xref: /openbmc/linux/security/commoncap.c (revision b35565bb)
1 /* Common capabilities, needed by capability.o.
2  *
3  *	This program is free software; you can redistribute it and/or modify
4  *	it under the terms of the GNU General Public License as published by
5  *	the Free Software Foundation; either version 2 of the License, or
6  *	(at your option) any later version.
7  *
8  */
9 
10 #include <linux/capability.h>
11 #include <linux/audit.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/lsm_hooks.h>
16 #include <linux/file.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/skbuff.h>
22 #include <linux/netlink.h>
23 #include <linux/ptrace.h>
24 #include <linux/xattr.h>
25 #include <linux/hugetlb.h>
26 #include <linux/mount.h>
27 #include <linux/sched.h>
28 #include <linux/prctl.h>
29 #include <linux/securebits.h>
30 #include <linux/user_namespace.h>
31 #include <linux/binfmts.h>
32 #include <linux/personality.h>
33 
34 /*
35  * If a non-root user executes a setuid-root binary in
36  * !secure(SECURE_NOROOT) mode, then we raise capabilities.
37  * However if fE is also set, then the intent is for only
38  * the file capabilities to be applied, and the setuid-root
39  * bit is left on either to change the uid (plausible) or
40  * to get full privilege on a kernel without file capabilities
41  * support.  So in that case we do not raise capabilities.
42  *
43  * Warn if that happens, once per boot.
44  */
45 static void warn_setuid_and_fcaps_mixed(const char *fname)
46 {
47 	static int warned;
48 	if (!warned) {
49 		printk(KERN_INFO "warning: `%s' has both setuid-root and"
50 			" effective capabilities. Therefore not raising all"
51 			" capabilities.\n", fname);
52 		warned = 1;
53 	}
54 }
55 
56 /**
57  * cap_capable - Determine whether a task has a particular effective capability
58  * @cred: The credentials to use
59  * @ns:  The user namespace in which we need the capability
60  * @cap: The capability to check for
61  * @audit: Whether to write an audit message or not
62  *
63  * Determine whether the nominated task has the specified capability amongst
64  * its effective set, returning 0 if it does, -ve if it does not.
65  *
66  * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
67  * and has_capability() functions.  That is, it has the reverse semantics:
68  * cap_has_capability() returns 0 when a task has a capability, but the
69  * kernel's capable() and has_capability() returns 1 for this case.
70  */
71 int cap_capable(const struct cred *cred, struct user_namespace *targ_ns,
72 		int cap, int audit)
73 {
74 	struct user_namespace *ns = targ_ns;
75 
76 	/* See if cred has the capability in the target user namespace
77 	 * by examining the target user namespace and all of the target
78 	 * user namespace's parents.
79 	 */
80 	for (;;) {
81 		/* Do we have the necessary capabilities? */
82 		if (ns == cred->user_ns)
83 			return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
84 
85 		/*
86 		 * If we're already at a lower level than we're looking for,
87 		 * we're done searching.
88 		 */
89 		if (ns->level <= cred->user_ns->level)
90 			return -EPERM;
91 
92 		/*
93 		 * The owner of the user namespace in the parent of the
94 		 * user namespace has all caps.
95 		 */
96 		if ((ns->parent == cred->user_ns) && uid_eq(ns->owner, cred->euid))
97 			return 0;
98 
99 		/*
100 		 * If you have a capability in a parent user ns, then you have
101 		 * it over all children user namespaces as well.
102 		 */
103 		ns = ns->parent;
104 	}
105 
106 	/* We never get here */
107 }
108 
109 /**
110  * cap_settime - Determine whether the current process may set the system clock
111  * @ts: The time to set
112  * @tz: The timezone to set
113  *
114  * Determine whether the current process may set the system clock and timezone
115  * information, returning 0 if permission granted, -ve if denied.
116  */
117 int cap_settime(const struct timespec64 *ts, const struct timezone *tz)
118 {
119 	if (!capable(CAP_SYS_TIME))
120 		return -EPERM;
121 	return 0;
122 }
123 
124 /**
125  * cap_ptrace_access_check - Determine whether the current process may access
126  *			   another
127  * @child: The process to be accessed
128  * @mode: The mode of attachment.
129  *
130  * If we are in the same or an ancestor user_ns and have all the target
131  * task's capabilities, then ptrace access is allowed.
132  * If we have the ptrace capability to the target user_ns, then ptrace
133  * access is allowed.
134  * Else denied.
135  *
136  * Determine whether a process may access another, returning 0 if permission
137  * granted, -ve if denied.
138  */
139 int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
140 {
141 	int ret = 0;
142 	const struct cred *cred, *child_cred;
143 	const kernel_cap_t *caller_caps;
144 
145 	rcu_read_lock();
146 	cred = current_cred();
147 	child_cred = __task_cred(child);
148 	if (mode & PTRACE_MODE_FSCREDS)
149 		caller_caps = &cred->cap_effective;
150 	else
151 		caller_caps = &cred->cap_permitted;
152 	if (cred->user_ns == child_cred->user_ns &&
153 	    cap_issubset(child_cred->cap_permitted, *caller_caps))
154 		goto out;
155 	if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE))
156 		goto out;
157 	ret = -EPERM;
158 out:
159 	rcu_read_unlock();
160 	return ret;
161 }
162 
163 /**
164  * cap_ptrace_traceme - Determine whether another process may trace the current
165  * @parent: The task proposed to be the tracer
166  *
167  * If parent is in the same or an ancestor user_ns and has all current's
168  * capabilities, then ptrace access is allowed.
169  * If parent has the ptrace capability to current's user_ns, then ptrace
170  * access is allowed.
171  * Else denied.
172  *
173  * Determine whether the nominated task is permitted to trace the current
174  * process, returning 0 if permission is granted, -ve if denied.
