1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2005,2006,2007,2008 IBM Corporation
4  *
5  * Authors:
6  * Mimi Zohar <zohar@us.ibm.com>
7  * Kylene Hall <kjhall@us.ibm.com>
8  *
9  * File: ima_crypto.c
10  *	Calculates md5/sha1 file hash, template hash, boot-aggreate hash
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/kernel.h>
16 #include <linux/moduleparam.h>
17 #include <linux/ratelimit.h>
18 #include <linux/file.h>
19 #include <linux/crypto.h>
20 #include <linux/scatterlist.h>
21 #include <linux/err.h>
22 #include <linux/slab.h>
23 #include <crypto/hash.h>
24 
25 #include "ima.h"
26 
27 /* minimum file size for ahash use */
28 static unsigned long ima_ahash_minsize;
29 module_param_named(ahash_minsize, ima_ahash_minsize, ulong, 0644);
30 MODULE_PARM_DESC(ahash_minsize, "Minimum file size for ahash use");
31 
32 /* default is 0 - 1 page. */
33 static int ima_maxorder;
34 static unsigned int ima_bufsize = PAGE_SIZE;
35 
36 static int param_set_bufsize(const char *val, const struct kernel_param *kp)
37 {
38 	unsigned long long size;
39 	int order;
40 
41 	size = memparse(val, NULL);
42 	order = get_order(size);
43 	if (order >= MAX_ORDER)
44 		return -EINVAL;
45 	ima_maxorder = order;
46 	ima_bufsize = PAGE_SIZE << order;
47 	return 0;
48 }
49 
50 static const struct kernel_param_ops param_ops_bufsize = {
51 	.set = param_set_bufsize,
52 	.get = param_get_uint,
53 };
54 #define param_check_bufsize(name, p) __param_check(name, p, unsigned int)
55 
56 module_param_named(ahash_bufsize, ima_bufsize, bufsize, 0644);
57 MODULE_PARM_DESC(ahash_bufsize, "Maximum ahash buffer size");
58 
59 static struct crypto_shash *ima_shash_tfm;
60 static struct crypto_ahash *ima_ahash_tfm;
61 
62 int __init ima_init_crypto(void)
63 {
64 	long rc;
65 
66 	ima_shash_tfm = crypto_alloc_shash(hash_algo_name[ima_hash_algo], 0, 0);
67 	if (IS_ERR(ima_shash_tfm)) {
68 		rc = PTR_ERR(ima_shash_tfm);
69 		pr_err("Can not allocate %s (reason: %ld)\n",
70 		       hash_algo_name[ima_hash_algo], rc);
71 		return rc;
72 	}
73 	pr_info("Allocated hash algorithm: %s\n",
74 		hash_algo_name[ima_hash_algo]);
75 	return 0;
76 }
77 
78 static struct crypto_shash *ima_alloc_tfm(enum hash_algo algo)
79 {
80 	struct crypto_shash *tfm = ima_shash_tfm;
81 	int rc;
82 
83 	if (algo < 0 || algo >= HASH_ALGO__LAST)
84 		algo = ima_hash_algo;
85 
86 	if (algo != ima_hash_algo) {
87 		tfm = crypto_alloc_shash(hash_algo_name[algo], 0, 0);
88 		if (IS_ERR(tfm)) {
89 			rc = PTR_ERR(tfm);
90 			pr_err("Can not allocate %s (reason: %d)\n",
91 			       hash_algo_name[algo], rc);
92 		}
93 	}
94 	return tfm;
95 }
96 
97 static void ima_free_tfm(struct crypto_shash *tfm)
98 {
99 	if (tfm != ima_shash_tfm)
100 		crypto_free_shash(tfm);
101 }
102 
103 /**
104  * ima_alloc_pages() - Allocate contiguous pages.
105  * @max_size:       Maximum amount of memory to allocate.
106  * @allocated_size: Returned size of actual allocation.
107  * @last_warn:      Should the min_size allocation warn or not.
