1 /* 2 * Copyright (C) 2005,2006,2007,2008 IBM Corporation 3 * 4 * Authors: 5 * Mimi Zohar <zohar@us.ibm.com> 6 * Kylene Hall <kjhall@us.ibm.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation, version 2 of the License. 11 * 12 * File: ima_crypto.c 13 * Calculates md5/sha1 file hash, template hash, boot-aggreate hash 14 */ 15 16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 17 18 #include <linux/kernel.h> 19 #include <linux/moduleparam.h> 20 #include <linux/ratelimit.h> 21 #include <linux/file.h> 22 #include <linux/crypto.h> 23 #include <linux/scatterlist.h> 24 #include <linux/err.h> 25 #include <linux/slab.h> 26 #include <crypto/hash.h> 27 28 #include "ima.h" 29 30 /* minimum file size for ahash use */ 31 static unsigned long ima_ahash_minsize; 32 module_param_named(ahash_minsize, ima_ahash_minsize, ulong, 0644); 33 MODULE_PARM_DESC(ahash_minsize, "Minimum file size for ahash use"); 34 35 /* default is 0 - 1 page. */ 36 static int ima_maxorder; 37 static unsigned int ima_bufsize = PAGE_SIZE; 38 39 static int param_set_bufsize(const char *val, const struct kernel_param *kp) 40 { 41 unsigned long long size; 42 int order; 43 44 size = memparse(val, NULL); 45 order = get_order(size); 46 if (order >= MAX_ORDER) 47 return -EINVAL; 48 ima_maxorder = order; 49 ima_bufsize = PAGE_SIZE << order; 50 return 0; 51 } 52 53 static const struct kernel_param_ops param_ops_bufsize = { 54 .set = param_set_bufsize, 55 .get = param_get_uint, 56 }; 57 #define param_check_bufsize(name, p) __param_check(name, p, unsigned int) 58 59 module_param_named(ahash_bufsize, ima_bufsize, bufsize, 0644); 60 MODULE_PARM_DESC(ahash_bufsize, "Maximum ahash buffer size"); 61 62 static struct crypto_shash *ima_shash_tfm; 63 static struct crypto_ahash *ima_ahash_tfm; 64 65 int __init ima_init_crypto(void) 66 { 67 long rc; 68 69 ima_shash_tfm = crypto_alloc_shash(hash_algo_name[ima_hash_algo], 0, 0); 70 if (IS_ERR(ima_shash_tfm)) { 71 rc = PTR_ERR(ima_shash_tfm); 72 pr_err("Can not allocate %s (reason: %ld)\n", 73 hash_algo_name[ima_hash_algo], rc); 74 return rc; 75 } 76 return 0; 77 } 78 79 static struct crypto_shash *ima_alloc_tfm(enum hash_algo algo) 80 { 81 struct crypto_shash *tfm = ima_shash_tfm; 82 int rc; 83 84 if (algo < 0 || algo >= HASH_ALGO__LAST) 85 algo = ima_hash_algo; 86 87 if (algo != ima_hash_algo) { 88 tfm = crypto_alloc_shash(hash_algo_name[algo], 0, 0); 89 if (IS_ERR(tfm)) { 90 rc = PTR_ERR(tfm); 91 pr_err("Can not allocate %s (reason: %d)\n", 92 hash_algo_name[algo], rc); 93 } 94 } 95 return tfm; 96 } 97 98 static void ima_free_tfm(struct crypto_shash *tfm) 99 { 100 if (tfm != ima_shash_tfm) 101 crypto_free_shash(tfm); 102 } 103 104 /** 105 * ima_alloc_pages() - Allocate contiguous pages. 106 * @max_size: Maximum amount of memory to allocate. 107 * @allocated_size: Returned size of actual allocation. 108 * @last_warn: Should the min_size allocation warn or not. 109 * 110 * Tries to do opportunistic allocation for memory first trying to allocate 111 * max_size amount of memory and then splitting that until zero order is 112 * reached. Allocation is tried without generating allocation warnings unless 113 * last_warn is set. Last_warn set affects only last allocation of zero order. 114 * 115 * By default, ima_maxorder is 0 and it is equivalent to kmalloc(GFP_KERNEL) 116 * 117 * Return pointer to allocated memory, or NULL on failure. 