xref: /openbmc/linux/security/keys/encrypted-keys/encrypted.c (revision eb3fcf007fffe5830d815e713591f3e858f2a365)
1 /*
2  * Copyright (C) 2010 IBM Corporation
3  * Copyright (C) 2010 Politecnico di Torino, Italy
4  *                    TORSEC group -- http://security.polito.it
5  *
6  * Authors:
7  * Mimi Zohar <zohar@us.ibm.com>
8  * Roberto Sassu <roberto.sassu@polito.it>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation, version 2 of the License.
13  *
14  * See Documentation/security/keys-trusted-encrypted.txt
15  */
16 
17 #include <linux/uaccess.h>
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/slab.h>
21 #include <linux/parser.h>
22 #include <linux/string.h>
23 #include <linux/err.h>
24 #include <keys/user-type.h>
25 #include <keys/trusted-type.h>
26 #include <keys/encrypted-type.h>
27 #include <linux/key-type.h>
28 #include <linux/random.h>
29 #include <linux/rcupdate.h>
30 #include <linux/scatterlist.h>
31 #include <linux/crypto.h>
32 #include <linux/ctype.h>
33 #include <crypto/hash.h>
34 #include <crypto/sha.h>
35 #include <crypto/aes.h>
36 
37 #include "encrypted.h"
38 #include "ecryptfs_format.h"
39 
40 static const char KEY_TRUSTED_PREFIX[] = "trusted:";
41 static const char KEY_USER_PREFIX[] = "user:";
42 static const char hash_alg[] = "sha256";
43 static const char hmac_alg[] = "hmac(sha256)";
44 static const char blkcipher_alg[] = "cbc(aes)";
45 static const char key_format_default[] = "default";
46 static const char key_format_ecryptfs[] = "ecryptfs";
47 static unsigned int ivsize;
48 static int blksize;
49 
50 #define KEY_TRUSTED_PREFIX_LEN (sizeof (KEY_TRUSTED_PREFIX) - 1)
51 #define KEY_USER_PREFIX_LEN (sizeof (KEY_USER_PREFIX) - 1)
52 #define KEY_ECRYPTFS_DESC_LEN 16
53 #define HASH_SIZE SHA256_DIGEST_SIZE
54 #define MAX_DATA_SIZE 4096
55 #define MIN_DATA_SIZE  20
56 
57 struct sdesc {
58 	struct shash_desc shash;
59 	char ctx[];
60 };
61 
62 static struct crypto_shash *hashalg;
63 static struct crypto_shash *hmacalg;
64 
65 enum {
66 	Opt_err = -1, Opt_new, Opt_load, Opt_update
67 };
68 
69 enum {
70 	Opt_error = -1, Opt_default, Opt_ecryptfs
71 };
72 
73 static const match_table_t key_format_tokens = {
74 	{Opt_default, "default"},
75 	{Opt_ecryptfs, "ecryptfs"},
76 	{Opt_error, NULL}
77 };
78 
79 static const match_table_t key_tokens = {
80 	{Opt_new, "new"},
81 	{Opt_load, "load"},
82 	{Opt_update, "update"},
83 	{Opt_err, NULL}
84 };
85 
86 static int aes_get_sizes(void)
87 {
88 	struct crypto_blkcipher *tfm;
89 
90 	tfm = crypto_alloc_blkcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
91 	if (IS_ERR(tfm)) {
92 		pr_err("encrypted_key: failed to alloc_cipher (%ld)\n",
93 		       PTR_ERR(tfm));
94 		return PTR_ERR(tfm);
95 	}
96 	ivsize = crypto_blkcipher_ivsize(tfm);
97 	blksize = crypto_blkcipher_blocksize(tfm);
98 	crypto_free_blkcipher(tfm);
99 	return 0;
100 }
101 
102 /*
103  * valid_ecryptfs_desc - verify the description of a new/loaded encrypted key
104  *
105  * The description of a encrypted key with format 'ecryptfs' must contain
106  * exactly 16 hexadecimal characters.
107  *
108  */
109 static int valid_ecryptfs_desc(const char *ecryptfs_desc)
110 {
111 	int i;
112 
113 	if (strlen(ecryptfs_desc) != KEY_ECRYPTFS_DESC_LEN) {
114 		pr_err("encrypted_key: key description must be %d hexadecimal "
115 		       "characters long\n", KEY_ECRYPTFS_DESC_LEN);
116 		return -EINVAL;
117 	}
118 
119 	for (i = 0; i < KEY_ECRYPTFS_DESC_LEN; i++) {
120 		if (!isxdigit(ecryptfs_desc[i])) {
121 			pr_err("encrypted_key: key description must contain "
122 			       "only hexadecimal characters\n");
123 			return -EINVAL;
124 		}
125 	}
126 
127 	return 0;
128 }
129 
130 /*
131  * valid_master_desc - verify the 'key-type:desc' of a new/updated master-key
132  *
133  * key-type:= "trusted:" | "user:"
134  * desc:= master-key description
135  *
136  * Verify that 'key-type' is valid and that 'desc' exists. On key update,
137  * only the master key description is permitted to change, not the key-type.
