1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2010 IBM Corporation
4  * Copyright (C) 2010 Politecnico di Torino, Italy
5  *                    TORSEC group -- http://security.polito.it
6  *
7  * Authors:
8  * Mimi Zohar <zohar@us.ibm.com>
9  * Roberto Sassu <roberto.sassu@polito.it>
10  *
11  * See Documentation/security/keys/trusted-encrypted.rst
12  */
13 
14 #include <linux/uaccess.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/parser.h>
19 #include <linux/string.h>
20 #include <linux/err.h>
21 #include <keys/user-type.h>
22 #include <keys/trusted-type.h>
23 #include <keys/encrypted-type.h>
24 #include <linux/key-type.h>
25 #include <linux/random.h>
26 #include <linux/rcupdate.h>
27 #include <linux/scatterlist.h>
28 #include <linux/ctype.h>
29 #include <crypto/aes.h>
30 #include <crypto/algapi.h>
31 #include <crypto/hash.h>
32 #include <crypto/sha.h>
33 #include <crypto/skcipher.h>
34 
35 #include "encrypted.h"
36 #include "ecryptfs_format.h"
37 
38 static const char KEY_TRUSTED_PREFIX[] = "trusted:";
39 static const char KEY_USER_PREFIX[] = "user:";
40 static const char hash_alg[] = "sha256";
41 static const char hmac_alg[] = "hmac(sha256)";
42 static const char blkcipher_alg[] = "cbc(aes)";
43 static const char key_format_default[] = "default";
44 static const char key_format_ecryptfs[] = "ecryptfs";
45 static const char key_format_enc32[] = "enc32";
46 static unsigned int ivsize;
47 static int blksize;
48 
49 #define KEY_TRUSTED_PREFIX_LEN (sizeof (KEY_TRUSTED_PREFIX) - 1)
50 #define KEY_USER_PREFIX_LEN (sizeof (KEY_USER_PREFIX) - 1)
51 #define KEY_ECRYPTFS_DESC_LEN 16
52 #define HASH_SIZE SHA256_DIGEST_SIZE
53 #define MAX_DATA_SIZE 4096
54 #define MIN_DATA_SIZE  20
55 #define KEY_ENC32_PAYLOAD_LEN 32
56 
57 static struct crypto_shash *hash_tfm;
58 
59 enum {
60 	Opt_new, Opt_load, Opt_update, Opt_err
61 };
62 
63 enum {
64 	Opt_default, Opt_ecryptfs, Opt_enc32, Opt_error
65 };
66 
67 static const match_table_t key_format_tokens = {
68 	{Opt_default, "default"},
69 	{Opt_ecryptfs, "ecryptfs"},
70 	{Opt_enc32, "enc32"},
71 	{Opt_error, NULL}
72 };
73 
74 static const match_table_t key_tokens = {
75 	{Opt_new, "new"},
76 	{Opt_load, "load"},
77 	{Opt_update, "update"},
78 	{Opt_err, NULL}
79 };
80 
81 static int aes_get_sizes(void)
82 {
83 	struct crypto_skcipher *tfm;
84 
85 	tfm = crypto_alloc_skcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
86 	if (IS_ERR(tfm)) {
87 		pr_err("encrypted_key: failed to alloc_cipher (%ld)\n",
88 		       PTR_ERR(tfm));
89 		return PTR_ERR(tfm);
90 	}
91 	ivsize = crypto_skcipher_ivsize(tfm);
92 	blksize = crypto_skcipher_blocksize(tfm);
93 	crypto_free_skcipher(tfm);
94 	return 0;
95 }
96 
97 /*
98  * valid_ecryptfs_desc - verify the description of a new/loaded encrypted key
99  *
100  * The description of a encrypted key with format 'ecryptfs' must contain
101  * exactly 16 hexadecimal characters.
102  *
103  */
104 static int valid_ecryptfs_desc(const char *ecryptfs_desc)
105 {
106 	int i;
107 
108 	if (strlen(ecryptfs_desc) != KEY_ECRYPTFS_DESC_LEN) {
109 		pr_err("encrypted_key: key description must be %d hexadecimal "
110 		       "characters long\n", KEY_ECRYPTFS_DESC_LEN);
111 		return -EINVAL;
112 	}
113 
114 	for (i = 0; i < KEY_ECRYPTFS_DESC_LEN; i++) {
115 		if (!isxdigit(ecryptfs_desc[i])) {
116 			pr_err("encrypted_key: key description must contain "
117 			       "only hexadecimal characters\n");
118 			return -EINVAL;
119 		}
120 	}
121 
122 	return 0;
123 }
124 
125 /*
126  * valid_master_desc - verify the 'key-type:desc' of a new/updated master-key
127  *
128  * key-type:= "trusted:" | "user:"
129  * desc:= master-key description
130  *
131  * Verify that 'key-type' is valid and that 'desc' exists. On key update,
132  * only the master key description is permitted to change, not the key-type.
