1 /* Large capacity key type 2 * 3 * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved. 4 * Written by David Howells (dhowells@redhat.com) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public Licence 8 * as published by the Free Software Foundation; either version 9 * 2 of the Licence, or (at your option) any later version. 10 */ 11 12 #define pr_fmt(fmt) "big_key: "fmt 13 #include <linux/init.h> 14 #include <linux/seq_file.h> 15 #include <linux/file.h> 16 #include <linux/shmem_fs.h> 17 #include <linux/err.h> 18 #include <linux/scatterlist.h> 19 #include <keys/user-type.h> 20 #include <keys/big_key-type.h> 21 #include <crypto/rng.h> 22 #include <crypto/skcipher.h> 23 24 /* 25 * Layout of key payload words. 26 */ 27 enum { 28 big_key_data, 29 big_key_path, 30 big_key_path_2nd_part, 31 big_key_len, 32 }; 33 34 /* 35 * Crypto operation with big_key data 36 */ 37 enum big_key_op { 38 BIG_KEY_ENC, 39 BIG_KEY_DEC, 40 }; 41 42 /* 43 * If the data is under this limit, there's no point creating a shm file to 44 * hold it as the permanently resident metadata for the shmem fs will be at 45 * least as large as the data. 46 */ 47 #define BIG_KEY_FILE_THRESHOLD (sizeof(struct inode) + sizeof(struct dentry)) 48 49 /* 50 * Key size for big_key data encryption 51 */ 52 #define ENC_KEY_SIZE 16 53 54 /* 55 * big_key defined keys take an arbitrary string as the description and an 56 * arbitrary blob of data as the payload 57 */ 58 struct key_type key_type_big_key = { 59 .name = "big_key", 60 .preparse = big_key_preparse, 61 .free_preparse = big_key_free_preparse, 62 .instantiate = generic_key_instantiate, 63 .revoke = big_key_revoke, 64 .destroy = big_key_destroy, 65 .describe = big_key_describe, 66 .read = big_key_read, 67 }; 68 69 /* 70 * Crypto names for big_key data encryption 71 */ 72 static const char big_key_rng_name[] = "stdrng"; 73 static const char big_key_alg_name[] = "ecb(aes)"; 74 75 /* 76 * Crypto algorithms for big_key data encryption 77 */ 78 static struct crypto_rng *big_key_rng; 79 static struct crypto_skcipher *big_key_skcipher; 80 81 /* 82 * Generate random key to encrypt big_key data 83 */ 84 static inline int big_key_gen_enckey(u8 *key) 85 { 86 return crypto_rng_get_bytes(big_key_rng, key, ENC_KEY_SIZE); 87 } 88 89 /* 90 * Encrypt/decrypt big_key data 91 */ 92 static int big_key_crypt(enum big_key_op op, u8 *data, size_t datalen, u8 *key) 93 { 94 int ret = -EINVAL; 95 struct scatterlist sgio; 96 SKCIPHER_REQUEST_ON_STACK(req, big_key_skcipher); 97 98 if (crypto_skcipher_setkey(big_key_skcipher, key, ENC_KEY_SIZE)) { 99 ret = -EAGAIN; 100 goto error; 101 } 102 103 skcipher_request_set_tfm(req, big_key_skcipher); 104 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, 105 NULL, NULL); 106 107 sg_init_one(&sgio, data, datalen); 108 skcipher_request_set_crypt(req, &sgio, &sgio, datalen, NULL); 109 110 if (op == BIG_KEY_ENC) 111 ret = crypto_skcipher_encrypt(req); 112 else 113 ret = crypto_skcipher_decrypt(req); 114 115 skcipher_request_zero(req); 116 117 error: 118 return ret; 119 } 120 121 /* 122 * Preparse a big key 123 */ 124 int big_key_preparse(struct key_preparsed_payload *prep) 125 { 126 struct path *path = (struct path *)&prep->payload.data[big_key_path]; 127 struct file *file; 128 u8 *enckey; 129 u8 *data = NULL; 130 ssize_t written; 131 size_t datalen = prep->datalen; 132 int ret; 133 134 ret = -EINVAL; 135 if (datalen <= 0 || datalen > 1024 * 1024 || !prep->data) 136 goto error; 137 138 /* Set an arbitrary quota */ 139 prep->quotalen = 16; 140 141 prep->payload.data[big_key_len] = (void *)(unsigned long)datalen; 142 143 if (datalen > BIG_KEY_FILE_THRESHOLD) { 144 /* Create a shmem file to store the data in. This will permit the data 145 * to be swapped out if needed. 146 * 147 * File content is stored encrypted with randomly generated key. 148 */ 149 size_t enclen = ALIGN(datalen, crypto_skcipher_blocksize(big_key_skcipher)); 150 151 /* prepare aligned data to encrypt */ 152 data = kmalloc(enclen, GFP_KERNEL); 153 if (!data) 154 return -ENOMEM; 155 156 memcpy(data, prep->data, datalen); 157 memset(data + datalen, 0x00, enclen - datalen); 158 159 /* generate random key */ 160 enckey = kmalloc(ENC_KEY_SIZE, GFP_KERNEL); 161 if (!enckey) { 162 ret = -ENOMEM; 163 goto error; 164 } 165 166 ret = big_key_gen_enckey(enckey); 167 if (ret) 168 goto err_enckey; 169 170 /* encrypt aligned data */ 171 ret = big_key_crypt(BIG_KEY_ENC, data, enclen, enckey); 172 if (ret) 173 goto err_enckey; 174 175 /* save aligned data to file */ 176 file = shmem_kernel_file_setup("", enclen, 0); 177 if (IS_ERR(file)) { 178 ret = PTR_ERR(file); 179 goto err_enckey; 180 } 181 182 written = kernel_write(file, data, enclen, 0); 183 if (written != enclen) { 184 ret = written; 185 if (written >= 0) 186 ret = -ENOMEM; 187 goto err_fput; 188 } 189 190 /* Pin the mount and dentry to the key so that we can open it again 191 * later 192 */ 193 prep->payload.data[big_key_data] = enckey; 194 *path = file->f_path; 195 path_get(path); 196 fput(file); 197 kfree(data); 198 } else { 199 /* Just store the data in a buffer */ 200 void *data = kmalloc(datalen, GFP_KERNEL); 201 202 if (!data) 203 return -ENOMEM; 204 205 prep->payload.data[big_key_data] = data; 206 memcpy(data, prep->data, prep->datalen); 207 } 208 return 0; 209 210 err_fput: 211 fput(file); 212 err_enckey: 213 kfree(enckey); 214 error: 215 kfree(data); 216 return ret; 217 } 218 219 /* 220 * Clear preparsement. 221 */ 222 void big_key_free_preparse(struct key_preparsed_payload *prep) 223 { 224 if (prep->datalen > BIG_KEY_FILE_THRESHOLD) { 225 struct path *path = (struct path *)&prep->payload.data[big_key_path]; 226 227 path_put(path); 228 } 229 kfree(prep->payload.data[big_key_data]); 230 } 231 232 /* 233 * dispose of the links from a revoked keyring 234 * - called with the key sem write-locked 235 */ 236 void big_key_revoke(struct key *key) 237 { 238 struct path *path = (struct path *)&key->payload.data[big_key_path]; 239 240 /* clear the quota */ 241 key_payload_reserve(key, 0); 242 if (key_is_instantiated(key) && 243 (size_t)key->payload.data[big_key_len] > BIG_KEY_FILE_THRESHOLD) 244 vfs_truncate(path, 0); 245 } 246 247 /* 248 * dispose of the data dangling from the corpse of a big_key key 249 */ 250 void big_key_destroy(struct key *key) 251 { 252 size_t datalen = (size_t)key->payload.data[big_key_len]; 253 254 if (datalen > BIG_KEY_FILE_THRESHOLD) { 255 struct path *path = (struct path *)&key->payload.data[big_key_path]; 256 257 path_put(path); 258 path->mnt = NULL; 259 path->dentry = NULL; 260 } 261 kfree(key->payload.data[big_key_data]); 262 key->payload.data[big_key_data] = NULL; 263 } 264 265 /* 266 * describe the big_key key 267 */ 268 void big_key_describe(const struct key *key, struct seq_file *m) 269 { 270 size_t datalen = (size_t)key->payload.data[big_key_len]; 271 272 seq_puts(m, key->description); 273 274 if (key_is_instantiated(key)) 275 seq_printf(m, ": %zu [%s]", 276 datalen, 277 datalen > BIG_KEY_FILE_THRESHOLD ? "file" : "buff"); 278 } 279 280 /* 281 * read the key data 282 * - the key's semaphore is read-locked 283 */ 284 long big_key_read(const struct key *key, char __user *buffer, size_t buflen) 285 { 286 size_t datalen = (size_t)key->payload.data[big_key_len]; 287 long ret; 288 289 if (!buffer || buflen < datalen) 290 return datalen; 291 292 if (datalen > BIG_KEY_FILE_THRESHOLD) { 293 struct path *path = (struct path *)&key->payload.data[big_key_path]; 294 struct file *file; 295 u8 *data; 296 u8 *enckey = (u8 *)key->payload.data[big_key_data]; 297 size_t enclen = ALIGN(datalen, crypto_skcipher_blocksize(big_key_skcipher)); 298 299 data = kmalloc(enclen, GFP_KERNEL); 300 if (!data) 301 return -ENOMEM; 302 303 file = dentry_open(path, O_RDONLY, current_cred()); 304 if (IS_ERR(file)) { 305 ret = PTR_ERR(file); 306 goto error; 307 } 308 309 /* read file to kernel and decrypt */ 310 ret = kernel_read(file, 0, data, enclen); 311 if (ret >= 0 && ret != enclen) { 312 ret = -EIO; 313 goto err_fput; 314 } 315 316 ret = big_key_crypt(BIG_KEY_DEC, data, enclen, enckey); 317 if (ret) 318 goto err_fput; 319 320 ret = datalen; 321 322 /* copy decrypted data to user */ 323 if (copy_to_user(buffer, data, datalen) != 0) 324 ret = -EFAULT; 325 326 err_fput: 327 fput(file); 328 error: 329 kfree(data); 330 } else { 331 ret = datalen; 332 if (copy_to_user(buffer, key->payload.data[big_key_data], 333 datalen) != 0) 334 ret = -EFAULT; 335 } 336 337 return ret; 338 } 339 340 /* 341 * Register key type 342 */ 343 static int __init big_key_init(void) 344 { 345 struct crypto_skcipher *cipher; 346 struct crypto_rng *rng; 347 int ret; 348 349 rng = crypto_alloc_rng(big_key_rng_name, 0, 0); 350 if (IS_ERR(rng)) { 351 pr_err("Can't alloc rng: %ld\n", PTR_ERR(rng)); 352 return PTR_ERR(rng); 353 } 354 355 big_key_rng = rng; 356 357 /* seed RNG */ 358 ret = crypto_rng_reset(rng, NULL, crypto_rng_seedsize(rng)); 359 if (ret) { 360 pr_err("Can't reset rng: %d\n", ret); 361 goto error_rng; 362 } 363 364 /* init block cipher */ 365 cipher = crypto_alloc_skcipher(big_key_alg_name, 0, CRYPTO_ALG_ASYNC); 366 if (IS_ERR(cipher)) { 367 ret = PTR_ERR(cipher); 368 pr_err("Can't alloc crypto: %d\n", ret); 369 goto error_rng; 370 } 371 372 big_key_skcipher = cipher; 373 374 ret = register_key_type(&key_type_big_key); 375 if (ret < 0) { 376 pr_err("Can't register type: %d\n", ret); 377 goto error_cipher; 378 } 379 380 return 0; 381 382 error_cipher: 383 crypto_free_skcipher(big_key_skcipher); 384 error_rng: 385 crypto_free_rng(big_key_rng); 386 return ret; 387 } 388 389 late_initcall(big_key_init); 390