138  * The key-type remains constant.
139  *
140  * On success returns 0, otherwise -EINVAL.
141  */
142 static int valid_master_desc(const char *new_desc, const char *orig_desc)
143 {
144 	if (!memcmp(new_desc, KEY_TRUSTED_PREFIX, KEY_TRUSTED_PREFIX_LEN)) {
145 		if (strlen(new_desc) == KEY_TRUSTED_PREFIX_LEN)
146 			goto out;
147 		if (orig_desc)
148 			if (memcmp(new_desc, orig_desc, KEY_TRUSTED_PREFIX_LEN))
149 				goto out;
150 	} else if (!memcmp(new_desc, KEY_USER_PREFIX, KEY_USER_PREFIX_LEN)) {
151 		if (strlen(new_desc) == KEY_USER_PREFIX_LEN)
152 			goto out;
153 		if (orig_desc)
154 			if (memcmp(new_desc, orig_desc, KEY_USER_PREFIX_LEN))
155 				goto out;
156 	} else
157 		goto out;
158 	return 0;
159 out:
160 	return -EINVAL;
161 }
162 
163 /*
164  * datablob_parse - parse the keyctl data
165  *
166  * datablob format:
167  * new [<format>] <master-key name> <decrypted data length>
168  * load [<format>] <master-key name> <decrypted data length>
169  *     <encrypted iv + data>
170  * update <new-master-key name>
171  *
172  * Tokenizes a copy of the keyctl data, returning a pointer to each token,
173  * which is null terminated.
174  *
175  * On success returns 0, otherwise -EINVAL.
176  */
177 static int datablob_parse(char *datablob, const char **format,
178 			  char **master_desc, char **decrypted_datalen,
179 			  char **hex_encoded_iv)
180 {
181 	substring_t args[MAX_OPT_ARGS];
182 	int ret = -EINVAL;
183 	int key_cmd;
184 	int key_format;
185 	char *p, *keyword;
186 
187 	keyword = strsep(&datablob, " \t");
188 	if (!keyword) {
189 		pr_info("encrypted_key: insufficient parameters specified\n");
190 		return ret;
191 	}
192 	key_cmd = match_token(keyword, key_tokens, args);
193 
194 	/* Get optional format: default | ecryptfs */
195 	p = strsep(&datablob, " \t");
196 	if (!p) {
197 		pr_err("encrypted_key: insufficient parameters specified\n");
198 		return ret;
199 	}
200 
201 	key_format = match_token(p, key_format_tokens, args);
202 	switch (key_format) {
203 	case Opt_ecryptfs:
204 	case Opt_default:
205 		*format = p;
206 		*master_desc = strsep(&datablob, " \t");
207 		break;
208 	case Opt_error:
209 		*master_desc = p;
210 		break;
211 	}
212 
213 	if (!*master_desc) {
214 		pr_info("encrypted_key: master key parameter is missing\n");
215 		goto out;
216 	}
217 
218 	if (valid_master_desc(*master_desc, NULL) < 0) {
219 		pr_info("encrypted_key: master key parameter \'%s\' "
220 			"is invalid\n", *master_desc);
221 		goto out;
222 	}
223 
224 	if (decrypted_datalen) {
225 		*decrypted_datalen = strsep(&datablob, " \t");
226 		if (!*decrypted_datalen) {
227 			pr_info("encrypted_key: keylen parameter is missing\n");
228 			goto out;
229 		}
230 	}
231 
232 	switch (key_cmd) {
233 	case Opt_new:
234 		if (!decrypted_datalen) {
235 			pr_info("encrypted_key: keyword \'%s\' not allowed "
236 				"when called from .update method\n", keyword);
237 			break;
238 		}
239 		ret = 0;
240 		break;
241 	case Opt_load:
242 		if (!decrypted_datalen) {
243 			pr_info("encrypted_key: keyword \'%s\' not allowed "
244 				"when called from .update method\n", keyword);
245 			break;
246 		}
247 		*hex_encoded_iv = strsep(&datablob, " \t");
248 		if (!*hex_encoded_iv) {
249 			pr_info("encrypted_key: hex blob is missing\n");
250 			break;
251 		}
252 		ret = 0;
253 		break;
254 	case Opt_update:
255 		if (decrypted_datalen) {
256 			pr_info("encrypted_key: keyword \'%s\' not allowed "
257 				"when called from .instantiate method\n",
258 				keyword);
259 			break;
260 		}
261 		ret = 0;
262 		break;
263 	case Opt_err:
264 		pr_info("encrypted_key: keyword \'%s\' not recognized\n",
265 			keyword);
266 		break;
267 	}
268 out:
269 	return ret;
270 }
271 
272 /*
273  * datablob_format - format as an ascii string, before copying to userspace
274  */
275 static char *datablob_format(struct encrypted_key_payload *epayload,
276 			     size_t asciiblob_len)
277 {
278 	char *ascii_buf, *bufp;
279 	u8 *iv = epayload->iv;
280 	int len;
281 	int i;
282 
283 	ascii_buf = kmalloc(asciiblob_len + 1, GFP_KERNEL);
284 	if (!ascii_buf)
285 		goto out;
286 
287 	ascii_buf[asciiblob_len] = '\0';
288 
289 	/* copy datablob master_desc and datalen strings */
290 	len = sprintf(ascii_buf, "%s %s %s ", epayload->format,
291 		      epayload->master_desc, epayload->datalen);
292 
293 	/* convert the hex encoded iv, encrypted-data and HMAC to ascii */
294 	bufp = &ascii_buf[len];
295 	for (i = 0; i < (asciiblob_len - len) / 2; i++)
296 		bufp = hex_byte_pack(bufp, iv[i]);
297 out:
298 	return ascii_buf;
299 }
300 
301 /*
302  * request_user_key - request the user key
303  *
304  * Use a user provided key to encrypt/decrypt an encrypted-key.