133  * The key-type remains constant.
134  *
135  * On success returns 0, otherwise -EINVAL.
136  */
137 static int valid_master_desc(const char *new_desc, const char *orig_desc)
138 {
139 	int prefix_len;
140 
141 	if (!strncmp(new_desc, KEY_TRUSTED_PREFIX, KEY_TRUSTED_PREFIX_LEN))
142 		prefix_len = KEY_TRUSTED_PREFIX_LEN;
143 	else if (!strncmp(new_desc, KEY_USER_PREFIX, KEY_USER_PREFIX_LEN))
144 		prefix_len = KEY_USER_PREFIX_LEN;
145 	else
146 		return -EINVAL;
147 
148 	if (!new_desc[prefix_len])
149 		return -EINVAL;
150 
151 	if (orig_desc && strncmp(new_desc, orig_desc, prefix_len))
152 		return -EINVAL;
153 
154 	return 0;
155 }
156 
157 /*
158  * datablob_parse - parse the keyctl data
159  *
160  * datablob format:
161  * new [<format>] <master-key name> <decrypted data length>
162  * load [<format>] <master-key name> <decrypted data length>
163  *     <encrypted iv + data>
164  * update <new-master-key name>
165  *
166  * Tokenizes a copy of the keyctl data, returning a pointer to each token,
167  * which is null terminated.
168  *
169  * On success returns 0, otherwise -EINVAL.
170  */
171 static int datablob_parse(char *datablob, const char **format,
172 			  char **master_desc, char **decrypted_datalen,
173 			  char **hex_encoded_iv)
174 {
175 	substring_t args[MAX_OPT_ARGS];
176 	int ret = -EINVAL;
177 	int key_cmd;
178 	int key_format;
179 	char *p, *keyword;
180 
181 	keyword = strsep(&datablob, " \t");
182 	if (!keyword) {
183 		pr_info("encrypted_key: insufficient parameters specified\n");
184 		return ret;
185 	}
186 	key_cmd = match_token(keyword, key_tokens, args);
187 
188 	/* Get optional format: default | ecryptfs */
189 	p = strsep(&datablob, " \t");
190 	if (!p) {
191 		pr_err("encrypted_key: insufficient parameters specified\n");
192 		return ret;
193 	}
194 
195 	key_format = match_token(p, key_format_tokens, args);
196 	switch (key_format) {
197 	case Opt_ecryptfs:
198 	case Opt_enc32:
199 	case Opt_default:
200 		*format = p;
201 		*master_desc = strsep(&datablob, " \t");
202 		break;
203 	case Opt_error:
204 		*master_desc = p;
205 		break;
206 	}
207 
208 	if (!*master_desc) {
209 		pr_info("encrypted_key: master key parameter is missing\n");
210 		goto out;
211 	}
212 
213 	if (valid_master_desc(*master_desc, NULL) < 0) {
214 		pr_info("encrypted_key: master key parameter \'%s\' "
215 			"is invalid\n", *master_desc);
216 		goto out;
217 	}
218 
219 	if (decrypted_datalen) {
220 		*decrypted_datalen = strsep(&datablob, " \t");
221 		if (!*decrypted_datalen) {
222 			pr_info("encrypted_key: keylen parameter is missing\n");
223 			goto out;
224 		}
225 	}
226 
227 	switch (key_cmd) {
228 	case Opt_new:
229 		if (!decrypted_datalen) {
230 			pr_info("encrypted_key: keyword \'%s\' not allowed "
231 				"when called from .update method\n", keyword);
232 			break;
233 		}
234 		ret = 0;
235 		break;
236 	case Opt_load:
237 		if (!decrypted_datalen) {
238 			pr_info("encrypted_key: keyword \'%s\' not allowed "
239 				"when called from .update method\n", keyword);
240 			break;
241 		}
242 		*hex_encoded_iv = strsep(&datablob, " \t");
243 		if (!*hex_encoded_iv) {
244 			pr_info("encrypted_key: hex blob is missing\n");
245 			break;
246 		}
247 		ret = 0;
248 		break;
249 	case Opt_update:
250 		if (decrypted_datalen) {
251 			pr_info("encrypted_key: keyword \'%s\' not allowed "
252 				"when called from .instantiate method\n",
253 				keyword);
254 			break;
255 		}
256 		ret = 0;
257 		break;
258 	case Opt_err:
259 		pr_info("encrypted_key: keyword \'%s\' not recognized\n",
260 			keyword);
261 		break;
262 	}
263 out:
264 	return ret;
265 }
266 
267 /*
268  * datablob_format - format as an ascii string, before copying to userspace
269  */
270 static char *datablob_format(struct encrypted_key_payload *epayload,
271 			     size_t asciiblob_len)
272 {
273 	char *ascii_buf, *bufp;
274 	u8 *iv = epayload->iv;
275 	int len;
276 	int i;
277 
278 	ascii_buf = kmalloc(asciiblob_len + 1, GFP_KERNEL);
279 	if (!ascii_buf)
280 		goto out;
281 
282 	ascii_buf[asciiblob_len] = '\0';
283 
284 	/* copy datablob master_desc and datalen strings */
285 	len = sprintf(ascii_buf, "%s %s %s ", epayload->format,
286 		      epayload->master_desc, epayload->datalen);
287 
288 	/* convert the hex encoded iv, encrypted-data and HMAC to ascii */
289 	bufp = &ascii_buf[len];
290 	for (i = 0; i < (asciiblob_len - len) / 2; i++)
291 		bufp = hex_byte_pack(bufp, iv[i]);
292 out:
293 	return ascii_buf;
294 }
295 
296 /*
297  * request_user_key - request the user key
298  *
299  * Use a user provided key to encrypt/decrypt an encrypted-key.