118 */ 119 static void *ima_alloc_pages(loff_t max_size, size_t *allocated_size, 120 int last_warn) 121 { 122 void *ptr; 123 int order = ima_maxorder; 124 gfp_t gfp_mask = __GFP_RECLAIM | __GFP_NOWARN | __GFP_NORETRY; 125 126 if (order) 127 order = min(get_order(max_size), order); 128 129 for (; order; order--) { 130 ptr = (void *)__get_free_pages(gfp_mask, order); 131 if (ptr) { 132 *allocated_size = PAGE_SIZE << order; 133 return ptr; 134 } 135 } 136 137 /* order is zero - one page */ 138 139 gfp_mask = GFP_KERNEL; 140 141 if (!last_warn) 142 gfp_mask |= __GFP_NOWARN; 143 144 ptr = (void *)__get_free_pages(gfp_mask, 0); 145 if (ptr) { 146 *allocated_size = PAGE_SIZE; 147 return ptr; 148 } 149 150 *allocated_size = 0; 151 return NULL; 152 } 153 154 /** 155 * ima_free_pages() - Free pages allocated by ima_alloc_pages(). 156 * @ptr: Pointer to allocated pages. 157 * @size: Size of allocated buffer. 158 */ 159 static void ima_free_pages(void *ptr, size_t size) 160 { 161 if (!ptr) 162 return; 163 free_pages((unsigned long)ptr, get_order(size)); 164 } 165 166 static struct crypto_ahash *ima_alloc_atfm(enum hash_algo algo) 167 { 168 struct crypto_ahash *tfm = ima_ahash_tfm; 169 int rc; 170 171 if (algo < 0 || algo >= HASH_ALGO__LAST) 172 algo = ima_hash_algo; 173 174 if (algo != ima_hash_algo || !tfm) { 175 tfm = crypto_alloc_ahash(hash_algo_name[algo], 0, 0); 176 if (!IS_ERR(tfm)) { 177 if (algo == ima_hash_algo) 178 ima_ahash_tfm = tfm; 179 } else { 180 rc = PTR_ERR(tfm); 181 pr_err("Can not allocate %s (reason: %d)\n", 182 hash_algo_name[algo], rc); 183 } 184 } 185 return tfm; 186 } 187 188 static void ima_free_atfm(struct crypto_ahash *tfm) 189 { 190 if (tfm != ima_ahash_tfm) 191 crypto_free_ahash(tfm); 192 } 193 194 static inline int ahash_wait(int err, struct crypto_wait *wait) 195 { 196 197 err = crypto_wait_req(err, wait); 198 199 if (err) 200 pr_crit_ratelimited("ahash calculation failed: err: %d\n", err); 201 202 return err; 203 } 204 205 static int ima_calc_file_hash_atfm(struct file *file, 206 struct ima_digest_data *hash, 207 struct crypto_ahash *tfm) 208 { 209 loff_t i_size, offset; 210 char *rbuf[2] = { NULL, }; 211 int rc, read = 0, rbuf_len, active = 0, ahash_rc = 0; 212 struct ahash_request *req; 213 struct scatterlist sg[1]; 214 struct crypto_wait wait; 215 size_t rbuf_size[2]; 216 217 hash->length = crypto_ahash_digestsize(tfm); 218 219 req = ahash_request_alloc(tfm, GFP_KERNEL); 220 if (!req) 221 return -ENOMEM; 222 223 crypto_init_wait(&wait); 224 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG | 225 CRYPTO_TFM_REQ_MAY_SLEEP, 226 crypto_req_done, &wait); 227 228 rc = ahash_wait(crypto_ahash_init(req), &wait); 229 if (rc) 230 goto out1; 231 232 i_size = i_size_read(file_inode(file)); 233 234 if (i_size == 0) 235 goto out2; 236 237 /* 238 * Try to allocate maximum size of memory. 239 * Fail if even a single page cannot be allocated. 240 */ 241 rbuf[0] = ima_alloc_pages(i_size, &rbuf_size[0], 1); 242 if (!rbuf[0]) { 243 rc = -ENOMEM; 244 goto out1; 245 } 246 247 /* Only allocate one buffer if that is enough. */ 248 if (i_size > rbuf_size[0]) { 249 /* 250 * Try to allocate secondary buffer. If that fails fallback to 251 * using single buffering. Use previous memory allocation size 252 * as baseline for possible allocation size. 253 */ 254 rbuf[1] = ima_alloc_pages(i_size - rbuf_size[0], 255 &rbuf_size[1], 0); 256 } 257 258 if (!