xref: /openbmc/linux/security/keys/big_key.c (revision 812dd0202379a242f764f75aa30abfbef4398ba4)
1 /* Large capacity key type
2  *
3  * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4  * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public Licence
9  * as published by the Free Software Foundation; either version
10  * 2 of the Licence, or (at your option) any later version.
11  */
12 
13 #define pr_fmt(fmt) "big_key: "fmt
14 #include <linux/init.h>
15 #include <linux/seq_file.h>
16 #include <linux/file.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/err.h>
19 #include <linux/scatterlist.h>
20 #include <linux/random.h>
21 #include <keys/user-type.h>
22 #include <keys/big_key-type.h>
23 #include <crypto/aead.h>
24 
25 struct big_key_buf {
26 	unsigned int		nr_pages;
27 	void			*virt;
28 	struct scatterlist	*sg;
29 	struct page		*pages[];
30 };
31 
32 /*
33  * Layout of key payload words.
34  */
35 enum {
36 	big_key_data,
37 	big_key_path,
38 	big_key_path_2nd_part,
39 	big_key_len,
40 };
41 
42 /*
43  * Crypto operation with big_key data
44  */
45 enum big_key_op {
46 	BIG_KEY_ENC,
47 	BIG_KEY_DEC,
48 };
49 
50 /*
51  * If the data is under this limit, there's no point creating a shm file to
52  * hold it as the permanently resident metadata for the shmem fs will be at
53  * least as large as the data.
54  */
55 #define BIG_KEY_FILE_THRESHOLD (sizeof(struct inode) + sizeof(struct dentry))
56 
57 /*
58  * Key size for big_key data encryption
59  */
60 #define ENC_KEY_SIZE 32
61 
62 /*
63  * Authentication tag length
64  */
65 #define ENC_AUTHTAG_SIZE 16
66 
67 /*
68  * big_key defined keys take an arbitrary string as the description and an
69  * arbitrary blob of data as the payload
70  */
71 struct key_type key_type_big_key = {
72 	.name			= "big_key",
73 	.preparse		= big_key_preparse,
74 	.free_preparse		= big_key_free_preparse,
75 	.instantiate		= generic_key_instantiate,
76 	.revoke			= big_key_revoke,
77 	.destroy		= big_key_destroy,
78 	.describe		= big_key_describe,
79 	.read			= big_key_read,
80 	/* no ->update(); don't add it without changing big_key_crypt() nonce */
81 };
82 
83 /*
84  * Crypto names for big_key data authenticated encryption
85  */
86 static const char big_key_alg_name[] = "gcm(aes)";
87 
88 /*
89  * Crypto algorithms for big_key data authenticated encryption
90  */
91 static struct crypto_aead *big_key_aead;
92 
93 /*
94  * Since changing the key affects the entire object, we need a mutex.
95  */
96 static DEFINE_MUTEX(big_key_aead_lock);
97 
98 /*
99  * Encrypt/decrypt big_key data
100  */
101 static int big_key_crypt(enum big_key_op op, struct big_key_buf *buf, size_t datalen, u8 *key)
102 {
103 	int ret;
104 	struct aead_request *aead_req;
105 	/* We always use a zero nonce. The reason we can get away with this is
106 	 * because we're using a different randomly generated key for every
107 	 * different encryption. Notably, too, key_type_big_key doesn't define
108 	 * an .update function, so there's no chance we'll wind up reusing the
109 	 * key to encrypt updated data. Simply put: one key, one encryption.
110 	 */
111 	u8 zero_nonce[crypto_aead_ivsize(big_key_aead)];
112 
113 	aead_req = aead_request_alloc(big_key_aead, GFP_KERNEL);
114 	if (!aead_req)
115 		return -ENOMEM;
116 
117 	memset(zero_nonce, 0, sizeof(zero_nonce));
118 	aead_request_set_crypt(aead_req, buf->sg, buf->sg, datalen, zero_nonce);
119 	aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
120 	aead_request_set_ad(aead_req, 0);
121 
122 	mutex_lock(&big_key_aead_lock);
123 	if (crypto_aead_setkey(big_key_aead, key, ENC_KEY_SIZE)) {
124 		ret = -EAGAIN;
125 		goto error;
126 	}
127 	if (op == BIG_KEY_ENC)
128 		ret = crypto_aead_encrypt(aead_req);
129 	else
130 		ret = crypto_aead_decrypt(aead_req);
131 error:
132 	mutex_unlock(&big_key_aead_lock);
133 	aead_request_free(aead_req);
134 	return ret;
135 }
136 
137 /*
138  * Free up the buffer.
139  */
140 static void big_key_free_buffer(struct big_key_buf *buf)
141 {
142 	unsigned int i;
143 
144 	if (buf->virt) {
145 		memset(buf->virt, 0, buf->nr_pages * PAGE_SIZE);
146 		vunmap(buf->virt);
147 	}
148 
149 	for (i = 0; i < buf->nr_pages; i++)
150 		if (buf->pages[i])
151 			__free_page(buf->pages[i]);
152 
153 	kfree(buf);
154 }
155 
156 /*
157  * Allocate a buffer consisting of a set of pages with a virtual mapping
158  * applied over them.