300  */
301 static struct key *request_user_key(const char *master_desc, const u8 **master_key,
302 				    size_t *master_keylen)
303 {
304 	const struct user_key_payload *upayload;
305 	struct key *ukey;
306 
307 	ukey = request_key(&key_type_user, master_desc, NULL);
308 	if (IS_ERR(ukey))
309 		goto error;
310 
311 	down_read(&ukey->sem);
312 	upayload = user_key_payload_locked(ukey);
313 	if (!upayload) {
314 		/* key was revoked before we acquired its semaphore */
315 		up_read(&ukey->sem);
316 		key_put(ukey);
317 		ukey = ERR_PTR(-EKEYREVOKED);
318 		goto error;
319 	}
320 	*master_key = upayload->data;
321 	*master_keylen = upayload->datalen;
322 error:
323 	return ukey;
324 }
325 
326 static int calc_hash(struct crypto_shash *tfm, u8 *digest,
327 		     const u8 *buf, unsigned int buflen)
328 {
329 	SHASH_DESC_ON_STACK(desc, tfm);
330 	int err;
331 
332 	desc->tfm = tfm;
333 
334 	err = crypto_shash_digest(desc, buf, buflen, digest);
335 	shash_desc_zero(desc);
336 	return err;
337 }
338 
339 static int calc_hmac(u8 *digest, const u8 *key, unsigned int keylen,
340 		     const u8 *buf, unsigned int buflen)
341 {
342 	struct crypto_shash *tfm;
343 	int err;
344 
345 	tfm = crypto_alloc_shash(hmac_alg, 0, 0);
346 	if (IS_ERR(tfm)) {
347 		pr_err("encrypted_key: can't alloc %s transform: %ld\n",
348 		       hmac_alg, PTR_ERR(tfm));
349 		return PTR_ERR(tfm);
350 	}
351 
352 	err = crypto_shash_setkey(tfm, key, keylen);
353 	if (!err)
354 		err = calc_hash(tfm, digest, buf, buflen);
355 	crypto_free_shash(tfm);
356 	return err;
357 }
358 
359 enum derived_key_type { ENC_KEY, AUTH_KEY };
360 
361 /* Derive authentication/encryption key from trusted key */
362 static int get_derived_key(u8 *derived_key, enum derived_key_type key_type,
363 			   const u8 *master_key, size_t master_keylen)
364 {
365 	u8 *derived_buf;
366 	unsigned int derived_buf_len;
367 	int ret;
368 
369 	derived_buf_len = strlen("AUTH_KEY") + 1 + master_keylen;
370 	if (derived_buf_len < HASH_SIZE)
371 		derived_buf_len = HASH_SIZE;
372 
373 	derived_buf = kzalloc(derived_buf_len, GFP_KERNEL);
374 	if (!derived_buf)
375 		return -ENOMEM;
376 
377 	if (key_type)
378 		strcpy(derived_buf, "AUTH_KEY");
379 	else
380 		strcpy(derived_buf, "ENC_KEY");
381 
382 	memcpy(derived_buf + strlen(derived_buf) + 1, master_key,
383 	       master_keylen);
384 	ret = calc_hash(hash_tfm, derived_key, derived_buf, derived_buf_len);
385 	kzfree(derived_buf);
386 	return ret;
387 }
388 
389 static struct skcipher_request *init_skcipher_req(const u8 *key,
390 						  unsigned int key_len)
391 {
392 	struct skcipher_request *req;
393 	struct crypto_skcipher *tfm;
394 	int ret;
395 
396 	tfm = crypto_alloc_skcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
397 	if (IS_ERR(tfm)) {
398 		pr_err("encrypted_key: failed to load %s transform (%ld)\n",
399 		       blkcipher_alg, PTR_ERR(tfm));
400 		return ERR_CAST(tfm);
401 	}
402 
403 	ret = crypto_skcipher_setkey(tfm, key, key_len);
404 	if (ret < 0) {
405 		pr_err("encrypted_key: failed to setkey (%d)\n", ret);
406 		crypto_free_skcipher(tfm);
407 		return ERR_PTR(ret);
408 	}
409 
410 	req = skcipher_request_alloc(tfm, GFP_KERNEL);
411 	if (!req) {
412 		pr_err("encrypted_key: failed to allocate request for %s\n",
413 		       blkcipher_alg);
414 		crypto_free_skcipher(tfm);
415 		return ERR_PTR(-ENOMEM);
416 	}
417 
418 	skcipher_request_set_callback(req, 0, NULL, NULL);
419 	return req;
420 }
421 
422 static struct key *request_master_key(struct encrypted_key_payload *epayload,
423 				      const u8 **master_key, size_t *master_keylen)