305  */
306 static struct key *request_user_key(const char *master_desc, u8 **master_key,
307 				    size_t *master_keylen)
308 {
309 	struct user_key_payload *upayload;
310 	struct key *ukey;
311 
312 	ukey = request_key(&key_type_user, master_desc, NULL);
313 	if (IS_ERR(ukey))
314 		goto error;
315 
316 	down_read(&ukey->sem);
317 	upayload = ukey->payload.data;
318 	*master_key = upayload->data;
319 	*master_keylen = upayload->datalen;
320 error:
321 	return ukey;
322 }
323 
324 static struct sdesc *alloc_sdesc(struct crypto_shash *alg)
325 {
326 	struct sdesc *sdesc;
327 	int size;
328 
329 	size = sizeof(struct shash_desc) + crypto_shash_descsize(alg);
330 	sdesc = kmalloc(size, GFP_KERNEL);
331 	if (!sdesc)
332 		return ERR_PTR(-ENOMEM);
333 	sdesc->shash.tfm = alg;
334 	sdesc->shash.flags = 0x0;
335 	return sdesc;
336 }
337 
338 static int calc_hmac(u8 *digest, const u8 *key, unsigned int keylen,
339 		     const u8 *buf, unsigned int buflen)
340 {
341 	struct sdesc *sdesc;
342 	int ret;
343 
344 	sdesc = alloc_sdesc(hmacalg);
345 	if (IS_ERR(sdesc)) {
346 		pr_info("encrypted_key: can't alloc %s\n", hmac_alg);
347 		return PTR_ERR(sdesc);
348 	}
349 
350 	ret = crypto_shash_setkey(hmacalg, key, keylen);
351 	if (!ret)
352 		ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest);
353 	kfree(sdesc);
354 	return ret;
355 }
356 
357 static int calc_hash(u8 *digest, const u8 *buf, unsigned int buflen)
358 {
359 	struct sdesc *sdesc;
360 	int ret;
361 
362 	sdesc = alloc_sdesc(hashalg);
363 	if (IS_ERR(sdesc)) {
364 		pr_info("encrypted_key: can't alloc %s\n", hash_alg);
365 		return PTR_ERR(sdesc);
366 	}
367 
368 	ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest);
369 	kfree(sdesc);
370 	return ret;
371 }
372 
373 enum derived_key_type { ENC_KEY, AUTH_KEY };
374 
375 /* Derive authentication/encryption key from trusted key */
376 static int get_derived_key(u8 *derived_key, enum derived_key_type key_type,
377 			   const u8 *master_key, size_t master_keylen)
378 {
379 	u8 *derived_buf;
380 	unsigned int derived_buf_len;
381 	int ret;
382 
383 	derived_buf_len = strlen("AUTH_KEY") + 1 + master_keylen;
384 	if (derived_buf_len < HASH_SIZE)
385 		derived_buf_len = HASH_SIZE;
386 
387 	derived_buf = kzalloc(derived_buf_len, GFP_KERNEL);
388 	if (!derived_buf) {
389 		pr_err("encrypted_key: out of memory\n");
390 		return -ENOMEM;
391 	}
392 	if (key_type)
393 		strcpy(derived_buf, "AUTH_KEY");
394 	else
395 		strcpy(derived_buf, "ENC_KEY");
396 
397 	memcpy(derived_buf + strlen(derived_buf) + 1, master_key,
398 	       master_keylen);
399 	ret = calc_hash(derived_key, derived_buf, derived_buf_len);
400 	kfree(derived_buf);
401 	return ret;
402 }
403 
404 static int init_blkcipher_desc(struct blkcipher_desc *desc, const u8 *key,
405 			       unsigned int key_len, const u8 *iv,
406 			       unsigned int ivsize)
407 {
408 	int ret;
409 
410 	desc->tfm = crypto_alloc_blkcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
411 	if (IS_ERR(desc->tfm)) {
412 		pr_err("encrypted_key: failed to load %s transform (%ld)\n",
413 		       blkcipher_alg, PTR_ERR(desc->tfm));
414 		return PTR_ERR(desc->tfm);
415 	}
416 	desc->flags = 0;
417 
418 	ret = crypto_blkcipher_setkey(desc->tfm, key, key_len);
419 	if (ret < 0) {
420 		pr_err("encrypted_key: failed to setkey (%d)\n", ret);
421 		crypto_free_blkcipher(desc->tfm);
422 		return ret;
423 	}
424 	crypto_blkcipher_set_iv(desc->tfm, iv, ivsize);
425 	return 0;
426 }
427 
428 static struct key *request_master_key(struct encrypted_key_payload *epayload,
429 				      u8 **master_key, size_t *master_keylen)
430 {
