1 /* Large capacity key type 2 * 3 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. 4 * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public Licence 9 * as published by the Free Software Foundation; either version 10 * 2 of the Licence, or (at your option) any later version. 11 */ 12 13 #define pr_fmt(fmt) "big_key: "fmt 14 #include <linux/init.h> 15 #include <linux/seq_file.h> 16 #include <linux/file.h> 17 #include <linux/shmem_fs.h> 18 #include <linux/err.h> 19 #include <linux/scatterlist.h> 20 #include <linux/random.h> 21 #include <keys/user-type.h> 22 #include <keys/big_key-type.h> 23 #include <crypto/aead.h> 24 25 struct big_key_buf { 26 unsigned int nr_pages; 27 void *virt; 28 struct scatterlist *sg; 29 struct page *pages[]; 30 }; 31 32 /* 33 * Layout of key payload words. 34 */ 35 enum { 36 big_key_data, 37 big_key_path, 38 big_key_path_2nd_part, 39 big_key_len, 40 }; 41 42 /* 43 * Crypto operation with big_key data 44 */ 45 enum big_key_op { 46 BIG_KEY_ENC, 47 BIG_KEY_DEC, 48 }; 49 50 /* 51 * If the data is under this limit, there's no point creating a shm file to 52 * hold it as the permanently resident metadata for the shmem fs will be at 53 * least as large as the data. 54 */ 55 #define BIG_KEY_FILE_THRESHOLD (sizeof(struct inode) + sizeof(struct dentry)) 56 57 /* 58 * Key size for big_key data encryption 59 */ 60 #define ENC_KEY_SIZE 32 61 62 /* 63 * Authentication tag length 64 */ 65 #define ENC_AUTHTAG_SIZE 16 66 67 /* 68 * big_key defined keys take an arbitrary string as the description and an 69 * arbitrary blob of data as the payload 70 */ 71 struct key_type key_type_big_key = { 72 .name = "big_key", 73 .preparse = big_key_preparse, 74 .free_preparse = big_key_free_preparse, 75 .instantiate = generic_key_instantiate, 76 .revoke = big_key_revoke, 77 .destroy = big_key_destroy, 78 .describe = big_key_describe, 79 .read = big_key_read, 80 /* no ->update(); don't add it without changing big_key_crypt() nonce */ 81 }; 82 83 /* 84 * Crypto names for big_key data authenticated encryption 85 */ 86 static const char big_key_alg_name[] = "gcm(aes)"; 87 88 /* 89 * Crypto algorithms for big_key data authenticated encryption 90 */ 91 static struct crypto_aead *big_key_aead; 92 93 /* 94 * Since changing the key affects the entire object, we need a mutex. 95 */ 96 static DEFINE_MUTEX(big_key_aead_lock); 97 98 /* 99 * Encrypt/decrypt big_key data 100 */ 101 static int big_key_crypt(enum big_key_op op, struct big_key_buf *buf, size_t datalen, u8 *key) 102 { 103 int ret; 104 struct aead_request *aead_req; 105 /* We always use a zero nonce. The reason we can get away with this is 106 * because we're using a different randomly generated key for every 107 * different encryption. Notably, too, key_type_big_key doesn't define 108 * an .update function, so there's no chance we'll wind up reusing the 109 * key to encrypt updated data. Simply put: one key, one encryption. 110 */ 111 u8 zero_nonce[crypto_aead_ivsize(big_key_aead)]; 112 113 aead_req = aead_request_alloc(big_key_aead, GFP_KERNEL); 114 if (!aead_req) 115 return -ENOMEM; 116 117 memset(zero_nonce, 0, sizeof(zero_nonce)); 118 aead_request_set_crypt(aead_req, buf->sg, buf->sg, datalen, zero_nonce); 119 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL); 120 aead_request_set_ad(aead_req, 0); 121 122 mutex_lock(&big_key_aead_lock); 123 if (crypto_aead_setkey(big_key_aead, key, ENC_KEY_SIZE)) { 124 ret = -EAGAIN; 125 goto error; 126 } 127 if (op == BIG_KEY_ENC) 128 ret = crypto_aead_encrypt(aead_req); 129 else 130 ret = crypto_aead_decrypt(aead_req); 131 error: 132 mutex_unlock(&big_key_aead_lock); 133 aead_request_free(aead_req); 134 return ret; 135 } 136 137 /* 138 * Free up the buffer. 