108  *
109  * Tries to do opportunistic allocation for memory first trying to allocate
110  * max_size amount of memory and then splitting that until zero order is
111  * reached. Allocation is tried without generating allocation warnings unless
112  * last_warn is set. Last_warn set affects only last allocation of zero order.
113  *
114  * By default, ima_maxorder is 0 and it is equivalent to kmalloc(GFP_KERNEL)
115  *
116  * Return pointer to allocated memory, or NULL on failure.
117  */
118 static void *ima_alloc_pages(loff_t max_size, size_t *allocated_size,
119 			     int last_warn)
120 {
121 	void *ptr;
122 	int order = ima_maxorder;
123 	gfp_t gfp_mask = __GFP_RECLAIM | __GFP_NOWARN | __GFP_NORETRY;
124 
125 	if (order)
126 		order = min(get_order(max_size), order);
127 
128 	for (; order; order--) {
129 		ptr = (void *)__get_free_pages(gfp_mask, order);
130 		if (ptr) {
131 			*allocated_size = PAGE_SIZE << order;
132 			return ptr;
133 		}
134 	}
135 
136 	/* order is zero - one page */
137 
138 	gfp_mask = GFP_KERNEL;
139 
140 	if (!last_warn)
141 		gfp_mask |= __GFP_NOWARN;
142 
143 	ptr = (void *)__get_free_pages(gfp_mask, 0);
144 	if (ptr) {
145 		*allocated_size = PAGE_SIZE;
146 		return ptr;
147 	}
148 
149 	*allocated_size = 0;
150 	return NULL;
151 }
152 
153 /**
154  * ima_free_pages() - Free pages allocated by ima_alloc_pages().
155  * @ptr:  Pointer to allocated pages.
156  * @size: Size of allocated buffer.
157  */
158 static void ima_free_pages(void *ptr, size_t size)
159 {
160 	if (!ptr)
161 		return;
162 	free_pages((unsigned long)ptr, get_order(size));
163 }
164 
165 static struct crypto_ahash *ima_alloc_atfm(enum hash_algo algo)
166 {
167 	struct crypto_ahash *tfm = ima_ahash_tfm;
168 	int rc;
169 
170 	if (algo < 0 || algo >= HASH_ALGO__LAST)
171 		algo = ima_hash_algo;
172 
173 	if (algo != ima_hash_algo || !tfm) {
174 		tfm = crypto_alloc_ahash(hash_algo_name[algo], 0, 0);
175 		if (!IS_ERR(tfm)) {
176 			if (algo == ima_hash_algo)
177 				ima_ahash_tfm = tfm;
178 		} else {
179 			rc = PTR_ERR(tfm);
180 			pr_err("Can not allocate %s (reason: %d)\n",
181 			       hash_algo_name[algo], rc);
182 		}
183 	}
184 	return tfm;
185 }
186 
187 static void ima_free_atfm(struct crypto_ahash *tfm)
188 {
189 	if (tfm != ima_ahash_tfm)
190 		crypto_free_ahash(tfm);
191 }
192 
193 static inline int ahash_wait(int err, struct crypto_wait *wait)
194 {
195 
196 	err = crypto_wait_req(err, wait);
197 
198 	if (err)
199 		pr_crit_ratelimited("ahash calculation failed: err: %d\n", err);
200 
201 	return err;
202 }
203 
204 static int ima_calc_file_hash_atfm(struct file *file,
205 				   struct ima_digest_data *hash,
206 				   struct crypto_ahash *tfm)
207 {
208 	loff_t i_size, offset;
209 	char *rbuf[2] = { NULL, };
210 	int rc, rbuf_len, active = 0, ahash_rc = 0;
211 	struct ahash_request *req;
212 	struct scatterlist sg[1];
213 	struct crypto_wait wait;
214 	size_t rbuf_size[2];
215 
216 	hash->length = crypto_ahash_digestsize(tfm);
217 
218 	req = ahash_request_alloc(tfm, GFP_KERNEL);
219 	if (!req)
220 		return -ENOMEM;
221 
222 	crypto_init_wait(&wait);
223 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
224 				   CRYPTO_TFM_REQ_MAY_SLEEP,
225 				   crypto_req_done, &wait);
226 
227 	rc = ahash_wait(crypto_ahash_init(req), &wait);
228 	if (rc)
229 		goto out1;
230 
231 	i_size = i_size_read(file_inode(file));
232 
233 	if (i_size == 0)
234 		goto out2;
235 
236 	/*
237 	 * Try to allocate maximum size of memory.