431 	struct key *mkey = NULL;
432 
433 	if (!strncmp(epayload->master_desc, KEY_TRUSTED_PREFIX,
434 		     KEY_TRUSTED_PREFIX_LEN)) {
435 		mkey = request_trusted_key(epayload->master_desc +
436 					   KEY_TRUSTED_PREFIX_LEN,
437 					   master_key, master_keylen);
438 	} else if (!strncmp(epayload->master_desc, KEY_USER_PREFIX,
439 			    KEY_USER_PREFIX_LEN)) {
440 		mkey = request_user_key(epayload->master_desc +
441 					KEY_USER_PREFIX_LEN,
442 					master_key, master_keylen);
443 	} else
444 		goto out;
445 
446 	if (IS_ERR(mkey)) {
447 		int ret = PTR_ERR(mkey);
448 
449 		if (ret == -ENOTSUPP)
450 			pr_info("encrypted_key: key %s not supported",
451 				epayload->master_desc);
452 		else
453 			pr_info("encrypted_key: key %s not found",
454 				epayload->master_desc);
455 		goto out;
456 	}
457 
458 	dump_master_key(*master_key, *master_keylen);
459 out:
460 	return mkey;
461 }
462 
463 /* Before returning data to userspace, encrypt decrypted data. */
464 static int derived_key_encrypt(struct encrypted_key_payload *epayload,
465 			       const u8 *derived_key,
466 			       unsigned int derived_keylen)
467 {
468 	struct scatterlist sg_in[2];
469 	struct scatterlist sg_out[1];
470 	struct blkcipher_desc desc;
471 	unsigned int encrypted_datalen;
472 	unsigned int padlen;
473 	char pad[16];
474 	int ret;
475 
476 	encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
477 	padlen = encrypted_datalen - epayload->decrypted_datalen;
478 
479 	ret = init_blkcipher_desc(&desc, derived_key, derived_keylen,
480 				  epayload->iv, ivsize);
481 	if (ret < 0)
482 		goto out;
483 	dump_decrypted_data(epayload);
484 
485 	memset(pad, 0, sizeof pad);
486 	sg_init_table(sg_in, 2);
487 	sg_set_buf(&sg_in[0], epayload->decrypted_data,
488 		   epayload->decrypted_datalen);
489 	sg_set_buf(&sg_in[1], pad, padlen);
490 
491 	sg_init_table(sg_out, 1);
492 	sg_set_buf(sg_out, epayload->encrypted_data, encrypted_datalen);
493 
494 	ret = crypto_blkcipher_encrypt(&desc, sg_out, sg_in, encrypted_datalen);
495 	crypto_free_blkcipher(desc.tfm);
496 	if (ret < 0)
497 		pr_err("encrypted_key: failed to encrypt (%d)\n", ret);
498 	else
499 		dump_encrypted_data(epayload, encrypted_datalen);
500 out:
501 	return ret;
502 }
503 
504 static int datablob_hmac_append(struct encrypted_key_payload *epayload,
505 				const u8 *master_key, size_t master_keylen)
506 {
507 	u8 derived_key[HASH_SIZE];
508 	u8 *digest;
509 	int ret;
510 
511 	ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
512 	if (ret < 0)
513 		goto out;
514 
515 	digest = epayload->format + epayload->datablob_len;
516 	ret = calc_hmac(digest, derived_key, sizeof derived_key,
517 			epayload->format, epayload->datablob_len);
518 	if (!ret)
519 		dump_hmac(NULL, digest, HASH_SIZE);
520 out:
521 	return ret;
522 }
523 
524 /* verify HMAC before decrypting encrypted key */
525 static int datablob_hmac_verify(struct encrypted_key_payload *epayload,
526 				const u8 *format, const u8 *master_key,
527 				size_t master_keylen)
528 {
529 	u8 derived_key[HASH_SIZE];
530 	u8 digest[HASH_SIZE];
531 	int ret;
532 	char *p;
533 	unsigned short len;
534 
535 	ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
536 	if (ret < 0)
537 		goto out;
538 
539 	len = epayload->datablob_len;
540 	if (!format) {
541 		p = epayload->master_desc;
542 		len -= strlen(epayload->format) + 1;
543 	} else
544 		p = epayload->format;
545 
546 	ret = calc_hmac(digest, derived_key, sizeof derived_key, p, len);
547 	if (ret < 0)
548 		goto out;
549 	ret = memcmp(digest, epayload->format + epayload->datablob_len,
550 		     sizeof digest);
551 	if (ret) {
552 		ret = -EINVAL;