424 {
425 	struct key *mkey = ERR_PTR(-EINVAL);
426 
427 	if (!strncmp(epayload->master_desc, KEY_TRUSTED_PREFIX,
428 		     KEY_TRUSTED_PREFIX_LEN)) {
429 		mkey = request_trusted_key(epayload->master_desc +
430 					   KEY_TRUSTED_PREFIX_LEN,
431 					   master_key, master_keylen);
432 	} else if (!strncmp(epayload->master_desc, KEY_USER_PREFIX,
433 			    KEY_USER_PREFIX_LEN)) {
434 		mkey = request_user_key(epayload->master_desc +
435 					KEY_USER_PREFIX_LEN,
436 					master_key, master_keylen);
437 	} else
438 		goto out;
439 
440 	if (IS_ERR(mkey)) {
441 		int ret = PTR_ERR(mkey);
442 
443 		if (ret == -ENOTSUPP)
444 			pr_info("encrypted_key: key %s not supported",
445 				epayload->master_desc);
446 		else
447 			pr_info("encrypted_key: key %s not found",
448 				epayload->master_desc);
449 		goto out;
450 	}
451 
452 	dump_master_key(*master_key, *master_keylen);
453 out:
454 	return mkey;
455 }
456 
457 /* Before returning data to userspace, encrypt decrypted data. */
458 static int derived_key_encrypt(struct encrypted_key_payload *epayload,
459 			       const u8 *derived_key,
460 			       unsigned int derived_keylen)
461 {
462 	struct scatterlist sg_in[2];
463 	struct scatterlist sg_out[1];
464 	struct crypto_skcipher *tfm;
465 	struct skcipher_request *req;
466 	unsigned int encrypted_datalen;
467 	u8 iv[AES_BLOCK_SIZE];
468 	int ret;
469 
470 	encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
471 
472 	req = init_skcipher_req(derived_key, derived_keylen);
473 	ret = PTR_ERR(req);
474 	if (IS_ERR(req))
475 		goto out;
476 	dump_decrypted_data(epayload);
477 
478 	sg_init_table(sg_in, 2);
479 	sg_set_buf(&sg_in[0], epayload->decrypted_data,
480 		   epayload->decrypted_datalen);
481 	sg_set_page(&sg_in[1], ZERO_PAGE(0), AES_BLOCK_SIZE, 0);
482 
483 	sg_init_table(sg_out, 1);
484 	sg_set_buf(sg_out, epayload->encrypted_data, encrypted_datalen);
485 
486 	memcpy(iv, epayload->iv, sizeof(iv));
487 	skcipher_request_set_crypt(req, sg_in, sg_out, encrypted_datalen, iv);
488 	ret = crypto_skcipher_encrypt(req);
489 	tfm = crypto_skcipher_reqtfm(req);
490 	skcipher_request_free(req);
491 	crypto_free_skcipher(tfm);
492 	if (ret < 0)
493 		pr_err("encrypted_key: failed to encrypt (%d)\n", ret);
494 	else
495 		dump_encrypted_data(epayload, encrypted_datalen);
496 out:
497 	return ret;
498 }
499 
500 static int datablob_hmac_append(struct encrypted_key_payload *epayload,
501 				const u8 *master_key, size_t master_keylen)
502 {
503 	u8 derived_key[HASH_SIZE];
504 	u8 *digest;
505 	int ret;
506 
507 	ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
508 	if (ret < 0)
509 		goto out;
510 
511 	digest = epayload->format + epayload->datablob_len;
512 	ret = calc_hmac(digest, derived_key, sizeof derived_key,
513 			epayload->format, epayload->datablob_len);
514 	if (!ret)
515 		dump_hmac(NULL, digest, HASH_SIZE);
516 out:
517 	memzero_explicit(derived_key, sizeof(derived_key));
518 	return ret;
519 }
520 
521 /* verify HMAC before decrypting encrypted key */
522 static int datablob_hmac_verify(struct encrypted_key_payload *epayload,
523 				const u8 *format, const u8 *master_key,
524 				size_t master_keylen)
525 {
526 	u8 derived_key[HASH_SIZE];
527 	u8 digest[HASH_SIZE];
528 	int ret;
529 	char *p;
530 	unsigned short len;
531 
532 	ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
533 	if (ret < 0)
534 		goto out;
535 
536 	len = epayload->datablob_len;
537 	if (!format) {
538 		p = epayload->master_desc;
539 		len -= strlen(epayload->format) + 1;
540 	} else
541 		p = epayload->format;
542 
