1 /* Common capabilities, needed by capability.o. 2 * 3 * This program is free software; you can redistribute it and/or modify 4 * it under the terms of the GNU General Public License as published by 5 * the Free Software Foundation; either version 2 of the License, or 6 * (at your option) any later version. 7 * 8 */ 9 10 #include <linux/capability.h> 11 #include <linux/audit.h> 12 #include <linux/init.h> 13 #include <linux/kernel.h> 14 #include <linux/lsm_hooks.h> 15 #include <linux/file.h> 16 #include <linux/mm.h> 17 #include <linux/mman.h> 18 #include <linux/pagemap.h> 19 #include <linux/swap.h> 20 #include <linux/skbuff.h> 21 #include <linux/netlink.h> 22 #include <linux/ptrace.h> 23 #include <linux/xattr.h> 24 #include <linux/hugetlb.h> 25 #include <linux/mount.h> 26 #include <linux/sched.h> 27 #include <linux/prctl.h> 28 #include <linux/securebits.h> 29 #include <linux/user_namespace.h> 30 #include <linux/binfmts.h> 31 #include <linux/personality.h> 32 33 /* 34 * If a non-root user executes a setuid-root binary in 35 * !secure(SECURE_NOROOT) mode, then we raise capabilities. 36 * However if fE is also set, then the intent is for only 37 * the file capabilities to be applied, and the setuid-root 38 * bit is left on either to change the uid (plausible) or 39 * to get full privilege on a kernel without file capabilities 40 * support. So in that case we do not raise capabilities. 41 * 42 * Warn if that happens, once per boot. 43 */ 44 static void warn_setuid_and_fcaps_mixed(const char *fname) 45 { 46 static int warned; 47 if (!warned) { 48 printk(KERN_INFO "warning: `%s' has both setuid-root and" 49 " effective capabilities. Therefore not raising all" 50 " capabilities.\n", fname); 51 warned = 1; 52 } 53 } 54 55 /** 56 * cap_capable - Determine whether a task has a particular effective capability 57 * @cred: The credentials to use 58 * @ns: The user namespace in which we need the capability 59 * @cap: The capability to check for 60 * @audit: Whether to write an audit message or not 61 * 62 * Determine whether the nominated task has the specified capability amongst 63 * its effective set, returning 0 if it does, -ve if it does not. 64 * 65 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable() 66 * and has_capability() functions. That is, it has the reverse semantics: 67 * cap_has_capability() returns 0 when a task has a capability, but the 68 * kernel's capable() and has_capability() returns 1 for this case. 69 */ 70 int cap_capable(const struct cred *cred, struct user_namespace *targ_ns, 71 int cap, int audit) 72 { 73 struct user_namespace *ns = targ_ns; 74 75 /* See if cred has the capability in the target user namespace 76 * by examining the target user namespace and all of the target 77 * user namespace's parents. 78 */ 79 for (;;) { 80 /* Do we have the necessary capabilities? */ 81 if (ns == cred->user_ns) 82 return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM; 83 84 /* 85 * If we're already at a lower level than we're looking for, 86 * we're done searching. 87 */ 88 if (ns->level <= cred->user_ns->level) 89 return -EPERM; 90 91 /* 92 * The owner of the user namespace in the parent of the 93 * user namespace has all caps. 94 */ 95 if ((ns->parent == cred->user_ns) && uid_eq(ns->owner, cred->euid)) 96 return 0; 97 98 /* 99 * If you have a capability in a parent user ns, then you have 100 * it over all children user namespaces as well. 101 */ 102 ns = ns->parent; 103 } 104 105 /* We never get here */ 106 } 107 108 /** 109 * cap_settime - Determine whether the current process may set the system clock 110 * @ts: The time to set 111 * @tz: The timezone to set 112 * 113 * Determine whether the current process may set the system clock and timezone 114 * information, returning 0 if permission granted, -ve if denied. 