char *master_desc, const u8 **master_key,
306 				    size_t *master_keylen)
307 {
308 	const struct user_key_payload *upayload;
309 	struct key *ukey;
310 
311 	ukey = request_key(&key_type_user, master_desc, NULL);
312 	if (IS_ERR(ukey))
313 		goto error;
314 
315 	down_read(&ukey->sem);
316 	upayload = user_key_payload(ukey);
317 	*master_key = upayload->data;
318 	*master_keylen = upayload->datalen;
319 error:
320 	return ukey;
321 }
322 
323 static struct sdesc *alloc_sdesc(struct crypto_shash *alg)
324 {
325 	struct sdesc *sdesc;
326 	int size;
327 
328 	size = sizeof(struct shash_desc) + crypto_shash_descsize(alg);
329 	sdesc = kmalloc(size, GFP_KERNEL);
330 	if (!sdesc)
331 		return ERR_PTR(-ENOMEM);
332 	sdesc->shash.tfm = alg;
333 	sdesc->shash.flags = 0x0;
334 	return sdesc;
335 }
336 
337 static int calc_hmac(u8 *digest, const u8 *key, unsigned int keylen,
338 		     const u8 *buf, unsigned int buflen)
339 {
340 	struct sdesc *sdesc;
341 	int ret;
342 
343 	sdesc = alloc_sdesc(hmacalg);
344 	if (IS_ERR(sdesc)) {
345 		pr_info("encrypted_key: can't alloc %s\n", hmac_alg);
346 		return PTR_ERR(sdesc);
347 	}
348 
349 	ret = crypto_shash_setkey(hmacalg, key, keylen);
350 	if (!ret)
351 		ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest);
352 	kfree(sdesc);
353 	return ret;
354 }
355 
356 static int calc_hash(u8 *digest, const u8 *buf, unsigned int buflen)
357 {
358 	struct sdesc *sdesc;
359 	int ret;
360 
361 	sdesc = alloc_sdesc(hashalg);
362 	if (IS_ERR(sdesc)) {
363 		pr_info("encrypted_key: can't alloc %s\n", hash_alg);
364 		return PTR_ERR(sdesc);
365 	}
366 
367 	ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest);
368 	kfree(sdesc);
369 	return ret;
370 }
371 
372 enum derived_key_type { ENC_KEY, AUTH_KEY };
373 
374 /* Derive authentication/encryption key from trusted key */
375 static int get_derived_key(u8 *derived_key, enum derived_key_type key_type,
376 			   const u8 *master_key, size_t master_keylen)
377 {
378 	u8 *derived_buf;
379 	unsigned int derived_buf_len;
380 	int ret;
381 
382 	derived_buf_len = strlen("AUTH_KEY") + 1 + master_keylen;
383 	if (derived_buf_len < HASH_SIZE)
384 		derived_buf_len = HASH_SIZE;
385 
386 	derived_buf = kzalloc(derived_buf_len, GFP_KERNEL);
387 	if (!derived_buf) {
388 		pr_err("encrypted_key: out of memory\n");
389 		return -ENOMEM;
390 	}
391 	if (key_type)
392 		strcpy(derived_buf, "AUTH_KEY");
393 	else
394 		strcpy(derived_buf, "ENC_KEY");
395 
396 	memcpy(derived_buf + strlen(derived_buf) + 1, master_key,
397 	       master_keylen);
398 	ret = calc_hash(derived_key, derived_buf, derived_buf_len);
399 	kfree(derived_buf);
400 	return ret;
401 }
402 
403 static struct skcipher_request *init_skcipher_req(const u8 *key,
404 						  unsigned int key_len)
405 {
406 	struct skcipher_request *req;
407 	struct crypto_skcipher *tfm;
408 	int ret;
409 
410 	tfm = crypto_alloc_skcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
411 	if (IS_ERR(tfm)) {
412 		pr_err("encrypted_key: failed to load %s transform (%ld)\n",
413 		       blkcipher_alg, PTR_ERR(tfm));
414 		return ERR_CAST(tfm);
415 	}
416 
417 	ret = crypto_skcipher_setkey(tfm, key, key_len);
418 	if (ret < 0) {
419 		pr_err("encrypted_key: failed to setkey (%d)\n", ret);
420 		crypto_free_skcipher(tfm);
421 		return ERR_PTR(ret);
422 	}
423 
424 	req = skcipher_request_alloc(tfm, GFP_KERNEL);
