xref: /openbmc/linux/security/keys/big_key.c (revision 6b2e54f7)
1 /* Large capacity key type
2  *
3  * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4  * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public Licence
9  * as published by the Free Software Foundation; either version
10  * 2 of the Licence, or (at your option) any later version.
11  */
12 
13 #define pr_fmt(fmt) "big_key: "fmt
14 #include <linux/init.h>
15 #include <linux/seq_file.h>
16 #include <linux/file.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/err.h>
19 #include <linux/scatterlist.h>
20 #include <linux/random.h>
21 #include <linux/vmalloc.h>
22 #include <keys/user-type.h>
23 #include <keys/big_key-type.h>
24 #include <crypto/aead.h>
25 
26 struct big_key_buf {
27 	unsigned int		nr_pages;
28 	void			*virt;
29 	struct scatterlist	*sg;
30 	struct page		*pages[];
31 };
32 
33 /*
34  * Layout of key payload words.
35  */
36 enum {
37 	big_key_data,
38 	big_key_path,
39 	big_key_path_2nd_part,
40 	big_key_len,
41 };
42 
43 /*
44  * Crypto operation with big_key data
45  */
46 enum big_key_op {
47 	BIG_KEY_ENC,
48 	BIG_KEY_DEC,
49 };
50 
51 /*
52  * If the data is under this limit, there's no point creating a shm file to
53  * hold it as the permanently resident metadata for the shmem fs will be at
54  * least as large as the data.
55  */
56 #define BIG_KEY_FILE_THRESHOLD (sizeof(struct inode) + sizeof(struct dentry))
57 
58 /*
59  * Key size for big_key data encryption
60  */
61 #define ENC_KEY_SIZE 32
62 
63 /*
64  * Authentication tag length
65  */
66 #define ENC_AUTHTAG_SIZE 16
67 
68 /*
69  * big_key defined keys take an arbitrary string as the description and an
70  * arbitrary blob of data as the payload
71  */
72 struct key_type key_type_big_key = {
73 	.name			= "big_key",
74 	.preparse		= big_key_preparse,
75 	.free_preparse		= big_key_free_preparse,
76 	.instantiate		= generic_key_instantiate,
77 	.revoke			= big_key_revoke,
78 	.destroy		= big_key_destroy,
79 	.describe		= big_key_describe,
80 	.read			= big_key_read,
81 	/* no ->update(); don't add it without changing big_key_crypt() nonce */
82 };
83 
84 /*
85  * Crypto names for big_key data authenticated encryption
86  */
87 static const char big_key_alg_name[] = "gcm(aes)";
88 
89 /*
90  * Crypto algorithms for big_key data authenticated encryption
91  */
92 static struct crypto_aead *big_key_aead;
93 
94 /*
95  * Since changing the key affects the entire object, we need a mutex.
96  */
97 static DEFINE_MUTEX(big_key_aead_lock);
98 
99 /*
100  * Encrypt/decrypt big_key data
101  */
102 static int big_key_crypt(enum big_key_op op, struct big_key_buf *buf, size_t datalen, u8 *key)
103 {
104 	int ret;
105 	struct aead_request *aead_req;
106 	/* We always use a zero nonce. The reason we can get away with this is
107 	 * because we're using a different randomly generated key for every
108 	 * different encryption. Notably, too, key_type_big_key doesn't define
109 	 * an .update function, so there's no chance we'll wind up reusing the
110 	 * key to encrypt updated data. Simply put: one key, one encryption.
111 	 */
112 	u8 zero_nonce[crypto_aead_ivsize(big_key_aead)];
113 
114 	aead_req = aead_request_alloc(big_key_aead, GFP_KERNEL);
115 	if (!aead_req)
116 		return -ENOMEM;
117 
118 	memset(zero_nonce, 0, sizeof(zero_nonce));
119 	aead_request_set_crypt(aead_req, buf->sg, buf->sg, datalen, zero_nonce);
120 	aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
121 	aead_request_set_ad(aead_req, 0);
122 
123 	mutex_lock(&big_key_aead_lock);
124 	if (crypto_aead_setkey(big_key_aead, key, ENC_KEY_SIZE)) {
125 		ret = -EAGAIN;
126 		goto error;
127 	}
128 	if (op == BIG_KEY_ENC)
129 		ret = crypto_aead_encrypt(aead_req);
130 	else
131 		ret = crypto_aead_decrypt(aead_req);
132 error:
133 	mutex_unlock(&big_key_aead_lock);
134 	aead_request_free(aead_req);
135 	return ret;
136 }
137 
138 /*
139  * Free up the buffer.
140  */
141 static void big_key_free_buffer(struct big_key_buf *buf)
142 {
143 	unsigned int i;
144 
145 	if (buf->virt) {
146 		memset(buf->virt, 0, buf->nr_pages * PAGE_SIZE);
147 		vunmap(buf->virt);
148 	}
149 
150 	for (i = 0; i < buf->nr_pages; i++)
151 		if (buf->pages[i])
152 			__free_page(buf->pages[i]);
153 
154 	kfree(buf);
155 }
156 
157 /*
158  * Allocate a buffer consisting of a set of pages with a virtual mapping
159  * applied over them.