115 */ 116 int cap_settime(const struct timespec64 *ts, const struct timezone *tz) 117 { 118 if (!capable(CAP_SYS_TIME)) 119 return -EPERM; 120 return 0; 121 } 122 123 /** 124 * cap_ptrace_access_check - Determine whether the current process may access 125 * another 126 * @child: The process to be accessed 127 * @mode: The mode of attachment. 128 * 129 * If we are in the same or an ancestor user_ns and have all the target 130 * task's capabilities, then ptrace access is allowed. 131 * If we have the ptrace capability to the target user_ns, then ptrace 132 * access is allowed. 133 * Else denied. 134 * 135 * Determine whether a process may access another, returning 0 if permission 136 * granted, -ve if denied. 137 */ 138 int cap_ptrace_access_check(struct task_struct *child, unsigned int mode) 139 { 140 int ret = 0; 141 const struct cred *cred, *child_cred; 142 const kernel_cap_t *caller_caps; 143 144 rcu_read_lock(); 145 cred = current_cred(); 146 child_cred = __task_cred(child); 147 if (mode & PTRACE_MODE_FSCREDS) 148 caller_caps = &cred->cap_effective; 149 else 150 caller_caps = &cred->cap_permitted; 151 if (cred->user_ns == child_cred->user_ns && 152 cap_issubset(child_cred->cap_permitted, *caller_caps)) 153 goto out; 154 if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE)) 155 goto out; 156 ret = -EPERM; 157 out: 158 rcu_read_unlock(); 159 return ret; 160 } 161 162 /** 163 * cap_ptrace_traceme - Determine whether another process may trace the current 164 * @parent: The task proposed to be the tracer 165 * 166 * If parent is in the same or an ancestor user_ns and has all current's 167 * capabilities, then ptrace access is allowed. 168 * If parent has the ptrace capability to current's user_ns, then ptrace 169 * access is allowed. 170 * Else denied. 171 * 172 * Determine whether the nominated task is permitted to trace the current 173 * process, returning 0 if permission is granted, -ve if denied. 174 */ 175 int cap_ptrace_traceme(struct task_struct *parent) 176 { 177 int ret = 0; 178 const struct cred *cred, *child_cred; 179 180 rcu_read_lock(); 181 cred = __task_cred(parent); 182 child_cred = current_cred(); 183 if (cred->user_ns == child_cred->user_ns && 184 cap_issubset(child_cred->cap_permitted, cred->cap_permitted)) 185 goto out; 186 if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE)) 187 goto out; 188 ret = -EPERM; 189 out: 190 rcu_read_unlock(); 191 return ret; 192 } 193 194 /** 195 * cap_capget - Retrieve a task's capability sets 196 * @target: The task from which to retrieve the capability sets 197 * @effective: The place to record the effective set 198 * @inheritable: The place to record the inheritable set 199 * @permitted: The place to record the permitted set 200 * 201 * This function retrieves the capabilities of the nominated task and returns 202 * them to the caller. 203 */ 204 int cap_capget(struct task_struct *target, kernel_cap_t *effective, 205 kernel_cap_t *inheritable, kernel_cap_t *permitted) 206 { 207 const struct cred *cred; 208 209 /* Derived from kernel/capability.c:sys_capget. */ 210 rcu_read_lock(); 211 cred = __task_cred(target); 212 *effective = cred->cap_effective; 213 *inheritable = cred->cap_inheritable; 214 *permitted = cred->cap_permitted; 215 rcu_read_unlock(); 216 return 0; 217 } 218 219 /* 220 * Determine whether the inheritable capabilities are limited to the old 221 * permitted set. Returns 1 if they are limited, 0 if they are not. 222 */ 223 static inline int cap_inh_is_capped(void) 224 { 225 226 /* they are so limited unless the current task has the CAP_SETPCAP 227 * capability 228 */ 229 if (cap_capable(current_cred(), current_cred()->user_ns, 230 CAP_SETPCAP, SECURITY_CAP_AUDIT) == 0) 231 return 0; 232 return 1; 233 } 234 235 /** 236 * cap_capset - Validate and apply proposed changes to