175  */
176 int cap_ptrace_traceme(struct task_struct *parent)
177 {
178 	int ret = 0;
179 	const struct cred *cred, *child_cred;
180 
181 	rcu_read_lock();
182 	cred = __task_cred(parent);
183 	child_cred = current_cred();
184 	if (cred->user_ns == child_cred->user_ns &&
185 	    cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
186 		goto out;
187 	if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE))
188 		goto out;
189 	ret = -EPERM;
190 out:
191 	rcu_read_unlock();
192 	return ret;
193 }
194 
195 /**
196  * cap_capget - Retrieve a task's capability sets
197  * @target: The task from which to retrieve the capability sets
198  * @effective: The place to record the effective set
199  * @inheritable: The place to record the inheritable set
200  * @permitted: The place to record the permitted set
201  *
202  * This function retrieves the capabilities of the nominated task and returns
203  * them to the caller.
204  */
205 int cap_capget(struct task_struct *target, kernel_cap_t *effective,
206 	       kernel_cap_t *inheritable, kernel_cap_t *permitted)
207 {
208 	const struct cred *cred;
209 
210 	/* Derived from kernel/capability.c:sys_capget. */
211 	rcu_read_lock();
212 	cred = __task_cred(target);
213 	*effective   = cred->cap_effective;
214 	*inheritable = cred->cap_inheritable;
215 	*permitted   = cred->cap_permitted;
216 	rcu_read_unlock();
217 	return 0;
218 }
219 
220 /*
221  * Determine whether the inheritable capabilities are limited to the old
222  * permitted set.  Returns 1 if they are limited, 0 if they are not.
223  */
224 static inline int cap_inh_is_capped(void)
225 {
226 
227 	/* they are so limited unless the current task has the CAP_SETPCAP
228 	 * capability
229 	 */
230 	if (cap_capable(current_cred(), current_cred()->user_ns,
231 			CAP_SETPCAP, SECURITY_CAP_AUDIT) == 0)
232 		return 0;
233 	return 1;
234 }
235 
236 /**
237  * cap_capset - Validate and apply proposed changes to current's capabilities
238  * @new: The proposed new credentials; alterations should be made here
239  * @old: The current task's current credentials
240  * @effective: A pointer to the proposed new effective capabilities set
241  * @inheritable: A pointer to the proposed new inheritable capabilities set
242  * @permitted: A pointer to the proposed new permitted capabilities set
243  *
244  * This function validates and applies a proposed mass change to the current
245  * process's capability sets.  The changes are made to the proposed new
246  * credentials, and assuming no error, will be committed by the caller of LSM.
247  */
248 int cap_capset(struct cred *new,
249 	       const struct cred *old,
250 	       const kernel_cap_t *effective,
251 	       const kernel_cap_t *inheritable,
252 	       const kernel_cap_t *permitted)
253 {
254 	if (cap_inh_is_capped() &&
255 	    !cap_issubset(*inheritable,
256 			  cap_combine(old->cap_inheritable,
257 				      old->cap_permitted)))
258 		/* incapable of using this inheritable set */
259 		return -EPERM;
260 
261 	if (!cap_issubset(*inheritable,
262 			  cap_combine(old->cap_inheritable,
263 				      old->cap_bset)))
264 		/* no new pI capabilities outside bounding set */
265 		return -EPERM;
266 
267 	/* verify restrictions on target's new Permitted set */
268 	if (!cap_issubset(*permitted, old->cap_permitted))
269 		return -EPERM;
270 
271 	/* verify the _new_Effective_ is a subset of the _new_Permitted_ */
272 	if (!cap_issubset(*effective, *permitted))
273 		return -EPERM;
274 
275 	new->cap_effective   = *effective;
276 	new->cap_inheritable = *inheritable;
277 	new->cap_permitted   = *permitted;
278 
279 	/*
280 	 * Mask off ambient bits that are no longer both permitted and
281 	 * inheritable.
282 	 */
283 	new->cap_ambient = cap_intersect(new->cap_ambient,
284 					 cap_intersect(*permitted,
285 						       *inheritable));
286 	if (WARN_ON(!cap_ambient_invariant_ok(new)))
287 		return -EINVAL;
288 	return 0;
289 }
290 
291 /**
292  * cap_inode_need_killpriv - Determine if inode change affects privileges
293  * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
294  *
295  * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
296  * affects the security markings on that inode, and if it is, should
297  * inode_killpriv() be invoked or the change rejected.
298  *
299  * Returns 1 if security.capability has a value, meaning inode_killpriv()
300  * is required, 0 otherwise, meaning inode_killpriv() is not required.
301  */
302 int cap_inode_need_killpriv(struct dentry *dentry)
303 {
304 	struct inode *inode = d_backing_inode(dentry);
305 	int error;
306 
307 	error = __vfs_getxattr(dentry, inode, XATTR_NAME_CAPS, NULL, 0);
308 	return error > 0;
309 }
310 
311 /**
312  * cap_inode_killpriv - Erase the security markings on an inode
313  * @dentry: The inode/dentry to alter
314  *
315  * Erase the privilege-enhancing security markings on an inode.
316  *
317  * Returns 0 if successful, -ve on error.
318  */
319 int cap_inode_killpriv(struct dentry *dentry)
320 {
321 	int error;
322 
323 	error = __vfs_removexattr(dentry, XATTR_NAME_CAPS);
324 	if (error == -EOPNOTSUPP)
325 		error = 0;
326 	return error;
327 }
328 
329 static bool rootid_owns_currentns(kuid_t kroot)
330 {
331 	struct user_namespace *ns;
332 
333 	if (!uid_valid(kroot))
334 		return false;
335 
336 	for (ns = current_user_ns(); ; ns = ns->parent) {
337 		if (from_kuid(ns, kroot) == 0)
338 			return true;
339 		if (ns == &init_user_ns)
340 			break;
341 	}
342 
343 	return false;
344 }
345 
346 static __u32 sansflags(__u32 m)
347 {
348 	return m & ~VFS_CAP_FLAGS_EFFECTIVE;
349 }
350 
351 static bool is_v2header(size_t size, __le32 magic)
352 {
353 	__u32 m = le32_to_cpu(magic);
354 	if (size != XATTR_CAPS_SZ_2)
355 		return false;
356 	return sansflags(m) == VFS_CAP_REVISION_2;
357 }
358 
359 static bool is_v3header(size_t size, __le32 magic)
360 {
361 	__u32 m = le32_to_cpu(magic);
362 
363 	if (size != XATTR_CAPS_SZ_3)
364 		return false;
365 	return sansflags(m) == VFS_CAP_REVISION_3;
366 }
367 
368 /*
369  * getsecurity: We are called for security.* before any attempt to read the
370  * xattr from the inode itself.
