1 /* Large capacity key type 2 * 3 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. 4 * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public Licence 9 * as published by the Free Software Foundation; either version 10 * 2 of the Licence, or (at your option) any later version. 11 */ 12 13 #define pr_fmt(fmt) "big_key: "fmt 14 #include <linux/init.h> 15 #include <linux/seq_file.h> 16 #include <linux/file.h> 17 #include <linux/shmem_fs.h> 18 #include <linux/err.h> 19 #include <linux/scatterlist.h> 20 #include <linux/random.h> 21 #include <linux/vmalloc.h> 22 #include <keys/user-type.h> 23 #include <keys/big_key-type.h> 24 #include <crypto/aead.h> 25 26 struct big_key_buf { 27 unsigned int nr_pages; 28 void *virt; 29 struct scatterlist *sg; 30 struct page *pages[]; 31 }; 32 33 /* 34 * Layout of key payload words. 35 */ 36 enum { 37 big_key_data, 38 big_key_path, 39 big_key_path_2nd_part, 40 big_key_len, 41 }; 42 43 /* 44 * Crypto operation with big_key data 45 */ 46 enum big_key_op { 47 BIG_KEY_ENC, 48 BIG_KEY_DEC, 49 }; 50 51 /* 52 * If the data is under this limit, there's no point creating a shm file to 53 * hold it as the permanently resident metadata for the shmem fs will be at 54 * least as large as the data. 55 */ 56 #define BIG_KEY_FILE_THRESHOLD (sizeof(struct inode) + sizeof(struct dentry)) 57 58 /* 59 * Key size for big_key data encryption 60 */ 61 #define ENC_KEY_SIZE 32 62 63 /* 64 * Authentication tag length 65 */ 66 #define ENC_AUTHTAG_SIZE 16 67 68 /* 69 * big_key defined keys take an arbitrary string as the description and an 70 * arbitrary blob of data as the payload 71 */ 72 struct key_type key_type_big_key = { 73 .name = "big_key", 74 .preparse = big_key_preparse, 75 .free_preparse = big_key_free_preparse, 76 .instantiate = generic_key_instantiate, 77 .revoke = big_key_revoke, 78 .destroy = big_key_destroy, 79 .describe = big_key_describe, 80 .read = big_key_read, 81 /* no ->update(); don't add it without changing big_key_crypt() nonce */ 82 }; 83 84 /* 85 * Crypto names for big_key data authenticated encryption 86 */ 87 static const char big_key_alg_name[] = "gcm(aes)"; 88 89 /* 90 * Crypto algorithms for big_key data authenticated encryption 91 */ 92 static struct crypto_aead *big_key_aead; 93 94 /* 95 * Since changing the key affects the entire object, we need a mutex. 96 */ 97 static DEFINE_MUTEX(big_key_aead_lock); 98 99 /* 100 * Encrypt/decrypt big_key data 101 */ 102 static int big_key_crypt(enum big_key_op op, struct big_key_buf *buf, size_t datalen, u8 *key) 103 { 104 int ret; 105 struct aead_request *aead_req; 106 /* We always use a zero nonce. The reason we can get away with this is 107 * because we're using a different randomly generated key for every 108 * different encryption. Notably, too, key_type_big_key doesn't define 109 * an .update function, so there's no chance we'll wind up reusing the 110 * key to encrypt updated data. Simply put: one key, one encryption. 111 */ 112 u8 zero_nonce[crypto_aead_ivsize(big_key_aead)]; 113 114 aead_req = aead_request_alloc(big_key_aead, GFP_KERNEL); 115 if (!aead_req) 116 return -ENOMEM; 117 118 memset(zero_nonce, 0, sizeof(zero_nonce)); 119 aead_request_set_crypt(aead_req, buf->sg, buf->sg, datalen, zero_nonce); 120 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL); 121 aead_request_set_ad(aead_req, 0); 122 123 mutex_lock(&big_key_aead_lock); 124 if (crypto_aead_setkey(big_key_aead, key, ENC_KEY_SIZE)) { 125 ret = -EAGAIN; 126 goto error; 127 } 128 if (op == BIG_KEY_ENC) 129 ret = crypto_aead_encrypt(aead_req); 130 else 131 ret = crypto_aead_decrypt(aead_req); 132 error: 133 mutex_unlock(&big_key_aead_lock); 134 aead_request_free(aead_req); 135 return ret; 136 } 137 138 /* 139 * Free up the buffer. 