current's capabilities 237 * @new: The proposed new credentials; alterations should be made here 238 * @old: The current task's current credentials 239 * @effective: A pointer to the proposed new effective capabilities set 240 * @inheritable: A pointer to the proposed new inheritable capabilities set 241 * @permitted: A pointer to the proposed new permitted capabilities set 242 * 243 * This function validates and applies a proposed mass change to the current 244 * process's capability sets. The changes are made to the proposed new 245 * credentials, and assuming no error, will be committed by the caller of LSM. 246 */ 247 int cap_capset(struct cred *new, 248 const struct cred *old, 249 const kernel_cap_t *effective, 250 const kernel_cap_t *inheritable, 251 const kernel_cap_t *permitted) 252 { 253 if (cap_inh_is_capped() && 254 !cap_issubset(*inheritable, 255 cap_combine(old->cap_inheritable, 256 old->cap_permitted))) 257 /* incapable of using this inheritable set */ 258 return -EPERM; 259 260 if (!cap_issubset(*inheritable, 261 cap_combine(old->cap_inheritable, 262 old->cap_bset))) 263 /* no new pI capabilities outside bounding set */ 264 return -EPERM; 265 266 /* verify restrictions on target's new Permitted set */ 267 if (!cap_issubset(*permitted, old->cap_permitted)) 268 return -EPERM; 269 270 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */ 271 if (!cap_issubset(*effective, *permitted)) 272 return -EPERM; 273 274 new->cap_effective = *effective; 275 new->cap_inheritable = *inheritable; 276 new->cap_permitted = *permitted; 277 278 /* 279 * Mask off ambient bits that are no longer both permitted and 280 * inheritable. 281 */ 282 new->cap_ambient = cap_intersect(new->cap_ambient, 283 cap_intersect(*permitted, 284 *inheritable)); 285 if (WARN_ON(!cap_ambient_invariant_ok(new))) 286 return -EINVAL; 287 return 0; 288 } 289 290 /** 291 * cap_inode_need_killpriv - Determine if inode change affects privileges 292 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV 293 * 294 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV 295 * affects the security markings on that inode, and if it is, should 296 * inode_killpriv() be invoked or the change rejected. 297 * 298 * Returns 1 if security.capability has a value, meaning inode_killpriv() 299 * is required, 0 otherwise, meaning inode_killpriv() is not required. 300 */ 301 int cap_inode_need_killpriv(struct dentry *dentry) 302 { 303 struct inode *inode = d_backing_inode(dentry); 304 int error; 305 306 error = __vfs_getxattr(dentry, inode, XATTR_NAME_CAPS, NULL, 0); 307 return error > 0; 308 } 309 310 /** 311 * cap_inode_killpriv - Erase the security markings on an inode 312 * @dentry: The inode/dentry to alter 313 * 314 * Erase the privilege-enhancing security markings on an inode. 315 * 316 * Returns 0 if successful, -ve on error. 317 */ 318 int cap_inode_killpriv(struct dentry *dentry) 319 { 320 int error; 321 322 error = __vfs_removexattr(dentry, XATTR_NAME_CAPS); 323 if (error == -EOPNOTSUPP) 324 error = 0; 325 return error; 326 } 327 328 static bool rootid_owns_currentns(kuid_t kroot) 329 { 330 struct user_namespace *ns; 331 332 if (!uid_valid(kroot)) 333 return false; 334 335 for (ns = current_user_ns(); ; ns = ns->parent) { 336 if (from_kuid(ns, kroot) == 0) 337 return true; 338 if (ns == &init_user_ns) 339 break; 340 } 341 342 return false; 343 } 344 345 static __u32 sansflags(__u32 m) 346 { 347 return m & ~VFS_CAP_FLAGS_EFFECTIVE; 348 } 349 350 static bool is_v2header(size_t size, const struct vfs_cap_data *cap) 351 { 352 if (size != XATTR_CAPS_SZ_2) 353 return false; 354 return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_2; 355 } 356 357 static bool is_v3header(size_t size, const struct vfs_cap_data *cap) 358 { 359 if (size != XATTR_CAPS_SZ_3) 360 return false; 361 return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_3; 362 } 363 364 /* 365 * getsecurity: We are called for security.