371  *
372  * This gives us a chance to read the on-disk value and convert it.  If we
373  * return -EOPNOTSUPP, then vfs_getxattr() will call the i_op handler.
374  *
375  * Note we are not called by vfs_getxattr_alloc(), but that is only called
376  * by the integrity subsystem, which really wants the unconverted values -
377  * so that's good.
378  */
379 int cap_inode_getsecurity(struct inode *inode, const char *name, void **buffer,
380 			  bool alloc)
381 {
382 	int size, ret;
383 	kuid_t kroot;
384 	uid_t root, mappedroot;
385 	char *tmpbuf = NULL;
386 	struct vfs_cap_data *cap;
387 	struct vfs_ns_cap_data *nscap;
388 	struct dentry *dentry;
389 	struct user_namespace *fs_ns;
390 
391 	if (strcmp(name, "capability") != 0)
392 		return -EOPNOTSUPP;
393 
394 	dentry = d_find_alias(inode);
395 	if (!dentry)
396 		return -EINVAL;
397 
398 	size = sizeof(struct vfs_ns_cap_data);
399 	ret = (int) vfs_getxattr_alloc(dentry, XATTR_NAME_CAPS,
400 				 &tmpbuf, size, GFP_NOFS);
401 	dput(dentry);
402 
403 	if (ret < 0)
404 		return ret;
405 
406 	fs_ns = inode->i_sb->s_user_ns;
407 	cap = (struct vfs_cap_data *) tmpbuf;
408 	if (is_v2header((size_t) ret, cap->magic_etc)) {
409 		/* If this is sizeof(vfs_cap_data) then we're ok with the
410 		 * on-disk value, so return that.  */
411 		if (alloc)
412 			*buffer = tmpbuf;
413 		else
414 			kfree(tmpbuf);
415 		return ret;
416 	} else if (!is_v3header((size_t) ret, cap->magic_etc)) {
417 		kfree(tmpbuf);
418 		return -EINVAL;
419 	}
420 
421 	nscap = (struct vfs_ns_cap_data *) tmpbuf;
422 	root = le32_to_cpu(nscap->rootid);
423 	kroot = make_kuid(fs_ns, root);
424 
425 	/* If the root kuid maps to a valid uid in current ns, then return
426 	 * this as a nscap. */
427 	mappedroot = from_kuid(current_user_ns(), kroot);
428 	if (mappedroot != (uid_t)-1 && mappedroot != (uid_t)0) {
429 		if (alloc) {
430 			*buffer = tmpbuf;
431 			nscap->rootid = cpu_to_le32(mappedroot);
432 		} else
433 			kfree(tmpbuf);
434 		return size;
435 	}
436 
437 	if (!rootid_owns_currentns(kroot)) {
438 		kfree(tmpbuf);
439 		return -EOPNOTSUPP;
440 	}
441 
442 	/* This comes from a parent namespace.  Return as a v2 capability */
443 	size = sizeof(struct vfs_cap_data);
444 	if (alloc) {
445 		*buffer = kmalloc(size, GFP_ATOMIC);
446 		if (*buffer) {
447 			struct vfs_cap_data *cap = *buffer;
448 			__le32 nsmagic, magic;
449 			magic = VFS_CAP_REVISION_2;
450 			nsmagic = le32_to_cpu(nscap->magic_etc);
451 			if (nsmagic & VFS_CAP_FLAGS_EFFECTIVE)
452 				magic |= VFS_CAP_FLAGS_EFFECTIVE;
453 			memcpy(&cap->data, &nscap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
454 			cap->magic_etc = cpu_to_le32(magic);
455 		}
456 	}
457 	kfree(tmpbuf);
458 	return size;
459 }
460 
461 static kuid_t rootid_from_xattr(const void *value, size_t size,
462 				struct user_namespace *task_ns)
463 {
464 	const struct vfs_ns_cap_data *nscap = value;
465 	uid_t rootid = 0;
466 
467 	if (size == XATTR_CAPS_SZ_3)
468 		rootid = le32_to_cpu(nscap->rootid);
469 
470 	return make_kuid(task_ns, rootid);
471 }
472 
473 static bool validheader(size_t size, __le32 magic)
474 {
475 	return is_v2header(size, magic) || is_v3header(size, magic);
476 }
477 
478 /*
479  * User requested a write of security.capability.  If needed, update the
480  * xattr to change from v2 to v3, or to fixup the v3 rootid.
481  *
482  * If all is ok, we return the new size, on error return < 0.
483  */
484 int cap_convert_nscap(struct dentry *dentry, void **ivalue, size_t size)
485 {
486 	struct vfs_ns_cap_data *nscap;
487 	uid_t nsrootid;
488 	const struct vfs_cap_data *cap = *ivalue;
489 	__u32 magic, nsmagic;
490 	struct inode *inode = d_backing_inode(dentry);
491 	struct user_namespace *task_ns = current_user_ns(),
492 		*fs_ns = inode->i_sb->s_user_ns;
493 	kuid_t rootid;
494 	size_t newsize;
495 
496 	if (!*ivalue)
497 		return -EINVAL;
498 	if (!validheader(size, cap->magic_etc))
499 		return -EINVAL;
500 	if (!capable_wrt_inode_uidgid(inode, CAP_SETFCAP))
501 		return -EPERM;
502 	if (size == XATTR_CAPS_SZ_2)
503 		if (ns_capable(inode->i_sb->s_user_ns, CAP_SETFCAP))
504 			/* user is privileged, just write the v2 */
505 			return size;
506 
507 	rootid = rootid_from_xattr(*ivalue, size, task_ns);
508 	if (!uid_valid(rootid))
509 		return -EINVAL;
510 
511 	nsrootid = from_kuid(fs_ns, rootid);
512 	if (nsrootid == -1)
513 		return -EINVAL;
514 
515 	newsize = sizeof(struct vfs_ns_cap_data);
516 	nscap = kmalloc(newsize, GFP_ATOMIC);
517 	if (!nscap)
518 		return -ENOMEM;
519 	nscap->rootid = cpu_to_le32(nsrootid);
520 	nsmagic = VFS_CAP_REVISION_3;
521 	magic = le32_to_cpu(cap->magic_etc);
522 	if (magic & VFS_CAP_FLAGS_EFFECTIVE)
523 		nsmagic |= VFS_CAP_FLAGS_EFFECTIVE;
524 	nscap->magic_etc = cpu_to_le32(nsmagic);
525 	memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
526 
527 	kvfree(*ivalue);
528 	*ivalue = nscap;
529 	return newsize;
530 }
531 
532 /*
533  * Calculate the new process capability sets from the capability sets attached
534  * to a file.