(file->f_mode & FMODE_READ)) { 259 file->f_mode |= FMODE_READ; 260 read = 1; 261 } 262 263 for (offset = 0; offset < i_size; offset += rbuf_len) { 264 if (!rbuf[1] && offset) { 265 /* Not using two buffers, and it is not the first 266 * read/request, wait for the completion of the 267 * previous ahash_update() request. 268 */ 269 rc = ahash_wait(ahash_rc, &wait); 270 if (rc) 271 goto out3; 272 } 273 /* read buffer */ 274 rbuf_len = min_t(loff_t, i_size - offset, rbuf_size[active]); 275 rc = integrity_kernel_read(file, offset, rbuf[active], 276 rbuf_len); 277 if (rc != rbuf_len) 278 goto out3; 279 280 if (rbuf[1] && offset) { 281 /* Using two buffers, and it is not the first 282 * read/request, wait for the completion of the 283 * previous ahash_update() request. 284 */ 285 rc = ahash_wait(ahash_rc, &wait); 286 if (rc) 287 goto out3; 288 } 289 290 sg_init_one(&sg[0], rbuf[active], rbuf_len); 291 ahash_request_set_crypt(req, sg, NULL, rbuf_len); 292 293 ahash_rc = crypto_ahash_update(req); 294 295 if (rbuf[1]) 296 active = !active; /* swap buffers, if we use two */ 297 } 298 /* wait for the last update request to complete */ 299 rc = ahash_wait(ahash_rc, &wait); 300 out3: 301 if (read) 302 file->f_mode &= ~FMODE_READ; 303 ima_free_pages(rbuf[0], rbuf_size[0]); 304 ima_free_pages(rbuf[1], rbuf_size[1]); 305 out2: 306 if (!rc) { 307 ahash_request_set_crypt(req, NULL, hash->digest, 0); 308 rc = ahash_wait(crypto_ahash_final(req), &wait); 309 } 310 out1: 311 ahash_request_free(req); 312 return rc; 313 } 314 315 static int ima_calc_file_ahash(struct file *file, struct ima_digest_data *hash) 316 { 317 struct crypto_ahash *tfm; 318 int rc; 319 320 tfm = ima_alloc_atfm(hash->algo); 321 if (IS_ERR(tfm)) 322 return PTR_ERR(tfm); 323 324 rc = ima_calc_file_hash_atfm(file, hash, tfm); 325 326 ima_free_atfm(tfm); 327 328 return rc; 329 } 330 331 static int ima_calc_file_hash_tfm(struct file *file, 332 struct ima_digest_data *hash, 333 struct crypto_shash *tfm) 334 { 335 loff_t i_size, offset = 0; 336 char *rbuf; 337 int rc, read = 0; 338 SHASH_DESC_ON_STACK(shash, tfm); 339 340 shash->tfm = tfm; 341 shash->flags = 0; 342 343 hash->length = crypto_shash_digestsize(tfm); 344 345 rc = crypto_shash_init(shash); 346 if (rc != 0) 347 return rc; 348 349 i_size = i_size_read(file_inode(file)); 350 351 if (i_size == 0) 352 goto out; 353 354 rbuf = kzalloc(PAGE_SIZE, GFP_KERNEL); 355 if (!rbuf) 356 return -ENOMEM; 357 358 if (!(file->f_mode & FMODE_READ)) { 359 file->f_mode |= FMODE_READ; 360 read = 1; 361 } 362 363 while (offset < i_size) { 364 int rbuf_len; 365 366 rbuf_len = integrity_kernel_read(file, offset, rbuf, PAGE_SIZE); 367 if (rbuf_len < 0) { 368 rc = rbuf_len; 369 break; 370 } 371 if (rbuf_len == 0) 372 break; 373 offset += rbuf_len; 374 375 rc = crypto_shash_update(shash, rbuf, rbuf_len); 376 if (rc) 377 break; 378 } 379 if (read) 380 file->f_mode &= ~FMODE_READ; 381 kfree(rbuf); 382 out: 383 if (!rc) 384 rc = crypto_shash_final(shash, hash->digest); 385 return rc; 386 } 387 388 static int ima_calc_file_shash(struct file *file, struct ima_digest_data *hash) 389 { 390 struct crypto_shash *tfm; 391 int rc; 392 393 tfm = ima_alloc_tfm(hash->algo); 394 if (IS_ERR(tfm)) 395 return PTR_ERR(tfm); 396 397 rc = ima_calc_file_hash_tfm(file, hash, tfm); 398 399 ima_free_tfm(tfm); 400 401 return rc; 402 } 403 404 /* 405 * ima_calc_file_hash - calculate file hash 406 * 407 * Asynchronous hash (ahash) allows using HW acceleration for calculating 408 * a hash. ahash performance varies for different data sizes on different 409 * crypto accelerators. shash performance might be better for smaller files. 