* before any attempt to read the 366 * xattr from the inode itself. 367 * 368 * This gives us a chance to read the on-disk value and convert it. If we 369 * return -EOPNOTSUPP, then vfs_getxattr() will call the i_op handler. 370 * 371 * Note we are not called by vfs_getxattr_alloc(), but that is only called 372 * by the integrity subsystem, which really wants the unconverted values - 373 * so that's good. 374 */ 375 int cap_inode_getsecurity(struct inode *inode, const char *name, void **buffer, 376 bool alloc) 377 { 378 int size, ret; 379 kuid_t kroot; 380 uid_t root, mappedroot; 381 char *tmpbuf = NULL; 382 struct vfs_cap_data *cap; 383 struct vfs_ns_cap_data *nscap; 384 struct dentry *dentry; 385 struct user_namespace *fs_ns; 386 387 if (strcmp(name, "capability") != 0) 388 return -EOPNOTSUPP; 389 390 dentry = d_find_any_alias(inode); 391 if (!dentry) 392 return -EINVAL; 393 394 size = sizeof(struct vfs_ns_cap_data); 395 ret = (int) vfs_getxattr_alloc(dentry, XATTR_NAME_CAPS, 396 &tmpbuf, size, GFP_NOFS); 397 dput(dentry); 398 399 if (ret < 0) 400 return ret; 401 402 fs_ns = inode->i_sb->s_user_ns; 403 cap = (struct vfs_cap_data *) tmpbuf; 404 if (is_v2header((size_t) ret, cap)) { 405 /* If this is sizeof(vfs_cap_data) then we're ok with the 406 * on-disk value, so return that. */ 407 if (alloc) 408 *buffer = tmpbuf; 409 else 410 kfree(tmpbuf); 411 return ret; 412 } else if (!is_v3header((size_t) ret, cap)) { 413 kfree(tmpbuf); 414 return -EINVAL; 415 } 416 417 nscap = (struct vfs_ns_cap_data *) tmpbuf; 418 root = le32_to_cpu(nscap->rootid); 419 kroot = make_kuid(fs_ns, root); 420 421 /* If the root kuid maps to a valid uid in current ns, then return 422 * this as a nscap. */ 423 mappedroot = from_kuid(current_user_ns(), kroot); 424 if (mappedroot != (uid_t)-1 && mappedroot != (uid_t)0) { 425 if (alloc) { 426 *buffer = tmpbuf; 427 nscap->rootid = cpu_to_le32(mappedroot); 428 } else 429 kfree(tmpbuf); 430 return size; 431 } 432 433 if (!rootid_owns_currentns(kroot)) { 434 kfree(tmpbuf); 435 return -EOPNOTSUPP; 436 } 437 438 /* This comes from a parent namespace. Return as a v2 capability */ 439 size = sizeof(struct vfs_cap_data); 440 if (alloc) { 441 *buffer = kmalloc(size, GFP_ATOMIC); 442 if (*buffer) { 443 struct vfs_cap_data *cap = *buffer; 444 __le32 nsmagic, magic; 445 magic = VFS_CAP_REVISION_2; 446 nsmagic = le32_to_cpu(nscap->magic_etc); 447 if (nsmagic & VFS_CAP_FLAGS_EFFECTIVE) 448 magic |= VFS_CAP_FLAGS_EFFECTIVE; 449 memcpy(&cap->data, &nscap->data, sizeof(__le32) * 2 * VFS_CAP_U32); 450 cap->magic_etc = cpu_to_le32(magic); 451 } else { 452 size = -ENOMEM; 453 } 454 } 455 kfree(tmpbuf); 456 return size; 457 } 458 459 static kuid_t rootid_from_xattr(const void *value, size_t size, 460 struct user_namespace *task_ns) 461 { 462 const struct vfs_ns_cap_data *nscap = value; 463 uid_t rootid = 0; 464 465 if (size == XATTR_CAPS_SZ_3) 466 rootid = le32_to_cpu(nscap->rootid); 467 468 return make_kuid(task_ns, rootid); 469 } 470 471 static bool validheader(size_t size, const struct vfs_cap_data *cap) 472 { 473 return is_v2header(size, cap) || is_v3header(size, cap); 474 } 475 476 /* 477 * User requested a write of security.capability. If needed, update the 478 * xattr to change from v2 to v3, or to fixup the v3 rootid. 479 * 480 * If all is ok, we return the new size, on error return < 0. 481 */ 482 int cap_convert_nscap(struct dentry *dentry, void **ivalue, size_t size) 483 { 484 struct vfs_ns_cap_data *nscap; 485 uid_t nsrootid; 486 const struct vfs_cap_data *cap = *ivalue; 487 __u32 magic, nsmagic; 488 struct inode *inode = d_backing_inode(dentry); 489 struct user_namespace *task_ns = current_user_ns(), 490 *fs_ns = inode->i_sb->s_user_ns; 491 kuid_t rootid; 492 size_t newsize; 493 494 if (!