535  */
536 static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
537 					  struct linux_binprm *bprm,
538 					  bool *effective,
539 					  bool *has_cap)
540 {
541 	struct cred *new = bprm->cred;
542 	unsigned i;
543 	int ret = 0;
544 
545 	if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
546 		*effective = true;
547 
548 	if (caps->magic_etc & VFS_CAP_REVISION_MASK)
549 		*has_cap = true;
550 
551 	CAP_FOR_EACH_U32(i) {
552 		__u32 permitted = caps->permitted.cap[i];
553 		__u32 inheritable = caps->inheritable.cap[i];
554 
555 		/*
556 		 * pP' = (X & fP) | (pI & fI)
557 		 * The addition of pA' is handled later.
558 		 */
559 		new->cap_permitted.cap[i] =
560 			(new->cap_bset.cap[i] & permitted) |
561 			(new->cap_inheritable.cap[i] & inheritable);
562 
563 		if (permitted & ~new->cap_permitted.cap[i])
564 			/* insufficient to execute correctly */
565 			ret = -EPERM;
566 	}
567 
568 	/*
569 	 * For legacy apps, with no internal support for recognizing they
570 	 * do not have enough capabilities, we return an error if they are
571 	 * missing some "forced" (aka file-permitted) capabilities.
572 	 */
573 	return *effective ? ret : 0;
574 }
575 
576 /*
577  * Extract the on-exec-apply capability sets for an executable file.
578  */
579 int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
580 {
581 	struct inode *inode = d_backing_inode(dentry);
582 	__u32 magic_etc;
583 	unsigned tocopy, i;
584 	int size;
585 	struct vfs_ns_cap_data data, *nscaps = &data;
586 	struct vfs_cap_data *caps = (struct vfs_cap_data *) &data;
587 	kuid_t rootkuid;
588 	struct user_namespace *fs_ns = inode->i_sb->s_user_ns;
589 
590 	memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
591 
592 	if (!inode)
593 		return -ENODATA;
594 
595 	size = __vfs_getxattr((struct dentry *)dentry, inode,
596 			      XATTR_NAME_CAPS, &data, XATTR_CAPS_SZ);
597 	if (size == -ENODATA || size == -EOPNOTSUPP)
598 		/* no data, that's ok */
599 		return -ENODATA;
600 
601 	if (size < 0)
602 		return size;
603 
604 	if (size < sizeof(magic_etc))
605 		return -EINVAL;
606 
607 	cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps->magic_etc);
608 
609 	rootkuid = make_kuid(fs_ns, 0);
610 	switch (magic_etc & VFS_CAP_REVISION_MASK) {
611 	case VFS_CAP_REVISION_1:
612 		if (size != XATTR_CAPS_SZ_1)
613 			return -EINVAL;
614 		tocopy = VFS_CAP_U32_1;
615 		break;
616 	case VFS_CAP_REVISION_2:
617 		if (size != XATTR_CAPS_SZ_2)
618 			return -EINVAL;
619 		tocopy = VFS_CAP_U32_2;
620 		break;
621 	case VFS_CAP_REVISION_3:
622 		if (size != XATTR_CAPS_SZ_3)
623 			return -EINVAL;
624 		tocopy = VFS_CAP_U32_3;
625 		rootkuid = make_kuid(fs_ns, le32_to_cpu(nscaps->rootid));
626 		break;
627 
628 	default:
629 		return -EINVAL;
630 	}
631 	/* Limit the caps to the mounter of the filesystem
632 	 * or the more limited uid specified in the xattr.
633 	 */
634 	if (!rootid_owns_currentns(rootkuid))
635 		return -ENODATA;
636 
637 	CAP_FOR_EACH_U32(i) {
638 		if (i >= tocopy)
639 			break;
640 		cpu_caps->permitted.cap[i] = le32_to_cpu(caps->data[i].permitted);
641 		cpu_caps->inheritable.cap[i] = le32_to_cpu(caps->data[i].inheritable);
642 	}
643 
644 	cpu_caps->permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
645 	cpu_caps->inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
646 
647 	return 0;
648 }
649 
650 /*
651  * Attempt to get the on-exec apply capability sets for an executable file from
652  * its xattrs and, if present, apply them to the proposed credentials being
653  * constructed by execve().
654  */
655 static int get_file_caps(struct linux_binprm *bprm, bool *effective, bool *has_cap)
656 {
657 	int rc = 0;
658 	struct cpu_vfs_cap_data vcaps;
659 
660 	cap_clear(bprm->cred->cap_permitted);
661 
662 	if (!file_caps_enabled)
663 		return 0;
664 
665 	if (!mnt_may_suid(bprm->file->f_path.mnt))
666 		return 0;
667 
668 	/*
669 	 * This check is redundant with mnt_may_suid() but is kept to make
670 	 * explicit that capability bits are limited to s_user_ns and its
671 	 * descendants.
672 	 */
673 	if (!current_in_userns(bprm->file->f_path.mnt->mnt_sb->s_user_ns))
674 		return 0;
675 
676 	rc = get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
677 	if (rc < 0) {
678 		if (rc == -EINVAL)
679 			printk(KERN_NOTICE "Invalid argument reading file caps for %s\n",
680 					bprm->filename);
681 		else if (rc == -ENODATA)
682 			rc = 0;
683 		goto out;
684 	}
685 
686 	rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_cap);
687 	if (rc == -EINVAL)
688 		printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n",
689 		       __func__, rc, bprm->filename);
690 
691 out:
692 	if (rc)
693 		cap_clear(bprm->cred->cap_permitted);
694 
695 	return rc;
696 }
697 
698 /**
699  * cap_bprm_set_creds - Set up the proposed credentials for execve().