425 	if (!req) {
426 		pr_err("encrypted_key: failed to allocate request for %s\n",
427 		       blkcipher_alg);
428 		crypto_free_skcipher(tfm);
429 		return ERR_PTR(-ENOMEM);
430 	}
431 
432 	skcipher_request_set_callback(req, 0, NULL, NULL);
433 	return req;
434 }
435 
436 static struct key *request_master_key(struct encrypted_key_payload *epayload,
437 				      const u8 **master_key, size_t *master_keylen)
438 {
439 	struct key *mkey = NULL;
440 
441 	if (!strncmp(epayload->master_desc, KEY_TRUSTED_PREFIX,
442 		     KEY_TRUSTED_PREFIX_LEN)) {
443 		mkey = request_trusted_key(epayload->master_desc +
444 					   KEY_TRUSTED_PREFIX_LEN,
445 					   master_key, master_keylen);
446 	} else if (!strncmp(epayload->master_desc, KEY_USER_PREFIX,
447 			    KEY_USER_PREFIX_LEN)) {
448 		mkey = request_user_key(epayload->master_desc +
449 					KEY_USER_PREFIX_LEN,
450 					master_key, master_keylen);
451 	} else
452 		goto out;
453 
454 	if (IS_ERR(mkey)) {
455 		int ret = PTR_ERR(mkey);
456 
457 		if (ret == -ENOTSUPP)
458 			pr_info("encrypted_key: key %s not supported",
459 				epayload->master_desc);
460 		else
461 			pr_info("encrypted_key: key %s not found",
462 				epayload->master_desc);
463 		goto out;
464 	}
465 
466 	dump_master_key(*master_key, *master_keylen);
467 out:
468 	return mkey;
469 }
470 
471 /* Before returning data to userspace, encrypt decrypted data. */
472 static int derived_key_encrypt(struct encrypted_key_payload *epayload,
473 			       const u8 *derived_key,
474 			       unsigned int derived_keylen)
475 {
476 	struct scatterlist sg_in[2];
477 	struct scatterlist sg_out[1];
478 	struct crypto_skcipher *tfm;
479 	struct skcipher_request *req;
480 	unsigned int encrypted_datalen;
481 	unsigned int padlen;
482 	char pad[16];
483 	int ret;
484 
485 	encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
486 	padlen = encrypted_datalen - epayload->decrypted_datalen;
487 
488 	req = init_skcipher_req(derived_key, derived_keylen);
489 	ret = PTR_ERR(req);
490 	if (IS_ERR(req))
491 		goto out;
492 	dump_decrypted_data(epayload);
493 
494 	memset(pad, 0, sizeof pad);
495 	sg_init_table(sg_in, 2);
496 	sg_set_buf(&sg_in[0], epayload->decrypted_data,
497 		   epayload->decrypted_datalen);
498 	sg_set_buf(&sg_in[1], pad, padlen);
499 
500 	sg_init_table(sg_out, 1);
501 	sg_set_buf(sg_out, epayload->encrypted_data, encrypted_datalen);
502 
503 	skcipher_request_set_crypt(req, sg_in, sg_out, encrypted_datalen,
504 				   epayload->iv);
505 	ret = crypto_skcipher_encrypt(req);
506 	tfm = crypto_skcipher_reqtfm(req);
507 	skcipher_request_free(req);
508 	crypto_free_skcipher(tfm);
509 	if (ret < 0)
510 		pr_err("encrypted_key: failed to encrypt (%d)\n", ret);
511 	else
512 		dump_encrypted_data(epayload, encrypted_datalen);
513 out:
514 	return ret;
515 }
516 
517 static int datablob_hmac_append(struct encrypted_key_payload *epayload,
518 				const u8 *master_key, size_t master_keylen)
519 {
520 	u8 derived_key[HASH_SIZE];
521 	u8 *digest;
522 	int ret;
523 
524 	ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
525 	if (ret < 0)
526 		goto out;
527 
528 	digest = epayload->format + epayload->datablob_len;
529 	ret = calc_hmac(digest, derived_key, sizeof derived_key,
530 			epayload->format, epayload->datablob_len);
531 	if (!ret)
532 		dump_hmac(NULL, digest, HASH_SIZE);