238 	 * Fail if even a single page cannot be allocated.
239 	 */
240 	rbuf[0] = ima_alloc_pages(i_size, &rbuf_size[0], 1);
241 	if (!rbuf[0]) {
242 		rc = -ENOMEM;
243 		goto out1;
244 	}
245 
246 	/* Only allocate one buffer if that is enough. */
247 	if (i_size > rbuf_size[0]) {
248 		/*
249 		 * Try to allocate secondary buffer. If that fails fallback to
250 		 * using single buffering. Use previous memory allocation size
251 		 * as baseline for possible allocation size.
252 		 */
253 		rbuf[1] = ima_alloc_pages(i_size - rbuf_size[0],
254 					  &rbuf_size[1], 0);
255 	}
256 
257 	for (offset = 0; offset < i_size; offset += rbuf_len) {
258 		if (!rbuf[1] && offset) {
259 			/* Not using two buffers, and it is not the first
260 			 * read/request, wait for the completion of the
261 			 * previous ahash_update() request.
262 			 */
263 			rc = ahash_wait(ahash_rc, &wait);
264 			if (rc)
265 				goto out3;
266 		}
267 		/* read buffer */
268 		rbuf_len = min_t(loff_t, i_size - offset, rbuf_size[active]);
269 		rc = integrity_kernel_read(file, offset, rbuf[active],
270 					   rbuf_len);
271 		if (rc != rbuf_len)
272 			goto out3;
273 
274 		if (rbuf[1] && offset) {
275 			/* Using two buffers, and it is not the first
276 			 * read/request, wait for the completion of the
277 			 * previous ahash_update() request.
278 			 */
279 			rc = ahash_wait(ahash_rc, &wait);
280 			if (rc)
281 				goto out3;
282 		}
283 
284 		sg_init_one(&sg[0], rbuf[active], rbuf_len);
285 		ahash_request_set_crypt(req, sg, NULL, rbuf_len);
286 
287 		ahash_rc = crypto_ahash_update(req);
288 
289 		if (rbuf[1])
290 			active = !active; /* swap buffers, if we use two */
291 	}
292 	/* wait for the last update request to complete */
293 	rc = ahash_wait(ahash_rc, &wait);
294 out3:
295 	ima_free_pages(rbuf[0], rbuf_size[0]);
296 	ima_free_pages(rbuf[1], rbuf_size[1]);
297 out2:
298 	if (!rc) {
299 		ahash_request_set_crypt(req, NULL, hash->digest, 0);
300 		rc = ahash_wait(crypto_ahash_final(req), &wait);
301 	}
302 out1:
303 	ahash_request_free(req);
304 	return rc;
305 }
306 
307 static int ima_calc_file_ahash(struct file *file, struct ima_digest_data *hash)
308 {
309 	struct crypto_ahash *tfm;
310 	int rc;
311 
312 	tfm = ima_alloc_atfm(hash->algo);
313 	if (IS_ERR(tfm))
314 		return PTR_ERR(tfm);
315 
316 	rc = ima_calc_file_hash_atfm(file, hash, tfm);
317 
318 	ima_free_atfm(tfm);
319 
320 	return rc;
321 }
322 
323 static int ima_calc_file_hash_tfm(struct file *file,
324 				  struct ima_digest_data *hash,
325 				  struct crypto_shash *tfm)
326 {
327 	loff_t i_size, offset = 0;
328 	char *rbuf;
329 	int rc;
330 	SHASH_DESC_ON_STACK(shash, tfm);
331 
332 	shash->tfm = tfm;
333 
334 	hash->length = crypto_shash_digestsize(tfm);
335 
336 	rc = crypto_shash_init(shash);
337 	if (rc != 0)
338 		return rc;
339 
340 	i_size = i_size_read(file_inode(file));
341 
342 	if (i_size == 0)
343 		goto out;
344 
345 	rbuf = kzalloc(PAGE_SIZE, GFP_KERNEL);
346 	if (!rbuf)
347 		return -ENOMEM;