410 * The 'ima.ahash_minsize' module parameter allows specifying the best 411 * minimum file size for using ahash on the system. 412 * 413 * If the ima.ahash_minsize parameter is not specified, this function uses 414 * shash for the hash calculation. If ahash fails, it falls back to using 415 * shash. 416 */ 417 int ima_calc_file_hash(struct file *file, struct ima_digest_data *hash) 418 { 419 loff_t i_size; 420 int rc; 421 422 /* 423 * For consistency, fail file's opened with the O_DIRECT flag on 424 * filesystems mounted with/without DAX option. 425 */ 426 if (file->f_flags & O_DIRECT) { 427 hash->length = hash_digest_size[ima_hash_algo]; 428 hash->algo = ima_hash_algo; 429 return -EINVAL; 430 } 431 432 i_size = i_size_read(file_inode(file)); 433 434 if (ima_ahash_minsize && i_size >= ima_ahash_minsize) { 435 rc = ima_calc_file_ahash(file, hash); 436 if (!rc) 437 return 0; 438 } 439 440 return ima_calc_file_shash(file, hash); 441 } 442 443 /* 444 * Calculate the hash of template data 445 */ 446 static int ima_calc_field_array_hash_tfm(struct ima_field_data *field_data, 447 struct ima_template_desc *td, 448 int num_fields, 449 struct ima_digest_data *hash, 450 struct crypto_shash *tfm) 451 { 452 SHASH_DESC_ON_STACK(shash, tfm); 453 int rc, i; 454 455 shash->tfm = tfm; 456 shash->flags = 0; 457 458 hash->length = crypto_shash_digestsize(tfm); 459 460 rc = crypto_shash_init(shash); 461 if (rc != 0) 462 return rc; 463 464 for (i = 0; i < num_fields; i++) { 465 u8 buffer[IMA_EVENT_NAME_LEN_MAX + 1] = { 0 }; 466 u8 *data_to_hash = field_data[i].data; 467 u32 datalen = field_data[i].len; 468 u32 datalen_to_hash = 469 !ima_canonical_fmt ? datalen : cpu_to_le32(datalen); 470 471 if (strcmp(td->name, IMA_TEMPLATE_IMA_NAME) != 0) { 472 rc = crypto_shash_update(shash, 473 (const u8 *) &datalen_to_hash, 474 sizeof(datalen_to_hash)); 475 if (rc) 476 break; 477 } else if (strcmp(td->fields[i]->field_id, "n") == 0) { 478 memcpy(buffer, data_to_hash, datalen); 479 data_to_hash = buffer; 480 datalen = IMA_EVENT_NAME_LEN_MAX + 1; 481 } 482 rc = crypto_shash_update(shash, data_to_hash, datalen); 483 if (rc) 484 break; 485 } 486 487 if (!rc) 488 rc = crypto_shash_final(shash, hash->digest); 489 490 return rc; 491 } 492 493 int ima_calc_field_array_hash(struct ima_field_data *field_data, 494 struct ima_template_desc *desc, int num_fields, 495 struct ima_digest_data *hash) 496 { 497 struct crypto_shash *tfm; 498 int rc; 499 500 tfm = ima_alloc_tfm(hash->algo); 501 if (IS_ERR(tfm)) 502 return PTR_ERR(tfm); 503 504 rc = ima_calc_field_array_hash_tfm(field_data, desc, num_fields, 505 hash, tfm); 506 507 ima_free_tfm(tfm); 508 509 return rc; 510 } 511 512 static int calc_buffer_ahash_atfm(const void *buf, loff_t len, 513 struct ima_digest_data *hash, 514 struct crypto_ahash *tfm) 515 { 516 struct ahash_request *req; 517 struct scatterlist sg; 518 struct crypto_wait wait; 519 int rc, ahash_rc = 0; 520 521 hash->length = crypto_ahash_digestsize(tfm); 522 523 req = ahash_request_alloc(tfm, GFP_KERNEL); 524 if (!req) 525 return -ENOMEM; 526 527 crypto_init_wait(&wait); 528 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG | 529 CRYPTO_TFM_REQ_MAY_SLEEP, 530 