160  */
161 static void *big_key_alloc_buffer(size_t len)
162 {
163 	struct big_key_buf *buf;
164 	unsigned int npg = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
165 	unsigned int i, l;
166 
167 	buf = kzalloc(sizeof(struct big_key_buf) +
168 		      sizeof(struct page) * npg +
169 		      sizeof(struct scatterlist) * npg,
170 		      GFP_KERNEL);
171 	if (!buf)
172 		return NULL;
173 
174 	buf->nr_pages = npg;
175 	buf->sg = (void *)(buf->pages + npg);
176 	sg_init_table(buf->sg, npg);
177 
178 	for (i = 0; i < buf->nr_pages; i++) {
179 		buf->pages[i] = alloc_page(GFP_KERNEL);
180 		if (!buf->pages[i])
181 			goto nomem;
182 
183 		l = min_t(size_t, len, PAGE_SIZE);
184 		sg_set_page(&buf->sg[i], buf->pages[i], l, 0);
185 		len -= l;
186 	}
187 
188 	buf->virt = vmap(buf->pages, buf->nr_pages, VM_MAP, PAGE_KERNEL);
189 	if (!buf->virt)
190 		goto nomem;
191 
192 	return buf;
193 
194 nomem:
195 	big_key_free_buffer(buf);
196 	return NULL;
197 }
198 
199 /*
200  * Preparse a big key
201  */
202 int big_key_preparse(struct key_preparsed_payload *prep)
203 {
204 	struct big_key_buf *buf;
205 	struct path *path = (struct path *)&prep->payload.data[big_key_path];
206 	struct file *file;
207 	u8 *enckey;
208 	ssize_t written;
209 	size_t datalen = prep->datalen, enclen = datalen + ENC_AUTHTAG_SIZE;
210 	int ret;
211 
212 	if (datalen <= 0 || datalen > 1024 * 1024 || !prep->data)
213 		return -EINVAL;
214 
215 	/* Set an arbitrary quota */
216 	prep->quotalen = 16;
217 
218 	prep->payload.data[big_key_len] = (void *)(unsigned long)datalen;
219 
220 	if (datalen > BIG_KEY_FILE_THRESHOLD) {
221 		/* Create a shmem file to store the data in.  This will permit the data
222 		 * to be swapped out if needed.
223 		 *
224 		 * File content is stored encrypted with randomly generated key.
225 		 */
226 		loff_t pos = 0;
227 
228 		buf = big_key_alloc_buffer(enclen);
229 		if (!buf)
230 			return -ENOMEM;
231 		memcpy(buf->virt, prep->data, datalen);
232 
233 		/* generate random key */
234 		enckey = kmalloc(ENC_KEY_SIZE, GFP_KERNEL);
235 		if (!enckey) {
236 			ret = -ENOMEM;
237 			goto error;
238 		}
239 		ret = get_random_bytes_wait(enckey, ENC_KEY_SIZE);
240 		if (unlikely(ret))
241 			goto err_enckey;
242 
243 		/* encrypt aligned data */
244 		ret = big_key_crypt(BIG_KEY_ENC, buf, datalen, enckey);
245 		if (ret)
246 			goto err_enckey;
247 
248 		/* save aligned data to file */
249 		file = shmem_kernel_file_setup("", enclen, 0);
250 		if (IS_ERR(file)) {
251 			ret = PTR_ERR(file);
252 			goto err_enckey;
253 		}
254 
255 		written = kernel_write(file, buf->virt, enclen, &pos);
256 		if (written != enclen) {
257 			ret = written;
258 			if (written >= 0)
259 				ret = -ENOMEM;
260 			goto err_fput;
261 		}
262 
263 		/* Pin the mount and dentry to the key so that we can open it again
264 		 * later
265 		 */
266 		prep->payload.data[big_key_data] = enckey;
267 		*path = file->f_path;
268 		path_get(path);
269 		fput(file);
270 		big_key_free_buffer(buf);
271 	} else {
272 		/* Just store the data in a buffer */
273 		void *data = kmalloc(datalen, GFP_KERNEL);
274 
275 		if (!data)
276 			return -ENOMEM;
277 
278 		prep->payload.data[big_key_data] = data;
279 		memcpy(data, prep->data, prep->datalen);
280 	}
281 	return 0;
282 
283 err_fput:
284 	fput(file);
285 err_enckey:
286 	kzfree(enckey);
287 error:
288 	big_key_free_buffer(buf);
289 	return ret;
290 }
291 
292 /*
293  * Clear preparsement.