533 out:
534 	return ret;
535 }
536 
537 /* verify HMAC before decrypting encrypted key */
538 static int datablob_hmac_verify(struct encrypted_key_payload *epayload,
539 				const u8 *format, const u8 *master_key,
540 				size_t master_keylen)
541 {
542 	u8 derived_key[HASH_SIZE];
543 	u8 digest[HASH_SIZE];
544 	int ret;
545 	char *p;
546 	unsigned short len;
547 
548 	ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
549 	if (ret < 0)
550 		goto out;
551 
552 	len = epayload->datablob_len;
553 	if (!format) {
554 		p = epayload->master_desc;
555 		len -= strlen(epayload->format) + 1;
556 	} else
557 		p = epayload->format;
558 
559 	ret = calc_hmac(digest, derived_key, sizeof derived_key, p, len);
560 	if (ret < 0)
561 		goto out;
562 	ret = memcmp(digest, epayload->format + epayload->datablob_len,
563 		     sizeof digest);
564 	if (ret) {
565 		ret = -EINVAL;
566 		dump_hmac("datablob",
567 			  epayload->format + epayload->datablob_len,
568 			  HASH_SIZE);
569 		dump_hmac("calc", digest, HASH_SIZE);
570 	}
571 out:
572 	return ret;
573 }
574 
575 static int derived_key_decrypt(struct encrypted_key_payload *epayload,
576 			       const u8 *derived_key,
577 			       unsigned int derived_keylen)
578 {
579 	struct scatterlist sg_in[1];
580 	struct scatterlist sg_out[2];
581 	struct crypto_skcipher *tfm;
582 	struct skcipher_request *req;
583 	unsigned int encrypted_datalen;
584 	char pad[16];
585 	int ret;
586 
587 	encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
588 	req = init_skcipher_req(derived_key, derived_keylen);
589 	ret = PTR_ERR(req);
590 	if (IS_ERR(req))
591 		goto out;
592 	dump_encrypted_data(epayload, encrypted_datalen);
593 
594 	memset(pad, 0, sizeof pad);
595 	sg_init_table(sg_in, 1);
596 	sg_init_table(sg_out, 2);
597 	sg_set_buf(sg_in, epayload->encrypted_data, encrypted_datalen);
598 	sg_set_buf(&sg_out[0], epayload->decrypted_data,
599 		   epayload->decrypted_datalen);
600 	sg_set_buf(&sg_out[1], pad, sizeof pad);
601 
602 	skcipher_request_set_crypt(req, sg_in, sg_out, encrypted_datalen,
603 				   epayload->iv);
604 	ret = crypto_skcipher_decrypt(req);
605 	tfm = crypto_skcipher_reqtfm(req);
606 	skcipher_request_free(req);
607 	crypto_free_skcipher(tfm);
608 	if (ret < 0)
609 		goto out;
610 	dump_decrypted_data(epayload);
611 out:
612 	return ret;
613 }
614 
615 /* Allocate memory for decrypted key and datablob. */
616 static struct encrypted_key_payload *encrypted_key_alloc(struct key *key,
617 							 const char *format,
618 							 const char *master_desc,
619 							 const char *datalen)
620 {
621 	struct encrypted_key_payload *epayload = NULL;
622 	unsigned short datablob_len;
623 	unsigned short decrypted_datalen;
624 	unsigned short payload_datalen;
625 	unsigned int encrypted_datalen;
626 	unsigned int format_len;
627 	long dlen;
628 	int ret;
629 
630 	ret = kstrtol(datalen, 10, &dlen);
631 	if (ret < 0 || dlen < MIN_DATA_SIZE || dlen > MAX_DATA_SIZE)
632 		return ERR_PTR(-EINVAL);
633 
634 	format_len = (!format) ? strlen(key_format_default) : strlen(format);
635 	decrypted_datalen = dlen;
636 	payload_datalen = decrypted_datalen;
637 	if (format && !strcmp(format, key_format_ecryptfs)) {
638 		if (dlen != ECRYPTFS_MAX_KEY_BYTES) {
639 			pr_err("encrypted_key: keylen for the ecryptfs format "
640 			       "must be equal to %d bytes\n",