crypto_req_done, &wait); 531 532 rc = ahash_wait(crypto_ahash_init(req), &wait); 533 if (rc) 534 goto out; 535 536 sg_init_one(&sg, buf, len); 537 ahash_request_set_crypt(req, &sg, NULL, len); 538 539 ahash_rc = crypto_ahash_update(req); 540 541 /* wait for the update request to complete */ 542 rc = ahash_wait(ahash_rc, &wait); 543 if (!rc) { 544 ahash_request_set_crypt(req, NULL, hash->digest, 0); 545 rc = ahash_wait(crypto_ahash_final(req), &wait); 546 } 547 out: 548 ahash_request_free(req); 549 return rc; 550 } 551 552 static int calc_buffer_ahash(const void *buf, loff_t len, 553 struct ima_digest_data *hash) 554 { 555 struct crypto_ahash *tfm; 556 int rc; 557 558 tfm = ima_alloc_atfm(hash->algo); 559 if (IS_ERR(tfm)) 560 return PTR_ERR(tfm); 561 562 rc = calc_buffer_ahash_atfm(buf, len, hash, tfm); 563 564 ima_free_atfm(tfm); 565 566 return rc; 567 } 568 569 static int calc_buffer_shash_tfm(const void *buf, loff_t size, 570 struct ima_digest_data *hash, 571 struct crypto_shash *tfm) 572 { 573 SHASH_DESC_ON_STACK(shash, tfm); 574 unsigned int len; 575 int rc; 576 577 shash->tfm = tfm; 578 shash->flags = 0; 579 580 hash->length = crypto_shash_digestsize(tfm); 581 582 rc = crypto_shash_init(shash); 583 if (rc != 0) 584 return rc; 585 586 while (size) { 587 len = size < PAGE_SIZE ? size : PAGE_SIZE; 588 rc = crypto_shash_update(shash, buf, len); 589 if (rc) 590 break; 591 buf += len; 592 size -= len; 593 } 594 595 if (!rc) 596 rc = crypto_shash_final(shash, hash->digest); 597 return rc; 598 } 599 600 static int calc_buffer_shash(const void *buf, loff_t len, 601 struct ima_digest_data *hash) 602 { 603 struct crypto_shash *tfm; 604 int rc; 605 606 tfm = ima_alloc_tfm(hash->algo); 607 if (IS_ERR(tfm)) 608 return PTR_ERR(tfm); 609 610 rc = calc_buffer_shash_tfm(buf, len, hash, tfm); 611 612 ima_free_tfm(tfm); 613 return rc; 614 } 615 616 int ima_calc_buffer_hash(const void *buf, loff_t len, 617 struct ima_digest_data *hash) 618 { 619 int rc; 620 621 if (ima_ahash_minsize && len >= ima_ahash_minsize) { 622 rc = calc_buffer_ahash(buf, len, hash); 623 if (!rc) 624 return 0; 625 } 626 627 return calc_buffer_shash(buf, len, hash); 628 } 629 630 static void __init ima_pcrread(int idx, u8 *pcr) 631 { 632 if (!ima_used_chip) 633 return; 634 635 if (tpm_pcr_read(TPM_ANY_NUM, idx, pcr) != 0) 636 pr_err("Error Communicating to TPM chip\n"); 637 } 638 639 /* 640 * Calculate the boot aggregate hash 641 */ 642 static int __init ima_calc_boot_aggregate_tfm(char *digest, 643 struct crypto_shash *tfm) 644 { 645 u8 pcr_i[TPM_DIGEST_SIZE]; 646 int rc, i; 647 SHASH_DESC_ON_STACK(shash, tfm); 648 649 shash->tfm = tfm; 650 shash->flags = 0; 651 652 rc = crypto_shash_init(shash); 653 if (rc != 0) 654 return rc; 655 656 /* cumulative sha1 over tpm registers 0-7 */ 657 for (i = TPM_PCR0; i < TPM_PCR8; i++) { 658 ima_pcrread(i, pcr_i); 659 /* now accumulate with current aggregate */ 660 rc = crypto_shash_update(shash, pcr_i, TPM_DIGEST_SIZE); 661 } 662 if (!rc) 663 crypto_shash_final(shash, digest); 664 return rc; 665 } 666 667 int __init ima_calc_boot_aggregate(struct ima_digest_data *hash) 668 { 669 struct crypto_shash *tfm; 670 int rc; 671 672 tfm = ima_alloc_tfm(hash->algo); 673 if (IS_ERR(tfm)) 674 return PTR_ERR(tfm); 675 676 hash->length = crypto_shash_digestsize(tfm); 677 rc = ima_calc_boot_aggregate_tfm(hash->digest, tfm); 678 679 ima_free_tfm(tfm); 680 681 return rc; 682 } 683