159  */
160 static void *big_key_alloc_buffer(size_t len)
161 {
162 	struct big_key_buf *buf;
163 	unsigned int npg = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
164 	unsigned int i, l;
165 
166 	buf = kzalloc(sizeof(struct big_key_buf) +
167 		      sizeof(struct page) * npg +
168 		      sizeof(struct scatterlist) * npg,
169 		      GFP_KERNEL);
170 	if (!buf)
171 		return NULL;
172 
173 	buf->nr_pages = npg;
174 	buf->sg = (void *)(buf->pages + npg);
175 	sg_init_table(buf->sg, npg);
176 
177 	for (i = 0; i < buf->nr_pages; i++) {
178 		buf->pages[i] = alloc_page(GFP_KERNEL);
179 		if (!buf->pages[i])
180 			goto nomem;
181 
182 		l = min_t(size_t, len, PAGE_SIZE);
183 		sg_set_page(&buf->sg[i], buf->pages[i], l, 0);
184 		len -= l;
185 	}
186 
187 	buf->virt = vmap(buf->pages, buf->nr_pages, VM_MAP, PAGE_KERNEL);
188 	if (!buf->virt)
189 		goto nomem;
190 
191 	return buf;
192 
193 nomem:
194 	big_key_free_buffer(buf);
195 	return NULL;
196 }
197 
198 /*
199  * Preparse a big key
200  */
201 int big_key_preparse(struct key_preparsed_payload *prep)
202 {
203 	struct big_key_buf *buf;
204 	struct path *path = (struct path *)&prep->payload.data[big_key_path];
205 	struct file *file;
206 	u8 *enckey;
207 	ssize_t written;
208 	size_t datalen = prep->datalen, enclen = datalen + ENC_AUTHTAG_SIZE;
209 	int ret;
210 
211 	if (datalen <= 0 || datalen > 1024 * 1024 || !prep->data)
212 		return -EINVAL;
213 
214 	/* Set an arbitrary quota */
215 	prep->quotalen = 16;
216 
217 	prep->payload.data[big_key_len] = (void *)(unsigned long)datalen;
218 
219 	if (datalen > BIG_KEY_FILE_THRESHOLD) {
220 		/* Create a shmem file to store the data in.  This will permit the data
221 		 * to be swapped out if needed.
222 		 *
223 		 * File content is stored encrypted with randomly generated key.
224 		 */
225 		loff_t pos = 0;
226 
227 		buf = big_key_alloc_buffer(enclen);
228 		if (!buf)
229 			return -ENOMEM;
230 		memcpy(buf->virt, prep->data, datalen);
231 
232 		/* generate random key */
233 		enckey = kmalloc(ENC_KEY_SIZE, GFP_KERNEL);
234 		if (!enckey) {
235 			ret = -ENOMEM;
236 			goto error;
237 		}
238 		ret = get_random_bytes_wait(enckey, ENC_KEY_SIZE);
239 		if (unlikely(ret))
240 			goto err_enckey;
241 
242 		/* encrypt aligned data */
243 		ret = big_key_crypt(BIG_KEY_ENC, buf, datalen, enckey);
244 		if (ret)
245 			goto err_enckey;
246 
247 		/* save aligned data to file */
248 		file = shmem_kernel_file_setup("", enclen, 0);
249 		if (IS_ERR(file)) {
250 			ret = PTR_ERR(file);
251 			goto err_enckey;
252 		}
253 
254 		written = kernel_write(file, buf->virt, enclen, &pos);
255 		if (written != enclen) {
256 			ret = written;
257 			if (written >= 0)
258 				ret = -ENOMEM;
259 			goto err_fput;
260 		}
261 
262 		/* Pin the mount and dentry to the key so that we can open it again
263 		 * later
264 		 */
265 		prep->payload.data[big_key_data] = enckey;
266 		*path = file->f_path;
267 		path_get(path);
268 		fput(file);
269 		big_key_free_buffer(buf);
270 	} else {
271 		/* Just store the data in a buffer */
272 		void *data = kmalloc(datalen, GFP_KERNEL);
273 
274 		if (!data)
275 			return -ENOMEM;
276 
277 		prep->payload.data[big_key_data] = data;
278 		memcpy(data, prep->data, prep->datalen);
279 	}
280 	return 0;
281 
282 err_fput:
283 	fput(file);
284 err_enckey:
285 	kzfree(enckey);
286 error:
287 	big_key_free_buffer(buf);
288 	return ret;
289 }
290 
291 /*
292  * Clear preparsement.