140 */ 141 static void big_key_free_buffer(struct big_key_buf *buf) 142 { 143 unsigned int i; 144 145 if (buf->virt) { 146 memset(buf->virt, 0, buf->nr_pages * PAGE_SIZE); 147 vunmap(buf->virt); 148 } 149 150 for (i = 0; i < buf->nr_pages; i++) 151 if (buf->pages[i]) 152 __free_page(buf->pages[i]); 153 154 kfree(buf); 155 } 156 157 /* 158 * Allocate a buffer consisting of a set of pages with a virtual mapping 159 * applied over them. 160 */ 161 static void *big_key_alloc_buffer(size_t len) 162 { 163 struct big_key_buf *buf; 164 unsigned int npg = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; 165 unsigned int i, l; 166 167 buf = kzalloc(sizeof(struct big_key_buf) + 168 sizeof(struct page) * npg + 169 sizeof(struct scatterlist) * npg, 170 GFP_KERNEL); 171 if (!buf) 172 return NULL; 173 174 buf->nr_pages = npg; 175 buf->sg = (void *)(buf->pages + npg); 176 sg_init_table(buf->sg, npg); 177 178 for (i = 0; i < buf->nr_pages; i++) { 179 buf->pages[i] = alloc_page(GFP_KERNEL); 180 if (!buf->pages[i]) 181 goto nomem; 182 183 l = min_t(size_t, len, PAGE_SIZE); 184 sg_set_page(&buf->sg[i], buf->pages[i], l, 0); 185 len -= l; 186 } 187 188 buf->virt = vmap(buf->pages, buf->nr_pages, VM_MAP, PAGE_KERNEL); 189 if (!buf->virt) 190 goto nomem; 191 192 return buf; 193 194 nomem: 195 big_key_free_buffer(buf); 196 return NULL; 197 } 198 199 /* 200 * Preparse a big key 201 */ 202 int big_key_preparse(struct key_preparsed_payload *prep) 203 { 204 struct big_key_buf *buf; 205 struct path *path = (struct path *)&prep->payload.data[big_key_path]; 206 struct file *file; 207 u8 *enckey; 208 ssize_t written; 209 size_t datalen = prep->datalen, enclen = datalen + ENC_AUTHTAG_SIZE; 210 int ret; 211 212 if (datalen <= 0 || datalen > 1024 * 1024 || !prep->data) 213 return -EINVAL; 214 215 /* Set an arbitrary quota */ 216 prep->quotalen = 16; 217 218 prep->payload.data[big_key_len] = (void *)(unsigned long)datalen; 219 220 if (datalen > BIG_KEY_FILE_THRESHOLD) { 221 /* Create a shmem file to store the data in. This will permit the data 222 * to be swapped out if needed. 223 * 224 * File content is stored encrypted with randomly generated key. 225 */ 226 loff_t pos = 0; 227 228 buf = big_key_alloc_buffer(enclen); 229 if (!buf) 230 return -ENOMEM; 231 memcpy(buf->virt, prep->data, datalen); 232 233 /* generate random key */ 234 enckey = kmalloc(ENC_KEY_SIZE, GFP_KERNEL); 235 if (!enckey) { 236 ret = -ENOMEM; 237 goto error; 238 } 239 ret = get_random_bytes_wait(enckey, ENC_KEY_SIZE); 240 if (unlikely(ret)) 241 goto err_enckey; 242 243 /* encrypt aligned data */ 244 ret = big_key_crypt(BIG_KEY_ENC, buf, datalen, enckey); 245 if (ret) 246 goto err_enckey; 247 248 /* save aligned data to file */ 249 file = shmem_kernel_file_setup("", enclen, 0); 250 if (IS_ERR(file)) { 251 ret = PTR_ERR(file); 252 goto err_enckey; 253 } 254 255 written = kernel_write(file, buf->virt, enclen, &pos); 256 if (written != enclen) { 257 ret = written; 258 if (written >= 0) 259 ret = -ENOMEM; 260 goto err_fput; 261 } 262 263 /* Pin the mount and dentry to the key so that we can open it again 264 * later 265 */ 266 prep->payload.data[big_key_data] = enckey; 267 *path = file->f_path; 268 path_get(path); 269 fput(file); 270 big_key_free_buffer(buf); 271 } else { 272 /* Just store the data in a buffer */ 273 void *data = kmalloc(datalen, GFP_KERNEL); 274 275 if (!data) 276 return -ENOMEM; 277 278 prep->payload.data[big_key_data] = data; 279 memcpy(data, prep->data, prep->datalen); 280 } 281 return 0; 282 283 err_fput: 284 fput(file); 285 err_enckey: 286 kzfree(enckey); 287 error: 288 big_key_free_buffer(buf); 289 return ret; 290 } 291 292 /* 293 * Clear preparsement. 