543 	ret = calc_hmac(digest, derived_key, sizeof derived_key, p, len);
544 	if (ret < 0)
545 		goto out;
546 	ret = crypto_memneq(digest, epayload->format + epayload->datablob_len,
547 			    sizeof(digest));
548 	if (ret) {
549 		ret = -EINVAL;
550 		dump_hmac("datablob",
551 			  epayload->format + epayload->datablob_len,
552 			  HASH_SIZE);
553 		dump_hmac("calc", digest, HASH_SIZE);
554 	}
555 out:
556 	memzero_explicit(derived_key, sizeof(derived_key));
557 	return ret;
558 }
559 
560 static int derived_key_decrypt(struct encrypted_key_payload *epayload,
561 			       const u8 *derived_key,
562 			       unsigned int derived_keylen)
563 {
564 	struct scatterlist sg_in[1];
565 	struct scatterlist sg_out[2];
566 	struct crypto_skcipher *tfm;
567 	struct skcipher_request *req;
568 	unsigned int encrypted_datalen;
569 	u8 iv[AES_BLOCK_SIZE];
570 	u8 *pad;
571 	int ret;
572 
573 	/* Throwaway buffer to hold the unused zero padding at the end */
574 	pad = kmalloc(AES_BLOCK_SIZE, GFP_KERNEL);
575 	if (!pad)
576 		return -ENOMEM;
577 
578 	encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
579 	req = init_skcipher_req(derived_key, derived_keylen);
580 	ret = PTR_ERR(req);
581 	if (IS_ERR(req))
582 		goto out;
583 	dump_encrypted_data(epayload, encrypted_datalen);
584 
585 	sg_init_table(sg_in, 1);
586 	sg_init_table(sg_out, 2);
587 	sg_set_buf(sg_in, epayload->encrypted_data, encrypted_datalen);
588 	sg_set_buf(&sg_out[0], epayload->decrypted_data,
589 		   epayload->decrypted_datalen);
590 	sg_set_buf(&sg_out[1], pad, AES_BLOCK_SIZE);
591 
592 	memcpy(iv, epayload->iv, sizeof(iv));
593 	skcipher_request_set_crypt(req, sg_in, sg_out, encrypted_datalen, iv);
594 	ret = crypto_skcipher_decrypt(req);
595 	tfm = crypto_skcipher_reqtfm(req);
596 	skcipher_request_free(req);
597 	crypto_free_skcipher(tfm);
598 	if (ret < 0)
599 		goto out;
600 	dump_decrypted_data(epayload);
601 out:
602 	kfree(pad);
603 	return ret;
604 }
605 
606 /* Allocate memory for decrypted key and datablob. */
607 static struct encrypted_key_payload *encrypted_key_alloc(struct key *key,
608 							 const char *format,
609 							 const char *master_desc,
610 							 const char *datalen)
611 {
612 	struct encrypted_key_payload *epayload = NULL;
613 	unsigned short datablob_len;
614 	unsigned short decrypted_datalen;
615 	unsigned short payload_datalen;
616 	unsigned int encrypted_datalen;
617 	unsigned int format_len;
618 	long dlen;
619 	int ret;
620 
621 	ret = kstrtol(datalen, 10, &dlen);
622 	if (ret < 0 || dlen < MIN_DATA_SIZE || dlen > MAX_DATA_SIZE)
623 		return ERR_PTR(-EINVAL);
624 
625 	format_len = (!format) ? strlen(key_format_default) : strlen(format);
626 	decrypted_datalen = dlen;
627 	payload_datalen = decrypted_datalen;
628 	if (format) {
629 		if (!strcmp(format, key_format_ecryptfs)) {
630 			if (dlen != ECRYPTFS_MAX_KEY_BYTES) {
631 				pr_err("encrypted_key: keylen for the ecryptfs format must be equal to %d bytes\n",
632 					ECRYPTFS_MAX_KEY_BYTES);
633 				return ERR_PTR(-EINVAL);
634 			}
635 			decrypted_datalen = ECRYPTFS_MAX_KEY_BYTES;
636 			payload_datalen = sizeof(struct ecryptfs_auth_tok);
637 		} else if (!strcmp(format, key_format_enc32)) {
638 			if (decrypted_datalen != KEY_ENC32_PAYLOAD_LEN) {
639 				pr_err("encrypted_key: enc32 key payload incorrect length: %d\n",
640 						decrypted_datalen);
641 				return ERR_PTR(-EINVAL);
642 			}
643 		}
644 	}
645 
646 	encrypted_datalen = roundup(decrypted_datalen, blksize);
647 
648 	datablob_len = format_len + 1 + strlen(master_desc) + 1
649 	    + strlen(datalen) + 1 + ivsize + 1 + encrypted_datalen;