553 		dump_hmac("datablob",
554 			  epayload->format + epayload->datablob_len,
555 			  HASH_SIZE);
556 		dump_hmac("calc", digest, HASH_SIZE);
557 	}
558 out:
559 	return ret;
560 }
561 
562 static int derived_key_decrypt(struct encrypted_key_payload *epayload,
563 			       const u8 *derived_key,
564 			       unsigned int derived_keylen)
565 {
566 	struct scatterlist sg_in[1];
567 	struct scatterlist sg_out[2];
568 	struct blkcipher_desc desc;
569 	unsigned int encrypted_datalen;
570 	char pad[16];
571 	int ret;
572 
573 	encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
574 	ret = init_blkcipher_desc(&desc, derived_key, derived_keylen,
575 				  epayload->iv, ivsize);
576 	if (ret < 0)
577 		goto out;
578 	dump_encrypted_data(epayload, encrypted_datalen);
579 
580 	memset(pad, 0, sizeof pad);
581 	sg_init_table(sg_in, 1);
582 	sg_init_table(sg_out, 2);
583 	sg_set_buf(sg_in, epayload->encrypted_data, encrypted_datalen);
584 	sg_set_buf(&sg_out[0], epayload->decrypted_data,
585 		   epayload->decrypted_datalen);
586 	sg_set_buf(&sg_out[1], pad, sizeof pad);
587 
588 	ret = crypto_blkcipher_decrypt(&desc, sg_out, sg_in, encrypted_datalen);
589 	crypto_free_blkcipher(desc.tfm);
590 	if (ret < 0)
591 		goto out;
592 	dump_decrypted_data(epayload);
593 out:
594 	return ret;
595 }
596 
597 /* Allocate memory for decrypted key and datablob. */
598 static struct encrypted_key_payload *encrypted_key_alloc(struct key *key,
599 							 const char *format,
600 							 const char *master_desc,
601 							 const char *datalen)
602 {
603 	struct encrypted_key_payload *epayload = NULL;
604 	unsigned short datablob_len;
605 	unsigned short decrypted_datalen;
606 	unsigned short payload_datalen;
607 	unsigned int encrypted_datalen;
608 	unsigned int format_len;
609 	long dlen;
610 	int ret;
611 
612 	ret = kstrtol(datalen, 10, &dlen);
613 	if (ret < 0 || dlen < MIN_DATA_SIZE || dlen > MAX_DATA_SIZE)
614 		return ERR_PTR(-EINVAL);
615 
616 	format_len = (!format) ? strlen(key_format_default) : strlen(format);
617 	decrypted_datalen = dlen;
618 	payload_datalen = decrypted_datalen;
619 	if (format && !strcmp(format, key_format_ecryptfs)) {
620 		if (dlen != ECRYPTFS_MAX_KEY_BYTES) {
621 			pr_err("encrypted_key: keylen for the ecryptfs format "
622 			       "must be equal to %d bytes\n",
623 			       ECRYPTFS_MAX_KEY_BYTES);
624 			return ERR_PTR(-EINVAL);
625 		}
626 		decrypted_datalen = ECRYPTFS_MAX_KEY_BYTES;
627 		payload_datalen = sizeof(struct ecryptfs_auth_tok);
628 	}
629 
630 	encrypted_datalen = roundup(decrypted_datalen, blksize);
631 
632 	datablob_len = format_len + 1 + strlen(master_desc) + 1
633 	    + strlen(datalen) + 1 + ivsize + 1 + encrypted_datalen;
634 
635 	ret = key_payload_reserve(key, payload_datalen + datablob_len
636 				  + HASH_SIZE + 1);
637 	if (ret < 0)
638 		return ERR_PTR(ret);
639 
640 	epayload = kzalloc(sizeof(*epayload) + payload_datalen +
641 			   datablob_len + HASH_SIZE + 1, GFP_KERNEL);
642 	if (!epayload)
643 		return ERR_PTR(-ENOMEM);
644 
645 	epayload->payload_datalen = payload_datalen;
646 	epayload->decrypted_datalen = decrypted_datalen;
647 	epayload->datablob_len = datablob_len;
648 	return epayload;
649 }
650 
651 static int encrypted_key_decrypt(struct encrypted_key_payload *epayload,
652 				 const char *format, const char *hex_encoded_iv)
653 {
654 	struct key *mkey;
655 	u8 derived_key[HASH_SIZE];
656 	u8 *master_key;
657 	u8 *hmac;
658 	const char *hex_encoded_data;
659 	unsigned int encrypted_datalen;
660 	size_t master_keylen;
661 	size_t asciilen;
662 	int ret;
663 
664 	encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