294 */ 295 void big_key_free_preparse(struct key_preparsed_payload *prep) 296 { 297 if (prep->datalen > BIG_KEY_FILE_THRESHOLD) { 298 struct path *path = (struct path *)&prep->payload.data[big_key_path]; 299 300 path_put(path); 301 } 302 kzfree(prep->payload.data[big_key_data]); 303 } 304 305 /* 306 * dispose of the links from a revoked keyring 307 * - called with the key sem write-locked 308 */ 309 void big_key_revoke(struct key *key) 310 { 311 struct path *path = (struct path *)&key->payload.data[big_key_path]; 312 313 /* clear the quota */ 314 key_payload_reserve(key, 0); 315 if (key_is_positive(key) && 316 (size_t)key->payload.data[big_key_len] > BIG_KEY_FILE_THRESHOLD) 317 vfs_truncate(path, 0); 318 } 319 320 /* 321 * dispose of the data dangling from the corpse of a big_key key 322 */ 323 void big_key_destroy(struct key *key) 324 { 325 size_t datalen = (size_t)key->payload.data[big_key_len]; 326 327 if (datalen > BIG_KEY_FILE_THRESHOLD) { 328 struct path *path = (struct path *)&key->payload.data[big_key_path]; 329 330 path_put(path); 331 path->mnt = NULL; 332 path->dentry = NULL; 333 } 334 kzfree(key->payload.data[big_key_data]); 335 key->payload.data[big_key_data] = NULL; 336 } 337 338 /* 339 * describe the big_key key 340 */ 341 void big_key_describe(const struct key *key, struct seq_file *m) 342 { 343 size_t datalen = (size_t)key->payload.data[big_key_len]; 344 345 seq_puts(m, key->description); 346 347 if (key_is_positive(key)) 348 seq_printf(m, ": %zu [%s]", 349 datalen, 350 datalen > BIG_KEY_FILE_THRESHOLD ? "file" : "buff"); 351 } 352 353 /* 354 * read the key data 355 * - the key's semaphore is read-locked 356 */ 357 long big_key_read(const struct key *key, char __user *buffer, size_t buflen) 358 { 359 size_t datalen = (size_t)key->payload.data[big_key_len]; 360 long ret; 361 362 if (!buffer || buflen < datalen) 363 return datalen; 364 365 if (datalen > BIG_KEY_FILE_THRESHOLD) { 366 struct big_key_buf *buf; 367 struct path *path = (struct path *)&key->payload.data[big_key_path]; 368 struct file *file; 369 u8 *enckey = (u8 *)key->payload.data[big_key_data]; 370 size_t enclen = datalen + ENC_AUTHTAG_SIZE; 371 loff_t pos = 0; 372 373 buf = big_key_alloc_buffer(enclen); 374 if (!buf) 375 return -ENOMEM; 376 377 file = dentry_open(path, O_RDONLY, current_cred()); 378 if (IS_ERR(file)) { 379 ret = PTR_ERR(file); 380 goto error; 381 } 382 383 /* read file to kernel and decrypt */ 384 ret = kernel_read(file, buf->virt, enclen, &pos); 385 if (ret >= 0 && ret != enclen) { 386 ret = -EIO; 387 goto err_fput; 388 } 389 390 ret = big_key_crypt(BIG_KEY_DEC, buf, enclen, enckey); 391 if (ret) 392 goto err_fput; 393 394 ret = datalen; 395 396 /* copy decrypted data to user */ 397 if (copy_to_user(buffer, buf->virt, datalen) != 0) 398 ret = -EFAULT; 399 400 err_fput: 401 fput(file); 402 error: 403 big_key_free_buffer(buf); 404 } else { 405 ret = datalen; 406 if (copy_to_user(buffer, key->payload.data[big_key_data], 407 datalen) != 0) 408 ret = -EFAULT; 409 } 410 411 return ret; 412 } 413 414 /* 415 * Register key type 416 */ 417 static int __init big_key_init(void) 418 { 419 int ret; 420 421 /* init block cipher */ 422 big_key_aead = crypto_alloc_aead(big_key_alg_name, 0, CRYPTO_ALG_ASYNC); 423 if (IS_ERR(big_key_aead)) { 424 ret = PTR_ERR(big_key_aead); 425 pr_err("Can't alloc crypto: %d\n", ret); 426 return ret; 427 } 428 ret = crypto_aead_setauthsize(big_key_aead, ENC_AUTHTAG_SIZE); 429 if (ret < 0) { 430 pr_err("Can't set crypto auth tag len: %d\n", ret); 431 goto free_aead; 432 } 433 434 ret = register_key_type(&key_type_big_key); 435 if (ret < 0) { 436 pr_err("Can't register type: %d\n", ret); 437 goto free_aead; 438 } 439 440 return 0; 441 442 free_aead: 443 crypto_free_aead(big_key_aead); 444 return ret; 445 } 446 447 late_initcall(big_key_init); 448