650 
651 	ret = key_payload_reserve(key, payload_datalen + datablob_len
652 				  + HASH_SIZE + 1);
653 	if (ret < 0)
654 		return ERR_PTR(ret);
655 
656 	epayload = kzalloc(sizeof(*epayload) + payload_datalen +
657 			   datablob_len + HASH_SIZE + 1, GFP_KERNEL);
658 	if (!epayload)
659 		return ERR_PTR(-ENOMEM);
660 
661 	epayload->payload_datalen = payload_datalen;
662 	epayload->decrypted_datalen = decrypted_datalen;
663 	epayload->datablob_len = datablob_len;
664 	return epayload;
665 }
666 
667 static int encrypted_key_decrypt(struct encrypted_key_payload *epayload,
668 				 const char *format, const char *hex_encoded_iv)
669 {
670 	struct key *mkey;
671 	u8 derived_key[HASH_SIZE];
672 	const u8 *master_key;
673 	u8 *hmac;
674 	const char *hex_encoded_data;
675 	unsigned int encrypted_datalen;
676 	size_t master_keylen;
677 	size_t asciilen;
678 	int ret;
679 
680 	encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
681 	asciilen = (ivsize + 1 + encrypted_datalen + HASH_SIZE) * 2;
682 	if (strlen(hex_encoded_iv) != asciilen)
683 		return -EINVAL;
684 
685 	hex_encoded_data = hex_encoded_iv + (2 * ivsize) + 2;
686 	ret = hex2bin(epayload->iv, hex_encoded_iv, ivsize);
687 	if (ret < 0)
688 		return -EINVAL;
689 	ret = hex2bin(epayload->encrypted_data, hex_encoded_data,
690 		      encrypted_datalen);
691 	if (ret < 0)
692 		return -EINVAL;
693 
694 	hmac = epayload->format + epayload->datablob_len;
695 	ret = hex2bin(hmac, hex_encoded_data + (encrypted_datalen * 2),
696 		      HASH_SIZE);
697 	if (ret < 0)
698 		return -EINVAL;
699 
700 	mkey = request_master_key(epayload, &master_key, &master_keylen);
701 	if (IS_ERR(mkey))
702 		return PTR_ERR(mkey);
703 
704 	ret = datablob_hmac_verify(epayload, format, master_key, master_keylen);
705 	if (ret < 0) {
706 		pr_err("encrypted_key: bad hmac (%d)\n", ret);
707 		goto out;
708 	}
709 
710 	ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
711 	if (ret < 0)
712 		goto out;
713 
714 	ret = derived_key_decrypt(epayload, derived_key, sizeof derived_key);
715 	if (ret < 0)
716 		pr_err("encrypted_key: failed to decrypt key (%d)\n", ret);
717 out:
718 	up_read(&mkey->sem);
719 	key_put(mkey);
720 	memzero_explicit(derived_key, sizeof(derived_key));
721 	return ret;
722 }
723 
724 static void __ekey_init(struct encrypted_key_payload *epayload,
725 			const char *format, const char *master_desc,
726 			const char *datalen)
727 {
728 	unsigned int format_len;
729 
730 	format_len = (!format) ? strlen(key_format_default) : strlen(format);
731 	epayload->format = epayload->payload_data + epayload->payload_datalen;
732 	epayload->master_desc = epayload->format + format_len + 1;
733 	epayload->datalen = epayload->master_desc + strlen(master_desc) + 1;
734 	epayload->iv = epayload->datalen + strlen(datalen) + 1;
735 	epayload->encrypted_data = epayload->iv + ivsize + 1;
736 	epayload->decrypted_data = epayload->payload_data;
737 
738 	if (!format)
739 		memcpy(epayload->format, key_format_default, format_len);
740 	else {
741 		if (!strcmp(format, key_format_ecryptfs))
742 			epayload->decrypted_data =
743 				ecryptfs_get_auth_tok_key((struct ecryptfs_auth_tok *)epayload->payload_data);
744 
745 		memcpy(epayload->format, format, format_len);
746 	}
747 
748 	memcpy(epayload->master_desc, master_desc, strlen(master_desc));
749 	memcpy(epayload->datalen, datalen, strlen(datalen));
750 }
751 
752 /*
753  * encrypted_init - initialize an encrypted key
754  *
755  * For a new key, use a random number for both the iv and data
756  * itself.  For an old key, decrypt the hex encoded data.