294  */
295 void big_key_free_preparse(struct key_preparsed_payload *prep)
296 {
297 	if (prep->datalen > BIG_KEY_FILE_THRESHOLD) {
298 		struct path *path = (struct path *)&prep->payload.data[big_key_path];
299 
300 		path_put(path);
301 	}
302 	kzfree(prep->payload.data[big_key_data]);
303 }
304 
305 /*
306  * dispose of the links from a revoked keyring
307  * - called with the key sem write-locked
308  */
309 void big_key_revoke(struct key *key)
310 {
311 	struct path *path = (struct path *)&key->payload.data[big_key_path];
312 
313 	/* clear the quota */
314 	key_payload_reserve(key, 0);
315 	if (key_is_positive(key) &&
316 	    (size_t)key->payload.data[big_key_len] > BIG_KEY_FILE_THRESHOLD)
317 		vfs_truncate(path, 0);
318 }
319 
320 /*
321  * dispose of the data dangling from the corpse of a big_key key
322  */
323 void big_key_destroy(struct key *key)
324 {
325 	size_t datalen = (size_t)key->payload.data[big_key_len];
326 
327 	if (datalen > BIG_KEY_FILE_THRESHOLD) {
328 		struct path *path = (struct path *)&key->payload.data[big_key_path];
329 
330 		path_put(path);
331 		path->mnt = NULL;
332 		path->dentry = NULL;
333 	}
334 	kzfree(key->payload.data[big_key_data]);
335 	key->payload.data[big_key_data] = NULL;
336 }
337 
338 /*
339  * describe the big_key key
340  */
341 void big_key_describe(const struct key *key, struct seq_file *m)
342 {
343 	size_t datalen = (size_t)key->payload.data[big_key_len];
344 
345 	seq_puts(m, key->description);
346 
347 	if (key_is_positive(key))
348 		seq_printf(m, ": %zu [%s]",
349 			   datalen,
350 			   datalen > BIG_KEY_FILE_THRESHOLD ? "file" : "buff");
351 }
352 
353 /*
354  * read the key data
355  * - the key's semaphore is read-locked
356  */
357 long big_key_read(const struct key *key, char __user *buffer, size_t buflen)
358 {
359 	size_t datalen = (size_t)key->payload.data[big_key_len];
360 	long ret;
361 
362 	if (!buffer || buflen < datalen)
363 		return datalen;
364 
365 	if (datalen > BIG_KEY_FILE_THRESHOLD) {
366 		struct big_key_buf *buf;
367 		struct path *path = (struct path *)&key->payload.data[big_key_path];
368 		struct file *file;
369 		u8 *enckey = (u8 *)key->payload.data[big_key_data];
370 		size_t enclen = datalen + ENC_AUTHTAG_SIZE;
371 		loff_t pos = 0;
372 
373 		buf = big_key_alloc_buffer(enclen);
374 		if (!buf)
375 			return -ENOMEM;
376 
377 		file = dentry_open(path, O_RDONLY, current_cred());
378 		if (IS_ERR(file)) {
379 			ret = PTR_ERR(file);
380 			goto error;
381 		}
382 
383 		/* read file to kernel and decrypt */
384 		ret = kernel_read(file, buf->virt, enclen, &pos);
385 		if (ret >= 0 && ret != enclen) {
386 			ret = -EIO;
387 			goto err_fput;
388 		}
389 
390 		ret = big_key_crypt(BIG_KEY_DEC, buf, enclen, enckey);
391 		if (ret)
392 			goto err_fput;
393 
394 		ret = datalen;
395 
396 		/* copy decrypted data to user */
397 		if (copy_to_user(buffer, buf->virt, datalen) != 0)
398 			ret = -EFAULT;
399 
400 err_fput:
401 		fput(file);
402 error:
403 		big_key_free_buffer(buf);
404 	} else {
405 		ret = datalen;
406 		if (copy_to_user(buffer, key->payload.data[big_key_data],
407 				 datalen) != 0)
408 			ret = -EFAULT;
409 	}
410 
411 	return ret;
412 }
413 
414 /*
415  * Register key type
416  */
417 static int __init big_key_init(void)
418 {
419 	int ret;
420 
421 	/* init block cipher */
422 	big_key_aead = crypto_alloc_aead(big_key_alg_name, 0, CRYPTO_ALG_ASYNC);
423 	if (IS_ERR(big_key_aead)) {
424 		ret = PTR_ERR(big_key_aead);
425 		pr_err("Can't alloc crypto: %d\n", ret);
426 		return ret;
427 	}
428 	ret = crypto_aead_setauthsize(big_key_aead, ENC_AUTHTAG_SIZE);
429 	if (ret < 0) {
430 		pr_err("Can't set crypto auth tag len: %d\n", ret);
431 		goto free_aead;
432 	}
433 
434 	ret = register_key_type(&key_type_big_key);
435 	if (ret < 0) {
436 		pr_err("Can't register type: %d\n", ret);
437 		goto free_aead;
438 	}
439 
440 	return 0;
441 
442 free_aead:
443 	crypto_free_aead(big_key_aead);
444 	return ret;
445 }
446 
447 late_initcall(big_key_init);
448