348 
349 	while (offset < i_size) {
350 		int rbuf_len;
351 
352 		rbuf_len = integrity_kernel_read(file, offset, rbuf, PAGE_SIZE);
353 		if (rbuf_len < 0) {
354 			rc = rbuf_len;
355 			break;
356 		}
357 		if (rbuf_len == 0)
358 			break;
359 		offset += rbuf_len;
360 
361 		rc = crypto_shash_update(shash, rbuf, rbuf_len);
362 		if (rc)
363 			break;
364 	}
365 	kfree(rbuf);
366 out:
367 	if (!rc)
368 		rc = crypto_shash_final(shash, hash->digest);
369 	return rc;
370 }
371 
372 static int ima_calc_file_shash(struct file *file, struct ima_digest_data *hash)
373 {
374 	struct crypto_shash *tfm;
375 	int rc;
376 
377 	tfm = ima_alloc_tfm(hash->algo);
378 	if (IS_ERR(tfm))
379 		return PTR_ERR(tfm);
380 
381 	rc = ima_calc_file_hash_tfm(file, hash, tfm);
382 
383 	ima_free_tfm(tfm);
384 
385 	return rc;
386 }
387 
388 /*
389  * ima_calc_file_hash - calculate file hash
390  *
391  * Asynchronous hash (ahash) allows using HW acceleration for calculating
392  * a hash. ahash performance varies for different data sizes on different
393  * crypto accelerators. shash performance might be better for smaller files.
394  * The 'ima.ahash_minsize' module parameter allows specifying the best
395  * minimum file size for using ahash on the system.
396  *
397  * If the ima.ahash_minsize parameter is not specified, this function uses
398  * shash for the hash calculation.  If ahash fails, it falls back to using
399  * shash.
400  */
401 int ima_calc_file_hash(struct file *file, struct ima_digest_data *hash)
402 {
403 	loff_t i_size;
404 	int rc;
405 	struct file *f = file;
406 	bool new_file_instance = false, modified_flags = false;
407 
408 	/*
409 	 * For consistency, fail file's opened with the O_DIRECT flag on
410 	 * filesystems mounted with/without DAX option.
411 	 */
412 	if (file->f_flags & O_DIRECT) {
413 		hash->length = hash_digest_size[ima_hash_algo];
414 		hash->algo = ima_hash_algo;
415 		return -EINVAL;
416 	}
417 
418 	/* Open a new file instance in O_RDONLY if we cannot read */
419 	if (!(file->f_mode & FMODE_READ)) {
420 		int flags = file->f_flags & ~(O_WRONLY | O_APPEND |
421 				O_TRUNC | O_CREAT | O_NOCTTY | O_EXCL);
422 		flags |= O_RDONLY;
423 		f = dentry_open(&file->f_path, flags, file->f_cred);
424 		if (IS_ERR(f)) {
425 			/*
426 			 * Cannot open the file again, lets modify f_flags
427 			 * of original and continue
428 			 */
429 			pr_info_ratelimited("Unable to reopen file for reading.\n");
430 			f = file;
431 			f->f_flags |= FMODE_READ;
432 			modified_flags = true;
433 		} else {
434 			new_file_instance = true;
435 		}
436 	}
437 
438 	i_size = i_size_read(file_inode(f));
439 
440 	if (ima_ahash_minsize && i_size >= ima_ahash_minsize) {
441 		rc = ima_calc_file_ahash(f, hash);
442 		if (!rc)
443 			goto out;
444 	}
445 
446 	rc = ima_calc_file_shash(f, hash);
447 out:
448 	if (new_file_instance)
449 		fput(f);
450 	else if (modified_flags)
451 		f->f_flags &= ~FMODE_READ;
452 	return rc;
453 }
454 
455 /*