700  * @bprm: The execution parameters, including the proposed creds
701  *
702  * Set up the proposed credentials for a new execution context being
703  * constructed by execve().  The proposed creds in @bprm->cred is altered,
704  * which won't take effect immediately.  Returns 0 if successful, -ve on error.
705  */
706 int cap_bprm_set_creds(struct linux_binprm *bprm)
707 {
708 	const struct cred *old = current_cred();
709 	struct cred *new = bprm->cred;
710 	bool effective, has_cap = false, is_setid;
711 	int ret;
712 	kuid_t root_uid;
713 
714 	if (WARN_ON(!cap_ambient_invariant_ok(old)))
715 		return -EPERM;
716 
717 	effective = false;
718 	ret = get_file_caps(bprm, &effective, &has_cap);
719 	if (ret < 0)
720 		return ret;
721 
722 	root_uid = make_kuid(new->user_ns, 0);
723 
724 	if (!issecure(SECURE_NOROOT)) {
725 		/*
726 		 * If the legacy file capability is set, then don't set privs
727 		 * for a setuid root binary run by a non-root user.  Do set it
728 		 * for a root user just to cause least surprise to an admin.
729 		 */
730 		if (has_cap && !uid_eq(new->uid, root_uid) && uid_eq(new->euid, root_uid)) {
731 			warn_setuid_and_fcaps_mixed(bprm->filename);
732 			goto skip;
733 		}
734 		/*
735 		 * To support inheritance of root-permissions and suid-root
736 		 * executables under compatibility mode, we override the
737 		 * capability sets for the file.
738 		 *
739 		 * If only the real uid is 0, we do not set the effective bit.
740 		 */
741 		if (uid_eq(new->euid, root_uid) || uid_eq(new->uid, root_uid)) {
742 			/* pP' = (cap_bset & ~0) | (pI & ~0) */
743 			new->cap_permitted = cap_combine(old->cap_bset,
744 							 old->cap_inheritable);
745 		}
746 		if (uid_eq(new->euid, root_uid))
747 			effective = true;
748 	}
749 skip:
750 
751 	/* if we have fs caps, clear dangerous personality flags */
752 	if (!cap_issubset(new->cap_permitted, old->cap_permitted))
753 		bprm->per_clear |= PER_CLEAR_ON_SETID;
754 
755 
756 	/* Don't let someone trace a set[ug]id/setpcap binary with the revised
757 	 * credentials unless they have the appropriate permit.
758 	 *
759 	 * In addition, if NO_NEW_PRIVS, then ensure we get no new privs.
760 	 */
761 	is_setid = !uid_eq(new->euid, old->uid) || !gid_eq(new->egid, old->gid);
762 
763 	if ((is_setid ||
764 	     !cap_issubset(new->cap_permitted, old->cap_permitted)) &&
765 	    ((bprm->unsafe & ~LSM_UNSAFE_PTRACE) ||
766 	     !ptracer_capable(current, new->user_ns))) {
767 		/* downgrade; they get no more than they had, and maybe less */
768 		if (!ns_capable(new->user_ns, CAP_SETUID) ||
769 		    (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) {
770 			new->euid = new->uid;
771 			new->egid = new->gid;
772 		}
773 		new->cap_permitted = cap_intersect(new->cap_permitted,
774 						   old->cap_permitted);
775 	}
776 
777 	new->suid = new->fsuid = new->euid;
778 	new->sgid = new->fsgid = new->egid;
779 
780 	/* File caps or setid cancels ambient. */
781 	if (has_cap || is_setid)
782 		cap_clear(new->cap_ambient);
783 
784 	/*
785 	 * Now that we've computed pA', update pP' to give:
786 	 *   pP' = (X & fP) | (pI & fI) | pA'
787 	 */
788 	new->cap_permitted = cap_combine(new->cap_permitted, new->cap_ambient);
789 
790 	/*
791 	 * Set pE' = (fE ? pP' : pA').  Because pA' is zero if fE is set,
792 	 * this is the same as pE' = (fE ? pP' : 0) | pA'.
793 	 */
794 	if (effective)
795 		new->cap_effective = new->cap_permitted;
796 	else
797 		new->cap_effective = new->cap_ambient;
798 
799 	if (WARN_ON(!cap_ambient_invariant_ok(new)))
800 		return -EPERM;
801 
802 	/*
803 	 * Audit candidate if current->cap_effective is set
804 	 *
805 	 * We do not bother to audit if 3 things are true:
806 	 *   1) cap_effective has all caps
807 	 *   2) we are root
808 	 *   3) root is supposed to have all caps (SECURE_NOROOT)
809 	 * Since this is just a normal root execing a process.
810 	 *
811 	 * Number 1 above might fail if you don't have a full bset, but I think
812 	 * that is interesting information to audit.
813 	 */
814 	if (!cap_issubset(new->cap_effective, new->cap_ambient)) {
815 		if (!cap_issubset(CAP_FULL_SET, new->cap_effective) ||
816 		    !uid_eq(new->euid, root_uid) || !uid_eq(new->uid, root_uid) ||
817 		    issecure(SECURE_NOROOT)) {
818 			ret = audit_log_bprm_fcaps(bprm, new, old);
819 			if (ret < 0)
820 				return ret;
821 		}
822 	}
823 
824 	new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
825 
826 	if (WARN_ON(!cap_ambient_invariant_ok(new)))
827 		return -EPERM;
828 
829 	/* Check for privilege-elevated exec. */
830 	bprm->cap_elevated = 0;
831 	if (is_setid) {
832 		bprm->cap_elevated = 1;
833 	} else if (!uid_eq(new->uid, root_uid)) {
834 		if (effective ||
835 		    !cap_issubset(new->cap_permitted, new->cap_ambient))
836 			bprm->cap_elevated = 1;
837 	}
838 
839 	return 0;
840 }
841 
842 /**
843  * cap_inode_setxattr - Determine whether an xattr may be altered
844  * @dentry: The inode/dentry being altered
845  * @name: The name of the xattr to be changed
846  * @value: The value that the xattr will be changed to
847  * @size: The size of value
848  * @flags: The replacement flag
849  *
850  * Determine whether an xattr may be altered or set on an inode, returning 0 if
851  * permission is granted, -ve if denied.