*ivalue) 495 return -EINVAL; 496 if (!validheader(size, cap)) 497 return -EINVAL; 498 if (!capable_wrt_inode_uidgid(inode, CAP_SETFCAP)) 499 return -EPERM; 500 if (size == XATTR_CAPS_SZ_2) 501 if (ns_capable(inode->i_sb->s_user_ns, CAP_SETFCAP)) 502 /* user is privileged, just write the v2 */ 503 return size; 504 505 rootid = rootid_from_xattr(*ivalue, size, task_ns); 506 if (!uid_valid(rootid)) 507 return -EINVAL; 508 509 nsrootid = from_kuid(fs_ns, rootid); 510 if (nsrootid == -1) 511 return -EINVAL; 512 513 newsize = sizeof(struct vfs_ns_cap_data); 514 nscap = kmalloc(newsize, GFP_ATOMIC); 515 if (!nscap) 516 return -ENOMEM; 517 nscap->rootid = cpu_to_le32(nsrootid); 518 nsmagic = VFS_CAP_REVISION_3; 519 magic = le32_to_cpu(cap->magic_etc); 520 if (magic & VFS_CAP_FLAGS_EFFECTIVE) 521 nsmagic |= VFS_CAP_FLAGS_EFFECTIVE; 522 nscap->magic_etc = cpu_to_le32(nsmagic); 523 memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32); 524 525 kvfree(*ivalue); 526 *ivalue = nscap; 527 return newsize; 528 } 529 530 /* 531 * Calculate the new process capability sets from the capability sets attached 532 * to a file. 533 */ 534 static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps, 535 struct linux_binprm *bprm, 536 bool *effective, 537 bool *has_fcap) 538 { 539 struct cred *new = bprm->cred; 540 unsigned i; 541 int ret = 0; 542 543 if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE) 544 *effective = true; 545 546 if (caps->magic_etc & VFS_CAP_REVISION_MASK) 547 *has_fcap = true; 548 549 CAP_FOR_EACH_U32(i) { 550 __u32 permitted = caps->permitted.cap[i]; 551 __u32 inheritable = caps->inheritable.cap[i]; 552 553 /* 554 * pP' = (X & fP) | (pI & fI) 555 * The addition of pA' is handled later. 556 */ 557 new->cap_permitted.cap[i] = 558 (new->cap_bset.cap[i] & permitted) | 559 (new->cap_inheritable.cap[i] & inheritable); 560 561 if (permitted & ~new->cap_permitted.cap[i]) 562 /* insufficient to execute correctly */ 563 ret = -EPERM; 564 } 565 566 /* 567 * For legacy apps, with no internal support for recognizing they 568 * do not have enough capabilities, we return an error if they are 569 * missing some "forced" (aka file-permitted) capabilities. 570 */ 571 return *effective ? ret : 0; 572 } 573 574 /* 575 * Extract the on-exec-apply capability sets for an executable file. 576 */ 577 int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps) 578 { 579 struct inode *inode = d_backing_inode(dentry); 580 __u32 magic_etc; 581 unsigned tocopy, i; 582 int size; 583 struct vfs_ns_cap_data data, *nscaps = &data; 584 struct vfs_cap_data *caps = (struct vfs_cap_data *) &data; 585 kuid_t rootkuid; 586 struct user_namespace *fs_ns; 587 588 memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data)); 589 590 if (!inode) 591 return -ENODATA; 592 593 fs_ns = inode->i_sb->s_user_ns; 594 size = __vfs_getxattr((struct dentry *)dentry, inode, 595 XATTR_NAME_CAPS, &data, XATTR_CAPS_SZ); 596 if (size == -ENODATA || size == -EOPNOTSUPP) 597 /* no data, that's ok */ 598 return -ENODATA; 599 600 if (size < 0) 601 return size; 602 603 if (size < sizeof(magic_etc)) 604 return -EINVAL; 605 606 cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps->magic_etc); 607 608 rootkuid = make_kuid(fs_ns, 0); 609 switch (magic_etc & VFS_CAP_REVISION_MASK) { 610 case VFS_CAP_REVISION_1: 611 if (size != XATTR_CAPS_SZ_1) 612 return -EINVAL; 613 tocopy = VFS_CAP_U32_1; 614 break; 615 case VFS_CAP_REVISION_2: 616 if (size != XATTR_CAPS_SZ_2) 617 return -EINVAL; 618 tocopy = VFS_CAP_U32_2; 619 break; 620 case VFS_CAP_REVISION_3: 621 if (size != XATTR_CAPS_SZ_3) 622 return -EINVAL; 623 tocopy = VFS_CAP_U32_3; 624 rootkuid = make_kuid(fs_ns, le32_to_cpu(nscaps->rootid)); 625 break; 626 627 default: 628 return -EINVAL; 629 } 630 /* Limit the caps to the mounter of the filesystem 631 * or the more limited uid specified in the xattr. 