757  */
758 static int encrypted_init(struct encrypted_key_payload *epayload,
759 			  const char *key_desc, const char *format,
760 			  const char *master_desc, const char *datalen,
761 			  const char *hex_encoded_iv)
762 {
763 	int ret = 0;
764 
765 	if (format && !strcmp(format, key_format_ecryptfs)) {
766 		ret = valid_ecryptfs_desc(key_desc);
767 		if (ret < 0)
768 			return ret;
769 
770 		ecryptfs_fill_auth_tok((struct ecryptfs_auth_tok *)epayload->payload_data,
771 				       key_desc);
772 	}
773 
774 	__ekey_init(epayload, format, master_desc, datalen);
775 	if (!hex_encoded_iv) {
776 		get_random_bytes(epayload->iv, ivsize);
777 
778 		get_random_bytes(epayload->decrypted_data,
779 				 epayload->decrypted_datalen);
780 	} else
781 		ret = encrypted_key_decrypt(epayload, format, hex_encoded_iv);
782 	return ret;
783 }
784 
785 /*
786  * encrypted_instantiate - instantiate an encrypted key
787  *
788  * Decrypt an existing encrypted datablob or create a new encrypted key
789  * based on a kernel random number.
790  *
791  * On success, return 0. Otherwise return errno.
792  */
793 static int encrypted_instantiate(struct key *key,
794 				 struct key_preparsed_payload *prep)
795 {
796 	struct encrypted_key_payload *epayload = NULL;
797 	char *datablob = NULL;
798 	const char *format = NULL;
799 	char *master_desc = NULL;
800 	char *decrypted_datalen = NULL;
801 	char *hex_encoded_iv = NULL;
802 	size_t datalen = prep->datalen;
803 	int ret;
804 
805 	if (datalen <= 0 || datalen > 32767 || !prep->data)
806 		return -EINVAL;
807 
808 	datablob = kmalloc(datalen + 1, GFP_KERNEL);
809 	if (!datablob)
810 		return -ENOMEM;
811 	datablob[datalen] = 0;
812 	memcpy(datablob, prep->data, datalen);
813 	ret = datablob_parse(datablob, &format, &master_desc,
814 			     &decrypted_datalen, &hex_encoded_iv);
815 	if (ret < 0)
816 		goto out;
817 
818 	epayload = encrypted_key_alloc(key, format, master_desc,
819 				       decrypted_datalen);
820 	if (IS_ERR(epayload)) {
821 		ret = PTR_ERR(epayload);
822 		goto out;
823 	}
824 	ret = encrypted_init(epayload, key->description, format, master_desc,
825 			     decrypted_datalen, hex_encoded_iv);
826 	if (ret < 0) {
827 		kzfree(epayload);
828 		goto out;
829 	}
830 
831 	rcu_assign_keypointer(key, epayload);
832 out:
833 	kzfree(datablob);
834 	return ret;
835 }
836 
837 static void encrypted_rcu_free(struct rcu_head *rcu)
838 {
839 	struct encrypted_key_payload *epayload;
840 
841 	epayload = container_of(rcu, struct encrypted_key_payload, rcu);
842 	kzfree(epayload);
843 }
844 
845 /*
846  * encrypted_update - update the master key description
847  *
848  * Change the master key description for an existing encrypted key.
849  * The next read will return an encrypted datablob using the new
850  * master key description.
851  *
852  * On success, return 0. Otherwise return errno.
853  */
854 static int encrypted_update(struct key *key, struct key_preparsed_payload *prep)
855 {
856 	struct encrypted_key_payload *epayload = key->payload.data[0];
857 	struct encrypted_key_payload *new_epayload;
858 	char *buf;
859 	char *new_master_desc = NULL;
860 	const char *format = NULL;
861 	size_t datalen = prep->datalen;
862 	int ret = 0;
863 
864 	if (key_is_negative(key))
865 		return -ENOKEY;
866 	if (datalen <= 0 || datalen > 32767 || !prep->data)
867 		return -EINVAL;
868 
869 	buf = kmalloc(datalen + 1, GFP_KERNEL);
870 	if (!buf)
871 		return -ENOMEM;
872 
873 	buf[datalen] = 0;
874 	memcpy(buf, prep->data, datalen);
875 	ret = datablob_parse(buf, &format, &new_master_desc, NULL, NULL);
876 	if (ret < 0)
877 		goto out;
878 
879 	ret = valid_master_desc(new_master_desc, epayload->master_desc);
880 	if (ret < 0)
881 		goto out;
882 
883 	new_epayload = encrypted_key_alloc(key, epayload->format,
884 					   new_master_desc, epayload->datalen);
885 	if (IS_ERR(new_epayload)) {
886 		ret = PTR_ERR(new_epayload);
887 		goto out;
888 	}
889 
890 	__ekey_init(new_epayload, epayload->format, new_master_desc,
891 		    epayload->datalen);
892 
893 	memcpy(new_epayload->iv, epayload->iv, ivsize);
894 	memcpy(new_epayload->payload_data, epayload->payload_data,
895 	       epayload->payload_datalen);
896 
897 	rcu_assign_keypointer(key, new_epayload);
898 	call_rcu(&epayload->rcu, encrypted_rcu_free);
899 out:
900 	kzfree(buf);
901 	return ret;
902 }
903 
904 /*
905  * encrypted_read - format and copy out the encrypted data
906  *
907  * The resulting datablob format is:
908  * <master-key name> <decrypted data length> <encrypted iv> <encrypted data>
909  *
910  * On success, return to userspace the encrypted key datablob size.