852  *
853  * This is used to make sure security xattrs don't get updated or set by those
854  * who aren't privileged to do so.
855  */
856 int cap_inode_setxattr(struct dentry *dentry, const char *name,
857 		       const void *value, size_t size, int flags)
858 {
859 	/* Ignore non-security xattrs */
860 	if (strncmp(name, XATTR_SECURITY_PREFIX,
861 			sizeof(XATTR_SECURITY_PREFIX) - 1) != 0)
862 		return 0;
863 
864 	/*
865 	 * For XATTR_NAME_CAPS the check will be done in
866 	 * cap_convert_nscap(), called by setxattr()
867 	 */
868 	if (strcmp(name, XATTR_NAME_CAPS) == 0)
869 		return 0;
870 
871 	if (!capable(CAP_SYS_ADMIN))
872 		return -EPERM;
873 	return 0;
874 }
875 
876 /**
877  * cap_inode_removexattr - Determine whether an xattr may be removed
878  * @dentry: The inode/dentry being altered
879  * @name: The name of the xattr to be changed
880  *
881  * Determine whether an xattr may be removed from an inode, returning 0 if
882  * permission is granted, -ve if denied.
883  *
884  * This is used to make sure security xattrs don't get removed by those who
885  * aren't privileged to remove them.
886  */
887 int cap_inode_removexattr(struct dentry *dentry, const char *name)
888 {
889 	/* Ignore non-security xattrs */
890 	if (strncmp(name, XATTR_SECURITY_PREFIX,
891 			sizeof(XATTR_SECURITY_PREFIX) - 1) != 0)
892 		return 0;
893 
894 	if (strcmp(name, XATTR_NAME_CAPS) == 0) {
895 		/* security.capability gets namespaced */
896 		struct inode *inode = d_backing_inode(dentry);
897 		if (!inode)
898 			return -EINVAL;
899 		if (!capable_wrt_inode_uidgid(inode, CAP_SETFCAP))
900 			return -EPERM;
901 		return 0;
902 	}
903 
904 	if (!capable(CAP_SYS_ADMIN))
905 		return -EPERM;
906 	return 0;
907 }
908 
909 /*
910  * cap_emulate_setxuid() fixes the effective / permitted capabilities of
911  * a process after a call to setuid, setreuid, or setresuid.
912  *
913  *  1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
914  *  {r,e,s}uid != 0, the permitted and effective capabilities are
915  *  cleared.
916  *
917  *  2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
918  *  capabilities of the process are cleared.
919  *
920  *  3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
921  *  capabilities are set to the permitted capabilities.
922  *
923  *  fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
924  *  never happen.
925  *
926  *  -astor
927  *
928  * cevans - New behaviour, Oct '99
929  * A process may, via prctl(), elect to keep its capabilities when it
930  * calls setuid() and switches away from uid==0. Both permitted and
931  * effective sets will be retained.
932  * Without this change, it was impossible for a daemon to drop only some
933  * of its privilege. The call to setuid(!=0) would drop all privileges!
934  * Keeping uid 0 is not an option because uid 0 owns too many vital
935  * files..
936  * Thanks to Olaf Kirch and Peter Benie for spotting this.
937  */
938 static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
939 {
940 	kuid_t root_uid = make_kuid(old->user_ns, 0);
941 
942 	if ((uid_eq(old->uid, root_uid) ||
943 	     uid_eq(old->euid, root_uid) ||
944 	     uid_eq(old->suid, root_uid)) &&
945 	    (!uid_eq(new->uid, root_uid) &&
946 	     !uid_eq(new->euid, root_uid) &&
947 	     !uid_eq(new->suid, root_uid))) {
948 		if (!issecure(SECURE_KEEP_CAPS)) {
949 			cap_clear(new->cap_permitted);
950 			cap_clear(new->cap_effective);
951 		}
952 
953 		/*
954 		 * Pre-ambient programs expect setresuid to nonroot followed
955 		 * by exec to drop capabilities.  We should make sure that
956 		 * this remains the case.
957 		 */
958 		cap_clear(new->cap_ambient);
959 	}
960 	if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid))
961 		cap_clear(new->cap_effective);
962 	if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid))
963 		new->cap_effective = new->cap_permitted;
964 }
965 
966 /**
967  * cap_task_fix_setuid - Fix up the results of setuid() call
968  * @new: The proposed credentials
969  * @old: The current task's current credentials
970  * @flags: Indications of what has changed
971  *
972  * Fix up the results of setuid() call before the credential changes are
973  * actually applied, returning 0 to grant the changes, -ve to deny them.
974  */
975 int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
976 {
977 	switch (flags) {
978 	case LSM_SETID_RE:
979 	case LSM_SETID_ID:
980 	case LSM_SETID_RES:
981 		/* juggle the capabilities to follow [RES]UID changes unless
982 		 * otherwise suppressed */
983 		if (!issecure(SECURE_NO_SETUID_FIXUP))
984 			cap_emulate_setxuid(new, old);
985 		break;
986 
987 	case LSM_SETID_FS:
988 		/* juggle the capabilties to follow FSUID changes, unless
989 		 * otherwise suppressed
990 		 *
991 		 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
992 		 *          if not, we might be a bit too harsh here.
993 		 */
994 		if (!issecure(SECURE_NO_SETUID_FIXUP)) {
995 			kuid_t root_uid = make_kuid(old->user_ns, 0);
996 			if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid))
997 				new->cap_effective =
998 					cap_drop_fs_set(new->cap_effective);
999 
1000 			if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid))
1001 				new->cap_effective =
1002 					cap_raise_fs_set(new->cap_effective,
1003 							 new->cap_permitted);
1004 		}
1005 		break;
1006 
1007 	default:
1008 		return -EINVAL;
1009 	}
1010 
1011 	return 0;
1012 }
1013 
1014 /*
1015  * Rationale: code calling task_setscheduler, task_setioprio, and
1016  * task_setnice, assumes that
1017  *   . if capable(cap_sys_nice), then those actions should be allowed
1018  *   . if not capable(cap_sys_nice), but acting on your own processes,
1019  *   	then those actions should be allowed
1020  * This is insufficient now since you can call code without suid, but
1021  * yet with increased caps.