632 */ 633 if (!rootid_owns_currentns(rootkuid)) 634 return -ENODATA; 635 636 CAP_FOR_EACH_U32(i) { 637 if (i >= tocopy) 638 break; 639 cpu_caps->permitted.cap[i] = le32_to_cpu(caps->data[i].permitted); 640 cpu_caps->inheritable.cap[i] = le32_to_cpu(caps->data[i].inheritable); 641 } 642 643 cpu_caps->permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK; 644 cpu_caps->inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK; 645 646 return 0; 647 } 648 649 /* 650 * Attempt to get the on-exec apply capability sets for an executable file from 651 * its xattrs and, if present, apply them to the proposed credentials being 652 * constructed by execve(). 653 */ 654 static int get_file_caps(struct linux_binprm *bprm, bool *effective, bool *has_fcap) 655 { 656 int rc = 0; 657 struct cpu_vfs_cap_data vcaps; 658 659 cap_clear(bprm->cred->cap_permitted); 660 661 if (!file_caps_enabled) 662 return 0; 663 664 if (!mnt_may_suid(bprm->file->f_path.mnt)) 665 return 0; 666 667 /* 668 * This check is redundant with mnt_may_suid() but is kept to make 669 * explicit that capability bits are limited to s_user_ns and its 670 * descendants. 671 */ 672 if (!current_in_userns(bprm->file->f_path.mnt->mnt_sb->s_user_ns)) 673 return 0; 674 675 rc = get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps); 676 if (rc < 0) { 677 if (rc == -EINVAL) 678 printk(KERN_NOTICE "Invalid argument reading file caps for %s\n", 679 bprm->filename); 680 else if (rc == -ENODATA) 681 rc = 0; 682 goto out; 683 } 684 685 rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_fcap); 686 687 out: 688 if (rc) 689 cap_clear(bprm->cred->cap_permitted); 690 691 return rc; 692 } 693 694 static inline bool root_privileged(void) { return !issecure(SECURE_NOROOT); } 695 696 static inline bool __is_real(kuid_t uid, struct cred *cred) 697 { return uid_eq(cred->uid, uid); } 698 699 static inline bool __is_eff(kuid_t uid, struct cred *cred) 700 { return uid_eq(cred->euid, uid); } 701 702 static inline bool __is_suid(kuid_t uid, struct cred *cred) 703 { return !__is_real(uid, cred) && __is_eff(uid, cred); } 704 705 /* 706 * handle_privileged_root - Handle case of privileged root 707 * @bprm: The execution parameters, including the proposed creds 708 * @has_fcap: Are any file capabilities set? 709 * @effective: Do we have effective root privilege? 710 * @root_uid: This namespace' root UID WRT initial USER namespace 711 * 712 * Handle the case where root is privileged and hasn't been neutered by 713 * SECURE_NOROOT. If file capabilities are set, they won't be combined with 714 * set UID root and nothing is changed. If we are root, cap_permitted is 715 * updated. If we have become set UID root, the effective bit is set. 716 */ 717 static void handle_privileged_root(struct linux_binprm *bprm, bool has_fcap, 718 bool *effective, kuid_t root_uid) 719 { 720 const struct cred *old = current_cred(); 721 struct cred *new = bprm->cred; 722 723 if (!root_privileged()) 724 return; 725 /* 726 * If the legacy file capability is set, then don't set privs 727 * for a setuid root binary run by a non-root user. Do set it 728 * for a root user just to cause least surprise to an admin. 