665 	asciilen = (ivsize + 1 + encrypted_datalen + HASH_SIZE) * 2;
666 	if (strlen(hex_encoded_iv) != asciilen)
667 		return -EINVAL;
668 
669 	hex_encoded_data = hex_encoded_iv + (2 * ivsize) + 2;
670 	ret = hex2bin(epayload->iv, hex_encoded_iv, ivsize);
671 	if (ret < 0)
672 		return -EINVAL;
673 	ret = hex2bin(epayload->encrypted_data, hex_encoded_data,
674 		      encrypted_datalen);
675 	if (ret < 0)
676 		return -EINVAL;
677 
678 	hmac = epayload->format + epayload->datablob_len;
679 	ret = hex2bin(hmac, hex_encoded_data + (encrypted_datalen * 2),
680 		      HASH_SIZE);
681 	if (ret < 0)
682 		return -EINVAL;
683 
684 	mkey = request_master_key(epayload, &master_key, &master_keylen);
685 	if (IS_ERR(mkey))
686 		return PTR_ERR(mkey);
687 
688 	ret = datablob_hmac_verify(epayload, format, master_key, master_keylen);
689 	if (ret < 0) {
690 		pr_err("encrypted_key: bad hmac (%d)\n", ret);
691 		goto out;
692 	}
693 
694 	ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
695 	if (ret < 0)
696 		goto out;
697 
698 	ret = derived_key_decrypt(epayload, derived_key, sizeof derived_key);
699 	if (ret < 0)
700 		pr_err("encrypted_key: failed to decrypt key (%d)\n", ret);
701 out:
702 	up_read(&mkey->sem);
703 	key_put(mkey);
704 	return ret;
705 }
706 
707 static void __ekey_init(struct encrypted_key_payload *epayload,
708 			const char *format, const char *master_desc,
709 			const char *datalen)
710 {
711 	unsigned int format_len;
712 
713 	format_len = (!format) ? strlen(key_format_default) : strlen(format);
714 	epayload->format = epayload->payload_data + epayload->payload_datalen;
715 	epayload->master_desc = epayload->format + format_len + 1;
716 	epayload->datalen = epayload->master_desc + strlen(master_desc) + 1;
717 	epayload->iv = epayload->datalen + strlen(datalen) + 1;
718 	epayload->encrypted_data = epayload->iv + ivsize + 1;
719 	epayload->decrypted_data = epayload->payload_data;
720 
721 	if (!format)
722 		memcpy(epayload->format, key_format_default, format_len);
723 	else {
724 		if (!strcmp(format, key_format_ecryptfs))
725 			epayload->decrypted_data =
726 				ecryptfs_get_auth_tok_key((struct ecryptfs_auth_tok *)epayload->payload_data);
727 
728 		memcpy(epayload->format, format, format_len);
729 	}
730 
731 	memcpy(epayload->master_desc, master_desc, strlen(master_desc));
732 	memcpy(epayload->datalen, datalen, strlen(datalen));
733 }
734 
735 /*
736  * encrypted_init - initialize an encrypted key
737  *
738  * For a new key, use a random number for both the iv and data
739  * itself.  For an old key, decrypt the hex encoded data.
740  */
741 static int encrypted_init(struct encrypted_key_payload *epayload,
742 			  const char *key_desc, const char *format,
743 			  const char *master_desc, const char *datalen,
744 			  const char *hex_encoded_iv)
745 {
746 	int ret = 0;
747 
748 	if (format && !strcmp(format, key_format_ecryptfs)) {
749 		ret = valid_ecryptfs_desc(key_desc);
750 		if (ret < 0)
751 			return ret;
752 
753 		ecryptfs_fill_auth_tok((struct ecryptfs_auth_tok *)epayload->payload_data,
754 				       key_desc);
755 	}
756 
757 	__ekey_init(epayload, format, master_desc, datalen);
758 	if (!hex_encoded_iv) {
759 		get_random_bytes(epayload->iv, ivsize);
760 
761 		get_random_bytes(epayload->decrypted_data,
762 				 epayload->decrypted_datalen);
763 	} else
764 		ret = encrypted_key_decrypt(epayload, format, hex_encoded_iv);
765 	return ret;
766 }
767 
768 /*
769  * encrypted_instantiate - instantiate an encrypted key
770  *
771  * Decrypt an existing encrypted datablob or create a new encrypted key
772  * based on a kernel random number.