1022  * So we check for increased caps on the target process.
1023  */
1024 static int cap_safe_nice(struct task_struct *p)
1025 {
1026 	int is_subset, ret = 0;
1027 
1028 	rcu_read_lock();
1029 	is_subset = cap_issubset(__task_cred(p)->cap_permitted,
1030 				 current_cred()->cap_permitted);
1031 	if (!is_subset && !ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
1032 		ret = -EPERM;
1033 	rcu_read_unlock();
1034 
1035 	return ret;
1036 }
1037 
1038 /**
1039  * cap_task_setscheduler - Detemine if scheduler policy change is permitted
1040  * @p: The task to affect
1041  *
1042  * Detemine if the requested scheduler policy change is permitted for the
1043  * specified task, returning 0 if permission is granted, -ve if denied.
1044  */
1045 int cap_task_setscheduler(struct task_struct *p)
1046 {
1047 	return cap_safe_nice(p);
1048 }
1049 
1050 /**
1051  * cap_task_ioprio - Detemine if I/O priority change is permitted
1052  * @p: The task to affect
1053  * @ioprio: The I/O priority to set
1054  *
1055  * Detemine if the requested I/O priority change is permitted for the specified
1056  * task, returning 0 if permission is granted, -ve if denied.
1057  */
1058 int cap_task_setioprio(struct task_struct *p, int ioprio)
1059 {
1060 	return cap_safe_nice(p);
1061 }
1062 
1063 /**
1064  * cap_task_ioprio - Detemine if task priority change is permitted
1065  * @p: The task to affect
1066  * @nice: The nice value to set
1067  *
1068  * Detemine if the requested task priority change is permitted for the
1069  * specified task, returning 0 if permission is granted, -ve if denied.
1070  */
1071 int cap_task_setnice(struct task_struct *p, int nice)
1072 {
1073 	return cap_safe_nice(p);
1074 }
1075 
1076 /*
1077  * Implement PR_CAPBSET_DROP.  Attempt to remove the specified capability from
1078  * the current task's bounding set.  Returns 0 on success, -ve on error.
1079  */
1080 static int cap_prctl_drop(unsigned long cap)
1081 {
1082 	struct cred *new;
1083 
1084 	if (!ns_capable(current_user_ns(), CAP_SETPCAP))
1085 		return -EPERM;
1086 	if (!cap_valid(cap))
1087 		return -EINVAL;
1088 
1089 	new = prepare_creds();
1090 	if (!new)
1091 		return -ENOMEM;
1092 	cap_lower(new->cap_bset, cap);
1093 	return commit_creds(new);
1094 }
1095 
1096 /**
1097  * cap_task_prctl - Implement process control functions for this security module
1098  * @option: The process control function requested
1099  * @arg2, @arg3, @arg4, @arg5: The argument data for this function
1100  *
1101  * Allow process control functions (sys_prctl()) to alter capabilities; may
1102  * also deny access to other functions not otherwise implemented here.
1103  *
1104  * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
1105  * here, other -ve on error.  If -ENOSYS is returned, sys_prctl() and other LSM
1106  * modules will consider performing the function.
1107  */
1108 int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1109 		   unsigned long arg4, unsigned long arg5)
1110 {
1111 	const struct cred *old = current_cred();
1112 	struct cred *new;
1113 
1114 	switch (option) {
1115 	case PR_CAPBSET_READ:
1116 		if (!cap_valid(arg2))
1117 			return -EINVAL;
1118 		return !!cap_raised(old->cap_bset, arg2);
1119 
1120 	case PR_CAPBSET_DROP:
1121 		return cap_prctl_drop(arg2);
1122 
1123 	/*
1124 	 * The next four prctl's remain to assist with transitioning a
1125 	 * system from legacy UID=0 based privilege (when filesystem
1126 	 * capabilities are not in use) to a system using filesystem
1127 	 * capabilities only - as the POSIX.1e draft intended.
1128 	 *
1129 	 * Note:
1130 	 *
1131 	 *  PR_SET_SECUREBITS =
1132 	 *      issecure_mask(SECURE_KEEP_CAPS_LOCKED)
1133 	 *    | issecure_mask(SECURE_NOROOT)
1134 	 *    | issecure_mask(SECURE_NOROOT_LOCKED)
1135 	 *    | issecure_mask(SECURE_NO_SETUID_FIXUP)
1136 	 *    | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
1137 	 *
1138 	 * will ensure that the current process and all of its
1139 	 * children will be locked into a pure
1140 	 * capability-based-privilege environment.