293  */
294 void big_key_free_preparse(struct key_preparsed_payload *prep)
295 {
296 	if (prep->datalen > BIG_KEY_FILE_THRESHOLD) {
297 		struct path *path = (struct path *)&prep->payload.data[big_key_path];
298 
299 		path_put(path);
300 	}
301 	kzfree(prep->payload.data[big_key_data]);
302 }
303 
304 /*
305  * dispose of the links from a revoked keyring
306  * - called with the key sem write-locked
307  */
308 void big_key_revoke(struct key *key)
309 {
310 	struct path *path = (struct path *)&key->payload.data[big_key_path];
311 
312 	/* clear the quota */
313 	key_payload_reserve(key, 0);
314 	if (key_is_positive(key) &&
315 	    (size_t)key->payload.data[big_key_len] > BIG_KEY_FILE_THRESHOLD)
316 		vfs_truncate(path, 0);
317 }
318 
319 /*
320  * dispose of the data dangling from the corpse of a big_key key
321  */
322 void big_key_destroy(struct key *key)
323 {
324 	size_t datalen = (size_t)key->payload.data[big_key_len];
325 
326 	if (datalen > BIG_KEY_FILE_THRESHOLD) {
327 		struct path *path = (struct path *)&key->payload.data[big_key_path];
328 
329 		path_put(path);
330 		path->mnt = NULL;
331 		path->dentry = NULL;
332 	}
333 	kzfree(key->payload.data[big_key_data]);
334 	key->payload.data[big_key_data] = NULL;
335 }
336 
337 /*
338  * describe the big_key key
339  */
340 void big_key_describe(const struct key *key, struct seq_file *m)
341 {
342 	size_t datalen = (size_t)key->payload.data[big_key_len];
343 
344 	seq_puts(m, key->description);
345 
346 	if (key_is_positive(key))
347 		seq_printf(m, ": %zu [%s]",
348 			   datalen,
349 			   datalen > BIG_KEY_FILE_THRESHOLD ? "file" : "buff");
350 }
351 
352 /*
353  * read the key data
354  * - the key's semaphore is read-locked
355  */
356 long big_key_read(const struct key *key, char __user *buffer, size_t buflen)
357 {
358 	size_t datalen = (size_t)key->payload.data[big_key_len];
359 	long ret;
360 
361 	if (!buffer || buflen < datalen)
362 		return datalen;
363 
364 	if (datalen > BIG_KEY_FILE_THRESHOLD) {
365 		struct big_key_buf *buf;
366 		struct path *path = (struct path *)&key->payload.data[big_key_path];
367 		struct file *file;
368 		u8 *enckey = (u8 *)key->payload.data[big_key_data];
369 		size_t enclen = datalen + ENC_AUTHTAG_SIZE;
370 		loff_t pos = 0;
371 
372 		buf = big_key_alloc_buffer(enclen);
373 		if (!buf)
374 			return -ENOMEM;
375 
376 		file = dentry_open(path, O_RDONLY, current_cred());
377 		if (IS_ERR(file)) {
378 			ret = PTR_ERR(file);
379 			goto error;
380 		}
381 
382 		/* read file to kernel and decrypt */
383 		ret = kernel_read(file, buf->virt, enclen, &pos);
384 		if (ret >= 0 && ret != enclen) {
385 			ret = -EIO;
386 			goto err_fput;
387 		}
388 
389 		ret = big_key_crypt(BIG_KEY_DEC, buf, enclen, enckey);
390 		if (ret)
391 			goto err_fput;
392 
393 		ret = datalen;
394 
395 		/* copy decrypted data to user */
396 		if (copy_to_user(buffer, buf->virt, datalen) != 0)
397 			ret = -EFAULT;
398 
399 err_fput:
400 		fput(file);
401 error:
402 		big_key_free_buffer(buf);
403 	} else {
404 		ret = datalen;
405 		if (copy_to_user(buffer, key->payload.data[big_key_data],
406 				 datalen) != 0)
407 			ret = -EFAULT;
408 	}
409 
410 	return ret;
411 }
412 
413 /*
414  * Register key type
415  */
416 static int __init big_key_init(void)
417 {
418 	int ret;
419 
420 	/* init block cipher */
421 	big_key_aead = crypto_alloc_aead(big_key_alg_name, 0, CRYPTO_ALG_ASYNC);
422 	if (IS_ERR(big_key_aead)) {
423 		ret = PTR_ERR(big_key_aead);
424 		pr_err("Can't alloc crypto: %d\n", ret);
425 		return ret;
426 	}
427 	ret = crypto_aead_setauthsize(big_key_aead, ENC_AUTHTAG_SIZE);
428 	if (ret < 0) {
429 		pr_err("Can't set crypto auth tag len: %d\n", ret);
430 		goto free_aead;
431 	}
432 
433 	ret = register_key_type(&key_type_big_key);
434 	if (ret < 0) {
435 		pr_err("Can't register type: %d\n", ret);
436 		goto free_aead;
437 	}
438 
439 	return 0;
440 
441 free_aead:
442 	crypto_free_aead(big_key_aead);
443 	return ret;
444 }
445 
446 late_initcall(big_key_init);
447