456  * Calculate the hash of template data
457  */
458 static int ima_calc_field_array_hash_tfm(struct ima_field_data *field_data,
459 					 struct ima_template_desc *td,
460 					 int num_fields,
461 					 struct ima_digest_data *hash,
462 					 struct crypto_shash *tfm)
463 {
464 	SHASH_DESC_ON_STACK(shash, tfm);
465 	int rc, i;
466 
467 	shash->tfm = tfm;
468 
469 	hash->length = crypto_shash_digestsize(tfm);
470 
471 	rc = crypto_shash_init(shash);
472 	if (rc != 0)
473 		return rc;
474 
475 	for (i = 0; i < num_fields; i++) {
476 		u8 buffer[IMA_EVENT_NAME_LEN_MAX + 1] = { 0 };
477 		u8 *data_to_hash = field_data[i].data;
478 		u32 datalen = field_data[i].len;
479 		u32 datalen_to_hash =
480 		    !ima_canonical_fmt ? datalen : cpu_to_le32(datalen);
481 
482 		if (strcmp(td->name, IMA_TEMPLATE_IMA_NAME) != 0) {
483 			rc = crypto_shash_update(shash,
484 						(const u8 *) &datalen_to_hash,
485 						sizeof(datalen_to_hash));
486 			if (rc)
487 				break;
488 		} else if (strcmp(td->fields[i]->field_id, "n") == 0) {
489 			memcpy(buffer, data_to_hash, datalen);
490 			data_to_hash = buffer;
491 			datalen = IMA_EVENT_NAME_LEN_MAX + 1;
492 		}
493 		rc = crypto_shash_update(shash, data_to_hash, datalen);
494 		if (rc)
495 			break;
496 	}
497 
498 	if (!rc)
499 		rc = crypto_shash_final(shash, hash->digest);
500 
501 	return rc;
502 }
503 
504 int ima_calc_field_array_hash(struct ima_field_data *field_data,
505 			      struct ima_template_desc *desc, int num_fields,
506 			      struct ima_digest_data *hash)
507 {
508 	struct crypto_shash *tfm;
509 	int rc;
510 
511 	tfm = ima_alloc_tfm(hash->algo);
512 	if (IS_ERR(tfm))
513 		return PTR_ERR(tfm);
514 
515 	rc = ima_calc_field_array_hash_tfm(field_data, desc, num_fields,
516 					   hash, tfm);
517 
518 	ima_free_tfm(tfm);
519 
520 	return rc;
521 }
522 
523 static int calc_buffer_ahash_atfm(const void *buf, loff_t len,
524 				  struct ima_digest_data *hash,
525 				  struct crypto_ahash *tfm)
526 {
527 	struct ahash_request *req;
528 	struct scatterlist sg;
529 	struct crypto_wait wait;
530 	int rc, ahash_rc = 0;
531 
532 	hash->length = crypto_ahash_digestsize(tfm);
533 
534 	req = ahash_request_alloc(tfm, GFP_KERNEL);
535 	if (!req)
536 		return -ENOMEM;
537 
538 	crypto_init_wait(&wait);
539 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
540 				   CRYPTO_TFM_REQ_MAY_SLEEP,
541 				   crypto_req_done, &wait);
542 
543 	rc = ahash_wait(crypto_ahash_init(req), &wait);
544 	if (rc)
545 		goto out;
546 
547 	sg_init_one(&sg, buf, len);
548 	ahash_request_set_crypt(req, &sg, NULL, len);
549 
550 	ahash_rc = crypto_ahash_update(req);
551 
552 	/* wait for the update request to complete */
553 	rc = ahash_wait(ahash_rc, &wait);
554 	if (!rc) {
555 		ahash_request_set_crypt(req, NULL, hash->digest, 0);
556 		rc = ahash_wait(crypto_ahash_final(req), &wait);
557 	}
558 out:
559 	ahash_request_free(req);
560 	return rc;
561 }
562 
563 static int calc_buffer_ahash(const void *buf, loff_t len,