139 */ 140 static void big_key_free_buffer(struct big_key_buf *buf) 141 { 142 unsigned int i; 143 144 if (buf->virt) { 145 memset(buf->virt, 0, buf->nr_pages * PAGE_SIZE); 146 vunmap(buf->virt); 147 } 148 149 for (i = 0; i < buf->nr_pages; i++) 150 if (buf->pages[i]) 151 __free_page(buf->pages[i]); 152 153 kfree(buf); 154 } 155 156 /* 157 * Allocate a buffer consisting of a set of pages with a virtual mapping 158 * applied over them. 159 */ 160 static void *big_key_alloc_buffer(size_t len) 161 { 162 struct big_key_buf *buf; 163 unsigned int npg = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 164 unsigned int i, l; 165 166 buf = kzalloc(sizeof(struct big_key_buf) + 167 sizeof(struct page) * npg + 168 sizeof(struct scatterlist) * npg, 169 GFP_KERNEL); 170 if (!buf) 171 return NULL; 172 173 buf->nr_pages = npg; 174 buf->sg = (void *)(buf->pages + npg); 175 sg_init_table(buf->sg, npg); 176 177 for (i = 0; i < buf->nr_pages; i++) { 178 buf->pages[i] = alloc_page(GFP_KERNEL); 179 if (!buf->pages[i]) 180 goto nomem; 181 182 l = min_t(size_t, len, PAGE_SIZE); 183 sg_set_page(&buf->sg[i], buf->pages[i], l, 0); 184 len -= l; 185 } 186 187 buf->virt = vmap(buf->pages, buf->nr_pages, VM_MAP, PAGE_KERNEL); 188 if (!buf->virt) 189 goto nomem; 190 191 return buf; 192 193 nomem: 194 big_key_free_buffer(buf); 195 return NULL; 196 } 197 198 /* 199 * Preparse a big key 200 */ 201 int big_key_preparse(struct key_preparsed_payload *prep) 202 { 203 struct big_key_buf *buf; 204 struct path *path = (struct path *)&prep->payload.data[big_key_path]; 205 struct file *file; 206 u8 *enckey; 207 ssize_t written; 208 size_t datalen = prep->datalen, enclen = datalen + ENC_AUTHTAG_SIZE; 209 int ret; 210 211 if (datalen <= 0 || datalen > 1024 * 1024 || !prep->data) 212 return -EINVAL; 213 214 /* Set an arbitrary quota */ 215 prep->quotalen = 16; 216 217 prep->payload.data[big_key_len] = (void *)(unsigned long)datalen; 218 219 if (datalen > BIG_KEY_FILE_THRESHOLD) { 220 /* Create a shmem file to store the data in. This will permit the data 221 * to be swapped out if needed. 222 * 223 * File content is stored encrypted with randomly generated key. 224 */ 225 loff_t pos = 0; 226 227 buf = big_key_alloc_buffer(enclen); 228 if (!buf) 229 return -ENOMEM; 230 memcpy(buf->virt, prep->data, datalen); 231 232 /* generate random key */ 233 enckey = kmalloc(ENC_KEY_SIZE, GFP_KERNEL); 234 if (!enckey) { 235 ret = -ENOMEM; 236 goto error; 237 } 238 ret = get_random_bytes_wait(enckey, ENC_KEY_SIZE); 239 if (unlikely(ret)) 240 goto err_enckey; 241 242 /* encrypt aligned data */ 243 ret = big_key_crypt(BIG_KEY_ENC, buf, datalen, enckey); 244 if (ret) 245 goto err_enckey; 246 247 /* save aligned data to file */ 248 file = shmem_kernel_file_setup("", enclen, 0); 249 if (IS_ERR(file)) { 250 ret = PTR_ERR(file); 251 goto err_enckey; 252 } 253 254 written = kernel_write(file, buf->virt, enclen, &pos); 255 if (written != enclen) { 256 ret = written; 257 if (written >= 0) 258 ret = -ENOMEM; 259 goto err_fput; 260 } 261 262 /* Pin the mount and dentry to the key so that we can open it again 263 * later 264 */ 265 prep->payload.data[big_key_data] = enckey; 266 *path = file->f_path; 267 path_get(path); 268 fput(file); 269 big_key_free_buffer(buf); 270 } else { 271 /* Just store the data in a buffer */ 272 void *data = kmalloc(datalen, GFP_KERNEL); 273 274 if (!data) 275 return -ENOMEM; 276 277 prep->payload.data[big_key_data] = data; 278 memcpy(data, prep->data, prep->datalen); 279 } 280 return 0; 281 282 err_fput: 283 fput(file); 284 err_enckey: 285 kzfree(enckey); 286 error: 287 big_key_free_buffer(buf); 288 return ret; 289 } 290 291 /* 292 * Clear preparsement. 