641 			       ECRYPTFS_MAX_KEY_BYTES);
642 			return ERR_PTR(-EINVAL);
643 		}
644 		decrypted_datalen = ECRYPTFS_MAX_KEY_BYTES;
645 		payload_datalen = sizeof(struct ecryptfs_auth_tok);
646 	}
647 
648 	encrypted_datalen = roundup(decrypted_datalen, blksize);
649 
650 	datablob_len = format_len + 1 + strlen(master_desc) + 1
651 	    + strlen(datalen) + 1 + ivsize + 1 + encrypted_datalen;
652 
653 	ret = key_payload_reserve(key, payload_datalen + datablob_len
654 				  + HASH_SIZE + 1);
655 	if (ret < 0)
656 		return ERR_PTR(ret);
657 
658 	epayload = kzalloc(sizeof(*epayload) + payload_datalen +
659 			   datablob_len + HASH_SIZE + 1, GFP_KERNEL);
660 	if (!epayload)
661 		return ERR_PTR(-ENOMEM);
662 
663 	epayload->payload_datalen = payload_datalen;
664 	epayload->decrypted_datalen = decrypted_datalen;
665 	epayload->datablob_len = datablob_len;
666 	return epayload;
667 }
668 
669 static int encrypted_key_decrypt(struct encrypted_key_payload *epayload,
670 				 const char *format, const char *hex_encoded_iv)
671 {
672 	struct key *mkey;
673 	u8 derived_key[HASH_SIZE];
674 	const u8 *master_key;
675 	u8 *hmac;
676 	const char *hex_encoded_data;
677 	unsigned int encrypted_datalen;
678 	size_t master_keylen;
679 	size_t asciilen;
680 	int ret;
681 
682 	encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
683 	asciilen = (ivsize + 1 + encrypted_datalen + HASH_SIZE) * 2;
684 	if (strlen(hex_encoded_iv) != asciilen)
685 		return -EINVAL;
686 
687 	hex_encoded_data = hex_encoded_iv + (2 * ivsize) + 2;
688 	ret = hex2bin(epayload->iv, hex_encoded_iv, ivsize);
689 	if (ret < 0)
690 		return -EINVAL;
691 	ret = hex2bin(epayload->encrypted_data, hex_encoded_data,
692 		      encrypted_datalen);
693 	if (ret < 0)
694 		return -EINVAL;
695 
696 	hmac = epayload->format + epayload->datablob_len;
697 	ret = hex2bin(hmac, hex_encoded_data + (encrypted_datalen * 2),
698 		      HASH_SIZE);
699 	if (ret < 0)
700 		return -EINVAL;
701 
702 	mkey = request_master_key(epayload, &master_key, &master_keylen);
703 	if (IS_ERR(mkey))
704 		return PTR_ERR(mkey);
705 
706 	ret = datablob_hmac_verify(epayload, format, master_key, master_keylen);
707 	if (ret < 0) {
708 		pr_err("encrypted_key: bad hmac (%d)\n", ret);
709 		goto out;
710 	}
711 
712 	ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
713 	if (ret < 0)
714 		goto out;
715 
716 	ret = derived_key_decrypt(epayload, derived_key, sizeof derived_key);
717 	if (ret < 0)
718 		pr_err("encrypted_key: failed to decrypt key (%d)\n", ret);
719 out:
720 	up_read(&mkey->sem);
721 	key_put(mkey);
722 	return ret;
723 }
724 
725 static void __ekey_init(struct encrypted_key_payload *epayload,
726 			const char *format, const char *master_desc,
727 			const char *datalen)
728 {
729 	unsigned int format_len;
730 
731 	format_len = (!format) ? strlen(key_format_default) : strlen(format);
732 	epayload->format = epayload->payload_data + epayload->payload_datalen;
733 	epayload->master_desc = epayload->format + format_len + 1;
734 	epayload->datalen = epayload->master_desc + strlen(master_desc) + 1;
735 	epayload->iv = epayload->datalen + strlen(datalen) + 1;
736 	epayload->encrypted_data = epayload->iv + ivsize + 1;
737 	epayload->decrypted_data = epayload->payload_data;
738 
739 	if (!format)
740 		memcpy(epayload->format, key_format_default, format_len);
741 	else {