729 */ 730 if (has_fcap && __is_suid(root_uid, new)) { 731 warn_setuid_and_fcaps_mixed(bprm->filename); 732 return; 733 } 734 /* 735 * To support inheritance of root-permissions and suid-root 736 * executables under compatibility mode, we override the 737 * capability sets for the file. 738 */ 739 if (__is_eff(root_uid, new) || __is_real(root_uid, new)) { 740 /* pP' = (cap_bset & ~0) | (pI & ~0) */ 741 new->cap_permitted = cap_combine(old->cap_bset, 742 old->cap_inheritable); 743 } 744 /* 745 * If only the real uid is 0, we do not set the effective bit. 746 */ 747 if (__is_eff(root_uid, new)) 748 *effective = true; 749 } 750 751 #define __cap_gained(field, target, source) \ 752 !cap_issubset(target->cap_##field, source->cap_##field) 753 #define __cap_grew(target, source, cred) \ 754 !cap_issubset(cred->cap_##target, cred->cap_##source) 755 #define __cap_full(field, cred) \ 756 cap_issubset(CAP_FULL_SET, cred->cap_##field) 757 758 static inline bool __is_setuid(struct cred *new, const struct cred *old) 759 { return !uid_eq(new->euid, old->uid); } 760 761 static inline bool __is_setgid(struct cred *new, const struct cred *old) 762 { return !gid_eq(new->egid, old->gid); } 763 764 /* 765 * 1) Audit candidate if current->cap_effective is set 766 * 767 * We do not bother to audit if 3 things are true: 768 * 1) cap_effective has all caps 769 * 2) we became root *OR* are were already root 770 * 3) root is supposed to have all caps (SECURE_NOROOT) 771 * Since this is just a normal root execing a process. 772 * 773 * Number 1 above might fail if you don't have a full bset, but I think 774 * that is interesting information to audit. 775 * 776 * A number of other conditions require logging: 777 * 2) something prevented setuid root getting all caps 778 * 3) non-setuid root gets fcaps 779 * 4) non-setuid root gets ambient 780 */ 781 static inline bool nonroot_raised_pE(struct cred *new, const struct cred *old, 782 kuid_t root, bool has_fcap) 783 { 784 bool ret = false; 785 786 if ((__cap_grew(effective, ambient, new) && 787 !(__cap_full(effective, new) && 788 (__is_eff(root, new) || __is_real(root, new)) && 789 root_privileged())) || 790 (root_privileged() && 791 __is_suid(root, new) && 792 !__cap_full(effective, new)) || 793 (!__is_setuid(new, old) && 794 ((has_fcap && 795 __cap_gained(permitted, new, old)) || 796 __cap_gained(ambient, new, old)))) 797 798 ret = true; 799 800 return ret; 801 } 802 803 /** 804 * cap_bprm_set_creds - Set up the proposed credentials for execve(). 805 * @bprm: The execution parameters, including the proposed creds 806 * 807 * Set up the proposed credentials for a new execution context being 808 * constructed by execve(). The proposed creds in @bprm->cred is altered, 809 * which won't take effect immediately. Returns 0 if successful, -ve on error. 810 */ 811 int cap_bprm_set_creds(struct linux_binprm *bprm) 812 { 813 const struct cred *old = current_cred(); 814 struct cred *new = bprm->cred; 815 bool effective = false, has_fcap = false, is_setid; 816 int ret; 817 kuid_t root_uid; 818 819 if (WARN_ON(!cap_ambient_invariant_ok(old))) 820 return -EPERM; 821 822 ret = get_file_caps(bprm, &effective, &has_fcap); 823 if (ret < 0) 824 return ret; 825 826 root_uid = make_kuid(new->user_ns, 0); 827 828 handle_privileged_root(bprm, has_fcap, &effective, root_uid); 829 830 /* if we have fs caps, clear dangerous personality flags */ 831 if (__cap_gained(permitted, new, old)) 832 bprm->per_clear |= PER_CLEAR_ON_SETID; 833 834 /* Don't let someone trace a set[ug]id/setpcap binary with the revised 835 * credentials unless they have the appropriate permit. 836 * 837 * In addition, if NO_NEW_PRIVS, then ensure we get no new privs. 838 */ 839 is_setid = __is_setuid(new, old) || __is_setgid(new, old); 840 841 if ((is_setid || __cap_gained(permitted, new, old)) && 842 ((bprm->unsafe & ~LSM_UNSAFE_PTRACE) || 843 !ptracer_capable(current, new->user_ns))) { 844 /* downgrade; they get no more than they had, and maybe less */ 845 if (!ns_capable(new->user_ns, CAP_SETUID) || 846 (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) { 847 new->euid = new->uid; 848 new->egid = new->gid; 849 } 850 new->cap_permitted = cap_intersect(new->cap_permitted, 851 old->cap_permitted); 852 } 853 854 new->suid = new->fsuid = new->euid; 855 new->sgid = new->fsgid = new->egid; 856 857 /* File caps or setid cancels ambient. */ 858 if (has_fcap || is_setid) 859 cap_clear(new->cap_ambient); 860 861 /* 862 * Now that we've computed pA', update pP' to give: 863 * pP' = (X & fP) | (pI & fI) | pA' 864 */ 865 new->cap_permitted = cap_combine(new->cap_permitted, new->cap_ambient); 866 867 /* 868 * Set pE' = (fE ? pP' : pA'). Because pA' is zero if fE is set, 869 * this is the same as pE' = (fE ? pP' : 0) | pA'. 