773  *
774  * On success, return 0. Otherwise return errno.
775  */
776 static int encrypted_instantiate(struct key *key,
777 				 struct key_preparsed_payload *prep)
778 {
779 	struct encrypted_key_payload *epayload = NULL;
780 	char *datablob = NULL;
781 	const char *format = NULL;
782 	char *master_desc = NULL;
783 	char *decrypted_datalen = NULL;
784 	char *hex_encoded_iv = NULL;
785 	size_t datalen = prep->datalen;
786 	int ret;
787 
788 	if (datalen <= 0 || datalen > 32767 || !prep->data)
789 		return -EINVAL;
790 
791 	datablob = kmalloc(datalen + 1, GFP_KERNEL);
792 	if (!datablob)
793 		return -ENOMEM;
794 	datablob[datalen] = 0;
795 	memcpy(datablob, prep->data, datalen);
796 	ret = datablob_parse(datablob, &format, &master_desc,
797 			     &decrypted_datalen, &hex_encoded_iv);
798 	if (ret < 0)
799 		goto out;
800 
801 	epayload = encrypted_key_alloc(key, format, master_desc,
802 				       decrypted_datalen);
803 	if (IS_ERR(epayload)) {
804 		ret = PTR_ERR(epayload);
805 		goto out;
806 	}
807 	ret = encrypted_init(epayload, key->description, format, master_desc,
808 			     decrypted_datalen, hex_encoded_iv);
809 	if (ret < 0) {
810 		kfree(epayload);
811 		goto out;
812 	}
813 
814 	rcu_assign_keypointer(key, epayload);
815 out:
816 	kfree(datablob);
817 	return ret;
818 }
819 
820 static void encrypted_rcu_free(struct rcu_head *rcu)
821 {
822 	struct encrypted_key_payload *epayload;
823 
824 	epayload = container_of(rcu, struct encrypted_key_payload, rcu);
825 	memset(epayload->decrypted_data, 0, epayload->decrypted_datalen);
826 	kfree(epayload);
827 }
828 
829 /*
830  * encrypted_update - update the master key description
831  *
832  * Change the master key description for an existing encrypted key.
833  * The next read will return an encrypted datablob using the new
834  * master key description.
835  *
836  * On success, return 0. Otherwise return errno.
837  */
838 static int encrypted_update(struct key *key, struct key_preparsed_payload *prep)
839 {
840 	struct encrypted_key_payload *epayload = key->payload.data;
841 	struct encrypted_key_payload *new_epayload;
842 	char *buf;
843 	char *new_master_desc = NULL;
844 	const char *format = NULL;
845 	size_t datalen = prep->datalen;
846 	int ret = 0;
847 
848 	if (datalen <= 0 || datalen > 32767 || !prep->data)
849 		return -EINVAL;
850 
851 	buf = kmalloc(datalen + 1, GFP_KERNEL);
852 	if (!buf)
853 		return -ENOMEM;
854 
855 	buf[datalen] = 0;
856 	memcpy(buf, prep->data, datalen);
857 	ret = datablob_parse(buf, &format, &new_master_desc, NULL, NULL);
858 	if (ret < 0)
859 		goto out;
860 
861 	ret = valid_master_desc(new_master_desc, epayload->master_desc);
862 	if (ret < 0)
863 		goto out;
864 
865 	new_epayload = encrypted_key_alloc(key, epayload->format,
866 					   new_master_desc, epayload->datalen);
867 	if (IS_ERR(new_epayload)) {
868 		ret = PTR_ERR(new_epayload);
869 		goto out;
870 	}
871 
872 	__ekey_init(new_epayload, epayload->format, new_master_desc,
873 		    epayload->datalen);
874 
875 	memcpy(new_epayload->iv, epayload->iv, ivsize);
876 	memcpy(new_epayload->payload_data, epayload->payload_data,
877 	       epayload->payload_datalen);
878 
879 	rcu_assign_keypointer(key, new_epayload);
880 	call_rcu(&epayload->rcu, encrypted_rcu_free);
881 out:
882 	kfree(buf);
883 	return ret;
884 }
885 
886 /*
887  * encrypted_read - format and copy the encrypted data to userspace
888  *
889  * The resulting datablob format is:
890  * <master-key name> <decrypted data length> <encrypted iv> <encrypted data>
891  *
892  * On success, return to userspace the encrypted key datablob size.