293 */ 294 void big_key_free_preparse(struct key_preparsed_payload *prep) 295 { 296 if (prep->datalen > BIG_KEY_FILE_THRESHOLD) { 297 struct path *path = (struct path *)&prep->payload.data[big_key_path]; 298 299 path_put(path); 300 } 301 kzfree(prep->payload.data[big_key_data]); 302 } 303 304 /* 305 * dispose of the links from a revoked keyring 306 * - called with the key sem write-locked 307 */ 308 void big_key_revoke(struct key *key) 309 { 310 struct path *path = (struct path *)&key->payload.data[big_key_path]; 311 312 /* clear the quota */ 313 key_payload_reserve(key, 0); 314 if (key_is_positive(key) && 315 (size_t)key->payload.data[big_key_len] > BIG_KEY_FILE_THRESHOLD) 316 vfs_truncate(path, 0); 317 } 318 319 /* 320 * dispose of the data dangling from the corpse of a big_key key 321 */ 322 void big_key_destroy(struct key *key) 323 { 324 size_t datalen = (size_t)key->payload.data[big_key_len]; 325 326 if (datalen > BIG_KEY_FILE_THRESHOLD) { 327 struct path *path = (struct path *)&key->payload.data[big_key_path]; 328 329 path_put(path); 330 path->mnt = NULL; 331 path->dentry = NULL; 332 } 333 kzfree(key->payload.data[big_key_data]); 334 key->payload.data[big_key_data] = NULL; 335 } 336 337 /* 338 * describe the big_key key 339 */ 340 void big_key_describe(const struct key *key, struct seq_file *m) 341 { 342 size_t datalen = (size_t)key->payload.data[big_key_len]; 343 344 seq_puts(m, key->description); 345 346 if (key_is_positive(key)) 347 seq_printf(m, ": %zu [%s]", 348 datalen, 349 datalen > BIG_KEY_FILE_THRESHOLD ? "file" : "buff"); 350 } 351 352 /* 353 * read the key data 354 * - the key's semaphore is read-locked 355 */ 356 long big_key_read(const struct key *key, char __user *buffer, size_t buflen) 357 { 358 size_t datalen = (size_t)key->payload.data[big_key_len]; 359 long ret; 360 361 if (!buffer || buflen < datalen) 362 return datalen; 363 364 if (datalen > BIG_KEY_FILE_THRESHOLD) { 365 struct big_key_buf *buf; 366 struct path *path = (struct path *)&key->payload.data[big_key_path]; 367 struct file *file; 368 u8 *enckey = (u8 *)key->payload.data[big_key_data]; 369 size_t enclen = datalen + ENC_AUTHTAG_SIZE; 370 loff_t pos = 0; 371 372 buf = big_key_alloc_buffer(enclen); 373 if (!buf) 374 return -ENOMEM; 375 376 file = dentry_open(path, O_RDONLY, current_cred()); 377 if (IS_ERR(file)) { 378 ret = PTR_ERR(file); 379 goto error; 380 } 381 382 /* read file to kernel and decrypt */ 383 ret = kernel_read(file, buf->virt, enclen, &pos); 384 if (ret >= 0 && ret != enclen) { 385 ret = -EIO; 386 goto err_fput; 387 } 388 389 ret = big_key_crypt(BIG_KEY_DEC, buf, enclen, enckey); 390 if (ret) 391 goto err_fput; 392 393 ret = datalen; 394 395 /* copy decrypted data to user */ 396 if (copy_to_user(buffer, buf->virt, datalen) != 0) 397 ret = -EFAULT; 398 399 err_fput: 400 fput(file); 401 error: 402 big_key_free_buffer(buf); 403 } else { 404 ret = datalen; 405 if (copy_to_user(buffer, key->payload.data[big_key_data], 406 datalen) != 0) 407 ret = -EFAULT; 408 } 409 410 return ret; 411 } 412 413 /* 414 * Register key type 415 */ 416 static int __init big_key_init(void) 417 { 418 int ret; 419 420 /* init block cipher */ 421 big_key_aead = crypto_alloc_aead(big_key_alg_name, 0, CRYPTO_ALG_ASYNC); 422 if (IS_ERR(big_key_aead)) { 423 ret = PTR_ERR(big_key_aead); 424 pr_err("Can't alloc crypto: %d\n", ret); 425 return ret; 426 } 427 ret = crypto_aead_setauthsize(big_key_aead, ENC_AUTHTAG_SIZE); 428 if (ret < 0) { 429 pr_err("Can't set crypto auth tag len: %d\n", ret); 430 goto free_aead; 431 } 432 433 ret = register_key_type(&key_type_big_key); 434 if (ret < 0) { 435 pr_err("Can't register type: %d\n", ret); 436 goto free_aead; 437 } 438 439 return 0; 440 441 free_aead: 442 crypto_free_aead(big_key_aead); 443 return ret; 444 } 445 446 late_initcall(big_key_init); 447