564 			     struct ima_digest_data *hash)
565 {
566 	struct crypto_ahash *tfm;
567 	int rc;
568 
569 	tfm = ima_alloc_atfm(hash->algo);
570 	if (IS_ERR(tfm))
571 		return PTR_ERR(tfm);
572 
573 	rc = calc_buffer_ahash_atfm(buf, len, hash, tfm);
574 
575 	ima_free_atfm(tfm);
576 
577 	return rc;
578 }
579 
580 static int calc_buffer_shash_tfm(const void *buf, loff_t size,
581 				struct ima_digest_data *hash,
582 				struct crypto_shash *tfm)
583 {
584 	SHASH_DESC_ON_STACK(shash, tfm);
585 	unsigned int len;
586 	int rc;
587 
588 	shash->tfm = tfm;
589 
590 	hash->length = crypto_shash_digestsize(tfm);
591 
592 	rc = crypto_shash_init(shash);
593 	if (rc != 0)
594 		return rc;
595 
596 	while (size) {
597 		len = size < PAGE_SIZE ? size : PAGE_SIZE;
598 		rc = crypto_shash_update(shash, buf, len);
599 		if (rc)
600 			break;
601 		buf += len;
602 		size -= len;
603 	}
604 
605 	if (!rc)
606 		rc = crypto_shash_final(shash, hash->digest);
607 	return rc;
608 }
609 
610 static int calc_buffer_shash(const void *buf, loff_t len,
611 			     struct ima_digest_data *hash)
612 {
613 	struct crypto_shash *tfm;
614 	int rc;
615 
616 	tfm = ima_alloc_tfm(hash->algo);
617 	if (IS_ERR(tfm))
618 		return PTR_ERR(tfm);
619 
620 	rc = calc_buffer_shash_tfm(buf, len, hash, tfm);
621 
622 	ima_free_tfm(tfm);
623 	return rc;
624 }
625 
626 int ima_calc_buffer_hash(const void *buf, loff_t len,
627 			 struct ima_digest_data *hash)
628 {
629 	int rc;
630 
631 	if (ima_ahash_minsize && len >= ima_ahash_minsize) {
632 		rc = calc_buffer_ahash(buf, len, hash);
633 		if (!rc)
634 			return 0;
635 	}
636 
637 	return calc_buffer_shash(buf, len, hash);
638 }
639 
640 static void __init ima_pcrread(u32 idx, struct tpm_digest *d)
641 {
642 	if (!ima_tpm_chip)
643 		return;
644 
645 	if (tpm_pcr_read(ima_tpm_chip, idx, d) != 0)
646 		pr_err("Error Communicating to TPM chip\n");
647 }
648 
649 /*
650  * Calculate the boot aggregate hash
651  */
652 static int __init ima_calc_boot_aggregate_tfm(char *digest,
653 					      struct crypto_shash *tfm)
654 {
655 	struct tpm_digest d = { .alg_id = TPM_ALG_SHA1, .digest = {0} };
656 	int rc;
657 	u32 i;
658 	SHASH_DESC_ON_STACK(shash, tfm);
659 
660 	shash->tfm = tfm;
661 
662 	rc = crypto_shash_init(shash);
663 	if (rc != 0)
664 		return rc;
665 
666 	/* cumulative sha1 over tpm registers 0-7 */
667 	for (i = TPM_PCR0; i < TPM_PCR8; i++) {
668 		ima_pcrread(i, &d);
669 		/* now accumulate with current aggregate */
670 		rc = crypto_shash_update(shash, d.digest, TPM_DIGEST_SIZE);
671 	}
672 	if (!rc)
673 		crypto_shash_final(shash, digest);
674 	return rc;
675 }
676 
677 int __init ima_calc_boot_aggregate(struct ima_digest_data *hash)
678 {
679 	struct crypto_shash *tfm;
680 	int rc;
681 
682 	tfm = ima_alloc_tfm(hash->algo);
683 	if (IS_ERR(tfm))
684 		return PTR_ERR(tfm);
685 
686 	hash->length = crypto_shash_digestsize(tfm);
687 	rc = ima_calc_boot_aggregate_tfm(hash->digest, tfm);
688 
689 	ima_free_tfm(tfm);
690 
691 	return rc;
692 }
693