742 		if (!strcmp(format, key_format_ecryptfs))
743 			epayload->decrypted_data =
744 				ecryptfs_get_auth_tok_key((struct ecryptfs_auth_tok *)epayload->payload_data);
745 
746 		memcpy(epayload->format, format, format_len);
747 	}
748 
749 	memcpy(epayload->master_desc, master_desc, strlen(master_desc));
750 	memcpy(epayload->datalen, datalen, strlen(datalen));
751 }
752 
753 /*
754  * encrypted_init - initialize an encrypted key
755  *
756  * For a new key, use a random number for both the iv and data
757  * itself.  For an old key, decrypt the hex encoded data.
758  */
759 static int encrypted_init(struct encrypted_key_payload *epayload,
760 			  const char *key_desc, const char *format,
761 			  const char *master_desc, const char *datalen,
762 			  const char *hex_encoded_iv)
763 {
764 	int ret = 0;
765 
766 	if (format && !strcmp(format, key_format_ecryptfs)) {
767 		ret = valid_ecryptfs_desc(key_desc);
768 		if (ret < 0)
769 			return ret;
770 
771 		ecryptfs_fill_auth_tok((struct ecryptfs_auth_tok *)epayload->payload_data,
772 				       key_desc);
773 	}
774 
775 	__ekey_init(epayload, format, master_desc, datalen);
776 	if (!hex_encoded_iv) {
777 		get_random_bytes(epayload->iv, ivsize);
778 
779 		get_random_bytes(epayload->decrypted_data,
780 				 epayload->decrypted_datalen);
781 	} else
782 		ret = encrypted_key_decrypt(epayload, format, hex_encoded_iv);
783 	return ret;
784 }
785 
786 /*
787  * encrypted_instantiate - instantiate an encrypted key
788  *
789  * Decrypt an existing encrypted datablob or create a new encrypted key
790  * based on a kernel random number.
791  *
792  * On success, return 0. Otherwise return errno.
793  */
794 static int encrypted_instantiate(struct key *key,
795 				 struct key_preparsed_payload *prep)
796 {
797 	struct encrypted_key_payload *epayload = NULL;
798 	char *datablob = NULL;
799 	const char *format = NULL;
800 	char *master_desc = NULL;
801 	char *decrypted_datalen = NULL;
802 	char *hex_encoded_iv = NULL;
803 	size_t datalen = prep->datalen;
804 	int ret;
805 
806 	if (datalen <= 0 || datalen > 32767 || !prep->data)
807 		return -EINVAL;
808 
809 	datablob = kmalloc(datalen + 1, GFP_KERNEL);
810 	if (!datablob)
811 		return -ENOMEM;
812 	datablob[datalen] = 0;
813 	memcpy(datablob, prep->data, datalen);
814 	ret = datablob_parse(datablob, &format, &master_desc,
815 			     &decrypted_datalen, &hex_encoded_iv);
816 	if (ret < 0)
817 		goto out;
818 
819 	epayload = encrypted_key_alloc(key, format, master_desc,
820 				       decrypted_datalen);
821 	if (IS_ERR(epayload)) {
822 		ret = PTR_ERR(epayload);
823 		goto out;
824 	}
825 	ret = encrypted_init(epayload, key->description, format, master_desc,
826 			     decrypted_datalen, hex_encoded_iv);
827 	if (ret < 0) {
828 		kfree(epayload);
829 		goto out;
830 	}
831 
832 	rcu_assign_keypointer(key, epayload);
833 out:
834 	kfree(datablob);
835 	return ret;
836 }
837 
838 static void encrypted_rcu_free(struct rcu_head *rcu)
839 {
840 	struct encrypted_key_payload *epayload;
841 
842 	epayload = container_of(rcu, struct encrypted_key_payload, rcu);
843 	memset(epayload->decrypted_data, 0, epayload->decrypted_datalen);
844 	kfree(epayload);
845 }
846 
847 /*
848  * encrypted_update - update the master key description
849  *
850  * Change the master key description for an existing encrypted key.