1141 	 */
1142 	case PR_SET_SECUREBITS:
1143 		if ((((old->securebits & SECURE_ALL_LOCKS) >> 1)
1144 		     & (old->securebits ^ arg2))			/*[1]*/
1145 		    || ((old->securebits & SECURE_ALL_LOCKS & ~arg2))	/*[2]*/
1146 		    || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS))	/*[3]*/
1147 		    || (cap_capable(current_cred(),
1148 				    current_cred()->user_ns, CAP_SETPCAP,
1149 				    SECURITY_CAP_AUDIT) != 0)		/*[4]*/
1150 			/*
1151 			 * [1] no changing of bits that are locked
1152 			 * [2] no unlocking of locks
1153 			 * [3] no setting of unsupported bits
1154 			 * [4] doing anything requires privilege (go read about
1155 			 *     the "sendmail capabilities bug")
1156 			 */
1157 		    )
1158 			/* cannot change a locked bit */
1159 			return -EPERM;
1160 
1161 		new = prepare_creds();
1162 		if (!new)
1163 			return -ENOMEM;
1164 		new->securebits = arg2;
1165 		return commit_creds(new);
1166 
1167 	case PR_GET_SECUREBITS:
1168 		return old->securebits;
1169 
1170 	case PR_GET_KEEPCAPS:
1171 		return !!issecure(SECURE_KEEP_CAPS);
1172 
1173 	case PR_SET_KEEPCAPS:
1174 		if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
1175 			return -EINVAL;
1176 		if (issecure(SECURE_KEEP_CAPS_LOCKED))
1177 			return -EPERM;
1178 
1179 		new = prepare_creds();
1180 		if (!new)
1181 			return -ENOMEM;
1182 		if (arg2)
1183 			new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
1184 		else
1185 			new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
1186 		return commit_creds(new);
1187 
1188 	case PR_CAP_AMBIENT:
1189 		if (arg2 == PR_CAP_AMBIENT_CLEAR_ALL) {
1190 			if (arg3 | arg4 | arg5)
1191 				return -EINVAL;
1192 
1193 			new = prepare_creds();
1194 			if (!new)
1195 				return -ENOMEM;
1196 			cap_clear(new->cap_ambient);
1197 			return commit_creds(new);
1198 		}
1199 
1200 		if (((!cap_valid(arg3)) | arg4 | arg5))
1201 			return -EINVAL;
1202 
1203 		if (arg2 == PR_CAP_AMBIENT_IS_SET) {
1204 			return !!cap_raised(current_cred()->cap_ambient, arg3);
1205 		} else if (arg2 != PR_CAP_AMBIENT_RAISE &&
1206 			   arg2 != PR_CAP_AMBIENT_LOWER) {
1207 			return -EINVAL;
1208 		} else {
1209 			if (arg2 == PR_CAP_AMBIENT_RAISE &&
1210 			    (!cap_raised(current_cred()->cap_permitted, arg3) ||
1211 			     !cap_raised(current_cred()->cap_inheritable,
1212 					 arg3) ||
1213 			     issecure(SECURE_NO_CAP_AMBIENT_RAISE)))
1214 				return -EPERM;
1215 
1216 			new = prepare_creds();
1217 			if (!new)
1218 				return -ENOMEM;
1219 			if (arg2 == PR_CAP_AMBIENT_RAISE)
1220 				cap_raise(new->cap_ambient, arg3);
1221 			else
1222 				cap_lower(new->cap_ambient, arg3);
1223 			return commit_creds(new);
1224 		}
1225 
1226 	default:
1227 		/* No functionality available - continue with default */
1228 		return -ENOSYS;
1229 	}
1230 }
1231 
1232 /**
1233  * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
1234  * @mm: The VM space in which the new mapping is to be made
1235  * @pages: The size of the mapping
1236  *
1237  * Determine whether the allocation of a new virtual mapping by the current
1238  * task is permitted, returning 1 if permission is granted, 0 if not.
1239  */
1240 int cap_vm_enough_memory(struct mm_struct *mm, long pages)
1241 {
1242 	int cap_sys_admin = 0;
1243 
1244 	if (cap_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
1245 			SECURITY_CAP_NOAUDIT) == 0)
1246 		cap_sys_admin = 1;
1247 	return cap_sys_admin;
1248 }
1249 
1250 /*
1251  * cap_mmap_addr - check if able to map given addr
1252  * @addr: address attempting to be mapped
1253  *
1254  * If the process is attempting to map memory below dac_mmap_min_addr they need
1255  * CAP_SYS_RAWIO.  The other parameters to this function are unused by the
1256  * capability security module.  Returns 0 if this mapping should be allowed
1257  * -EPERM if not.
1258  */
1259 int cap_mmap_addr(unsigned long addr)
1260 {
1261 	int ret = 0;
1262 
1263 	if (addr < dac_mmap_min_addr) {
1264 		ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO,
1265 				  SECURITY_CAP_AUDIT);
1266 		/* set PF_SUPERPRIV if it turns out we allow the low mmap */
1267 		if (ret == 0)
1268 			current->flags |= PF_SUPERPRIV;
1269 	}
1270 	return ret;
1271 }
1272 
1273 int cap_mmap_file(struct file *file, unsigned long reqprot,
1274 		  unsigned long prot, unsigned long flags)
1275 {
1276 	return 0;
1277 }
1278 
1279 #ifdef CONFIG_SECURITY
1280 
1281 struct security_hook_list capability_hooks[] __lsm_ro_after_init = {
1282 	LSM_HOOK_INIT(capable, cap_capable),
1283 	LSM_HOOK_INIT(settime, cap_settime),
1284 	LSM_HOOK_INIT(ptrace_access_check, cap_ptrace_access_check),
1285 	LSM_HOOK_INIT(ptrace_traceme, cap_ptrace_traceme),
1286 	LSM_HOOK_INIT(capget, cap_capget),
1287 	LSM_HOOK_INIT(capset, cap_capset),
1288 	LSM_HOOK_INIT(bprm_set_creds, cap_bprm_set_creds),
1289 	LSM_HOOK_INIT(inode_need_killpriv, cap_inode_need_killpriv),
1290 	LSM_HOOK_INIT(inode_killpriv, cap_inode_killpriv),
1291 	LSM_HOOK_INIT(inode_getsecurity, cap_inode_getsecurity),
1292 	LSM_HOOK_INIT(mmap_addr, cap_mmap_addr),
1293 	LSM_HOOK_INIT(mmap_file, cap_mmap_file),
1294 	LSM_HOOK_INIT(task_fix_setuid, cap_task_fix_setuid),
1295 	LSM_HOOK_INIT(task_prctl, cap_task_prctl),
1296 	LSM_HOOK_INIT(task_setscheduler, cap_task_setscheduler),
1297 	LSM_HOOK_INIT(task_setioprio, cap_task_setioprio),
1298 	LSM_HOOK_INIT(task_setnice, cap_task_setnice),
1299 	LSM_HOOK_INIT(vm_enough_memory, cap_vm_enough_memory),
1300 };
1301 
1302 void __init capability_add_hooks(void)
1303 {
1304 	security_add_hooks(capability_hooks, ARRAY_SIZE(capability_hooks),
1305 				"capability");
1306 }
1307 
1308 #endif /* CONFIG_SECURITY */
1309