893  */
894 static long encrypted_read(const struct key *key, char __user *buffer,
895 			   size_t buflen)
896 {
897 	struct encrypted_key_payload *epayload;
898 	struct key *mkey;
899 	u8 *master_key;
900 	size_t master_keylen;
901 	char derived_key[HASH_SIZE];
902 	char *ascii_buf;
903 	size_t asciiblob_len;
904 	int ret;
905 
906 	epayload = rcu_dereference_key(key);
907 
908 	/* returns the hex encoded iv, encrypted-data, and hmac as ascii */
909 	asciiblob_len = epayload->datablob_len + ivsize + 1
910 	    + roundup(epayload->decrypted_datalen, blksize)
911 	    + (HASH_SIZE * 2);
912 
913 	if (!buffer || buflen < asciiblob_len)
914 		return asciiblob_len;
915 
916 	mkey = request_master_key(epayload, &master_key, &master_keylen);
917 	if (IS_ERR(mkey))
918 		return PTR_ERR(mkey);
919 
920 	ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
921 	if (ret < 0)
922 		goto out;
923 
924 	ret = derived_key_encrypt(epayload, derived_key, sizeof derived_key);
925 	if (ret < 0)
926 		goto out;
927 
928 	ret = datablob_hmac_append(epayload, master_key, master_keylen);
929 	if (ret < 0)
930 		goto out;
931 
932 	ascii_buf = datablob_format(epayload, asciiblob_len);
933 	if (!ascii_buf) {
934 		ret = -ENOMEM;
935 		goto out;
936 	}
937 
938 	up_read(&mkey->sem);
939 	key_put(mkey);
940 
941 	if (copy_to_user(buffer, ascii_buf, asciiblob_len) != 0)
942 		ret = -EFAULT;
943 	kfree(ascii_buf);
944 
945 	return asciiblob_len;
946 out:
947 	up_read(&mkey->sem);
948 	key_put(mkey);
949 	return ret;
950 }
951 
952 /*
953  * encrypted_destroy - before freeing the key, clear the decrypted data
954  *
955  * Before freeing the key, clear the memory containing the decrypted
956  * key data.
957  */
958 static void encrypted_destroy(struct key *key)
959 {
960 	struct encrypted_key_payload *epayload = key->payload.data;
961 
962 	if (!epayload)
963 		return;
964 
965 	memset(epayload->decrypted_data, 0, epayload->decrypted_datalen);
966 	kfree(key->payload.data);
967 }
968 
969 struct key_type key_type_encrypted = {
970 	.name = "encrypted",
971 	.instantiate = encrypted_instantiate,
972 	.update = encrypted_update,
973 	.destroy = encrypted_destroy,
974 	.describe = user_describe,
975 	.read = encrypted_read,
976 };
977 EXPORT_SYMBOL_GPL(key_type_encrypted);
978 
979 static void encrypted_shash_release(void)
980 {
981 	if (hashalg)
982 		crypto_free_shash(hashalg);
983 	if (hmacalg)
984 		crypto_free_shash(hmacalg);
985 }
986 
987 static int __init encrypted_shash_alloc(void)
988 {
989 	int ret;
990 
991 	hmacalg = crypto_alloc_shash(hmac_alg, 0, CRYPTO_ALG_ASYNC);
992 	if (IS_ERR(hmacalg)) {
993 		pr_info("encrypted_key: could not allocate crypto %s\n",
994 			hmac_alg);
995 		return PTR_ERR(hmacalg);
996 	}
997 
998 	hashalg = crypto_alloc_shash(hash_alg, 0, CRYPTO_ALG_ASYNC);
999 	if (IS_ERR(hashalg)) {
1000 		pr_info("encrypted_key: could not allocate crypto %s\n",
1001 			hash_alg);
1002 		ret = PTR_ERR(hashalg);
1003 		goto hashalg_fail;
1004 	}
1005 
1006 	return 0;
1007 
1008 hashalg_fail:
1009 	crypto_free_shash(hmacalg);
1010 	return ret;
1011 }
1012 
1013 static int __init init_encrypted(void)
1014 {
1015 	int ret;
1016 
1017 	ret = encrypted_shash_alloc();
1018 	if (ret < 0)
1019 		return ret;
1020 	ret = aes_get_sizes();
1021 	if (ret < 0)
1022 		goto out;
1023 	ret = register_key_type(&key_type_encrypted);
1024 	if (ret < 0)
1025 		goto out;
1026 	return 0;
1027 out:
1028 	encrypted_shash_release();
1029 	return ret;
1030 
1031 }
1032 
1033 static void __exit cleanup_encrypted(void)
1034 {
1035 	encrypted_shash_release();
1036 	unregister_key_type(&key_type_encrypted);
1037 }
1038 
1039 late_initcall(init_encrypted);
1040 module_exit(cleanup_encrypted);
1041 
1042 MODULE_LICENSE("GPL");
1043