851  * The next read will return an encrypted datablob using the new
852  * master key description.
853  *
854  * On success, return 0. Otherwise return errno.
855  */
856 static int encrypted_update(struct key *key, struct key_preparsed_payload *prep)
857 {
858 	struct encrypted_key_payload *epayload = key->payload.data[0];
859 	struct encrypted_key_payload *new_epayload;
860 	char *buf;
861 	char *new_master_desc = NULL;
862 	const char *format = NULL;
863 	size_t datalen = prep->datalen;
864 	int ret = 0;
865 
866 	if (test_bit(KEY_FLAG_NEGATIVE, &key->flags))
867 		return -ENOKEY;
868 	if (datalen <= 0 || datalen > 32767 || !prep->data)
869 		return -EINVAL;
870 
871 	buf = kmalloc(datalen + 1, GFP_KERNEL);
872 	if (!buf)
873 		return -ENOMEM;
874 
875 	buf[datalen] = 0;
876 	memcpy(buf, prep->data, datalen);
877 	ret = datablob_parse(buf, &format, &new_master_desc, NULL, NULL);
878 	if (ret < 0)
879 		goto out;
880 
881 	ret = valid_master_desc(new_master_desc, epayload->master_desc);
882 	if (ret < 0)
883 		goto out;
884 
885 	new_epayload = encrypted_key_alloc(key, epayload->format,
886 					   new_master_desc, epayload->datalen);
887 	if (IS_ERR(new_epayload)) {
888 		ret = PTR_ERR(new_epayload);
889 		goto out;
890 	}
891 
892 	__ekey_init(new_epayload, epayload->format, new_master_desc,
893 		    epayload->datalen);
894 
895 	memcpy(new_epayload->iv, epayload->iv, ivsize);
896 	memcpy(new_epayload->payload_data, epayload->payload_data,
897 	       epayload->payload_datalen);
898 
899 	rcu_assign_keypointer(key, new_epayload);
900 	call_rcu(&epayload->rcu, encrypted_rcu_free);
901 out:
902 	kfree(buf);
903 	return ret;
904 }
905 
906 /*
907  * encrypted_read - format and copy the encrypted data to userspace
908  *
909  * The resulting datablob format is:
910  * <master-key name> <decrypted data length> <encrypted iv> <encrypted data>
911  *
912  * On success, return to userspace the encrypted key datablob size.