911  */
912 static long encrypted_read(const struct key *key, char *buffer,
913 			   size_t buflen)
914 {
915 	struct encrypted_key_payload *epayload;
916 	struct key *mkey;
917 	const u8 *master_key;
918 	size_t master_keylen;
919 	char derived_key[HASH_SIZE];
920 	char *ascii_buf;
921 	size_t asciiblob_len;
922 	int ret;
923 
924 	epayload = dereference_key_locked(key);
925 
926 	/* returns the hex encoded iv, encrypted-data, and hmac as ascii */
927 	asciiblob_len = epayload->datablob_len + ivsize + 1
928 	    + roundup(epayload->decrypted_datalen, blksize)
929 	    + (HASH_SIZE * 2);
930 
931 	if (!buffer || buflen < asciiblob_len)
932 		return asciiblob_len;
933 
934 	mkey = request_master_key(epayload, &master_key, &master_keylen);
935 	if (IS_ERR(mkey))
936 		return PTR_ERR(mkey);
937 
938 	ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
939 	if (ret < 0)
940 		goto out;
941 
942 	ret = derived_key_encrypt(epayload, derived_key, sizeof derived_key);
943 	if (ret < 0)
944 		goto out;
945 
946 	ret = datablob_hmac_append(epayload, master_key, master_keylen);
947 	if (ret < 0)
948 		goto out;
949 
950 	ascii_buf = datablob_format(epayload, asciiblob_len);
951 	if (!ascii_buf) {
952 		ret = -ENOMEM;
953 		goto out;
954 	}
955 
956 	up_read(&mkey->sem);
957 	key_put(mkey);
958 	memzero_explicit(derived_key, sizeof(derived_key));
959 
960 	memcpy(buffer, ascii_buf, asciiblob_len);
961 	kzfree(ascii_buf);
962 
963 	return asciiblob_len;
964 out:
965 	up_read(&mkey->sem);
966 	key_put(mkey);
967 	memzero_explicit(derived_key, sizeof(derived_key));
968 	return ret;
969 }
970 
971 /*
972  * encrypted_destroy - clear and free the key's payload
973  */
974 static void encrypted_destroy(struct key *key)
975 {
976 	kzfree(key->payload.data[0]);
977 }
978 
979 struct key_type key_type_encrypted = {
980 	.name = "encrypted",
981 	.instantiate = encrypted_instantiate,
982 	.update = encrypted_update,
983 	.destroy = encrypted_destroy,
984 	.describe = user_describe,
985 	.read = encrypted_read,
986 };
987 EXPORT_SYMBOL_GPL(key_type_encrypted);
988 
989 static int __init init_encrypted(void)
990 {
991 	int ret;
992 
993 	hash_tfm = crypto_alloc_shash(hash_alg, 0, 0);
994 	if (IS_ERR(hash_tfm)) {
995 		pr_err("encrypted_key: can't allocate %s transform: %ld\n",
996 		       hash_alg, PTR_ERR(hash_tfm));
997 		return PTR_ERR(hash_tfm);
998 	}
999 
1000 	ret = aes_get_sizes();
1001 	if (ret < 0)
1002 		goto out;
1003 	ret = register_key_type(&key_type_encrypted);
1004 	if (ret < 0)
1005 		goto out;
1006 	return 0;
1007 out:
1008 	crypto_free_shash(hash_tfm);
1009 	return ret;
1010 
1011 }
1012 
1013 static void __exit cleanup_encrypted(void)
1014 {
1015 	crypto_free_shash(hash_tfm);
1016 	unregister_key_type(&key_type_encrypted);
1017 }
1018 
1019 late_initcall(init_encrypted);
1020 module_exit(cleanup_encrypted);
1021 
1022 MODULE_LICENSE("GPL");
1023