913  */
914 static long encrypted_read(const struct key *key, char __user *buffer,
915 			   size_t buflen)
916 {
917 	struct encrypted_key_payload *epayload;
918 	struct key *mkey;
919 	const u8 *master_key;
920 	size_t master_keylen;
921 	char derived_key[HASH_SIZE];
922 	char *ascii_buf;
923 	size_t asciiblob_len;
924 	int ret;
925 
926 	epayload = rcu_dereference_key(key);
927 
928 	/* returns the hex encoded iv, encrypted-data, and hmac as ascii */
929 	asciiblob_len = epayload->datablob_len + ivsize + 1
930 	    + roundup(epayload->decrypted_datalen, blksize)
931 	    + (HASH_SIZE * 2);
932 
933 	if (!buffer || buflen < asciiblob_len)
934 		return asciiblob_len;
935 
936 	mkey = request_master_key(epayload, &master_key, &master_keylen);
937 	if (IS_ERR(mkey))
938 		return PTR_ERR(mkey);
939 
940 	ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
941 	if (ret < 0)
942 		goto out;
943 
944 	ret = derived_key_encrypt(epayload, derived_key, sizeof derived_key);
945 	if (ret < 0)
946 		goto out;
947 
948 	ret = datablob_hmac_append(epayload, master_key, master_keylen);
949 	if (ret < 0)
950 		goto out;
951 
952 	ascii_buf = datablob_format(epayload, asciiblob_len);
953 	if (!ascii_buf) {
954 		ret = -ENOMEM;
955 		goto out;
956 	}
957 
958 	up_read(&mkey->sem);
959 	key_put(mkey);
960 
961 	if (copy_to_user(buffer, ascii_buf, asciiblob_len) != 0)
962 		ret = -EFAULT;
963 	kfree(ascii_buf);
964 
965 	return asciiblob_len;
966 out:
967 	up_read(&mkey->sem);
968 	key_put(mkey);
969 	return ret;
970 }
971 
972 /*
973  * encrypted_destroy - before freeing the key, clear the decrypted data
974  *
975  * Before freeing the key, clear the memory containing the decrypted
976  * key data.
977  */
978 static void encrypted_destroy(struct key *key)
979 {
980 	struct encrypted_key_payload *epayload = key->payload.data[0];
981 
982 	if (!epayload)
983 		return;
984 
985 	memset(epayload->decrypted_data, 0, epayload->decrypted_datalen);
986 	kfree(key->payload.data[0]);
987 }
988 
989 struct key_type key_type_encrypted = {
990 	.name = "encrypted",
991 	.instantiate = encrypted_instantiate,
992 	.update = encrypted_update,
993 	.destroy = encrypted_destroy,
994 	.describe = user_describe,
995 	.read = encrypted_read,
996 };
997 EXPORT_SYMBOL_GPL(key_type_encrypted);
998 
999 static void encrypted_shash_release(void)
1000 {
1001 	if (hashalg)
1002 		crypto_free_shash(hashalg);
1003 	if (hmacalg)
1004 		crypto_free_shash(hmacalg);
1005 }
1006 
1007 static int __init encrypted_shash_alloc(void)
1008 {
1009 	int ret;
1010 
1011 	hmacalg = crypto_alloc_shash(hmac_alg, 0, CRYPTO_ALG_ASYNC);
1012 	if (IS_ERR(hmacalg)) {
1013 		pr_info("encrypted_key: could not allocate crypto %s\n",
1014 			hmac_alg);
1015 		return PTR_ERR(hmacalg);
1016 	}
1017 
1018 	hashalg = crypto_alloc_shash(hash_alg, 0, CRYPTO_ALG_ASYNC);
1019 	if (IS_ERR(hashalg)) {
1020 		pr_info("encrypted_key: could not allocate crypto %s\n",
1021 			hash_alg);
1022 		ret = PTR_ERR(hashalg);
1023 		goto hashalg_fail;
1024 	}
1025 
1026 	return 0;
1027 
1028 hashalg_fail:
1029 	crypto_free_shash(hmacalg);
1030 	return ret;
1031 }
1032 
1033 static int __init init_encrypted(void)
1034 {
1035 	int ret;
1036 
1037 	ret = encrypted_shash_alloc();
1038 	if (ret < 0)
1039 		return ret;
1040 	ret = aes_get_sizes();
1041 	if (ret < 0)
1042 		goto out;
1043 	ret = register_key_type(&key_type_encrypted);
1044 	if (ret < 0)
1045 		goto out;
1046 	return 0;
1047 out:
1048 	encrypted_shash_release();
1049 	return ret;
1050 
1051 }
1052 
1053 static void __exit cleanup_encrypted(void)
1054 {
1055 	encrypted_shash_release();
1056 	unregister_key_type(&key_type_encrypted);
1057 }
1058 
1059 late_initcall(init_encrypted);
1060 module_exit(cleanup_encrypted);
1061 
1062 MODULE_LICENSE("GPL");
1063