870 */ 871 if (effective) 872 new->cap_effective = new->cap_permitted; 873 else 874 new->cap_effective = new->cap_ambient; 875 876 if (WARN_ON(!cap_ambient_invariant_ok(new))) 877 return -EPERM; 878 879 if (nonroot_raised_pE(new, old, root_uid, has_fcap)) { 880 ret = audit_log_bprm_fcaps(bprm, new, old); 881 if (ret < 0) 882 return ret; 883 } 884 885 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS); 886 887 if (WARN_ON(!cap_ambient_invariant_ok(new))) 888 return -EPERM; 889 890 /* Check for privilege-elevated exec. */ 891 bprm->cap_elevated = 0; 892 if (is_setid || 893 (!__is_real(root_uid, new) && 894 (effective || 895 __cap_grew(permitted, ambient, new)))) 896 bprm->cap_elevated = 1; 897 898 return 0; 899 } 900 901 /** 902 * cap_inode_setxattr - Determine whether an xattr may be altered 903 * @dentry: The inode/dentry being altered 904 * @name: The name of the xattr to be changed 905 * @value: The value that the xattr will be changed to 906 * @size: The size of value 907 * @flags: The replacement flag 908 * 909 * Determine whether an xattr may be altered or set on an inode, returning 0 if 910 * permission is granted, -ve if denied. 911 * 912 * This is used to make sure security xattrs don't get updated or set by those 913 * who aren't privileged to do so. 914 */ 915 int cap_inode_setxattr(struct dentry *dentry, const char *name, 916 const void *value, size_t size, int flags) 917 { 918 struct user_namespace *user_ns = dentry->d_sb->s_user_ns; 919 920 /* Ignore non-security xattrs */ 921 if (strncmp(name, XATTR_SECURITY_PREFIX, 922 sizeof(XATTR_SECURITY_PREFIX) - 1) != 0) 923 return 0; 924 925 /* 926 * For XATTR_NAME_CAPS the check will be done in 927 * cap_convert_nscap(), called by setxattr() 928 */ 929 if (strcmp(name, XATTR_NAME_CAPS) == 0) 930 return 0; 931 932 if (!ns_capable(user_ns, CAP_SYS_ADMIN)) 933 return -EPERM; 934 return 0; 935 } 936 937 /** 938 * cap_inode_removexattr - Determine whether an xattr may be removed 939 * @dentry: The inode/dentry being altered 940 * @name: The name of the xattr to be changed 941 * 942 * Determine whether an xattr may be removed from an inode, returning 0 if 943 * permission is granted, -ve if denied. 944 * 945 * This is used to make sure security xattrs don't get removed by those who 946 * aren't privileged to remove them. 947 */ 948 int cap_inode_removexattr(struct dentry *dentry, const char *name) 949 { 950 struct user_namespace *user_ns = dentry->d_sb->s_user_ns; 951 952 /* Ignore non-security xattrs */ 953 if (strncmp(name, XATTR_SECURITY_PREFIX, 954 sizeof(XATTR_SECURITY_PREFIX) - 1) != 0) 955 return 0; 956 957 if (strcmp(name, XATTR_NAME_CAPS) == 0) { 958 /* security.capability gets namespaced */ 959 struct inode *inode = d_backing_inode(dentry); 960 if (!inode) 961 return -EINVAL; 962 if (!capable_wrt_inode_uidgid(inode, CAP_SETFCAP)) 963 return -EPERM; 964 return 0; 965 } 966 967 if (!ns_capable(user_ns, CAP_SYS_ADMIN)) 968 return -EPERM; 969 return 0; 970 } 971 972 /* 973 * cap_emulate_setxuid() fixes the effective / permitted capabilities of 974 * a process after a call to setuid, setreuid, or setresuid. 975 * 976 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of 977 * {r,e,s}uid != 0, the permitted and effective capabilities are 978 * cleared. 979 * 980 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective 981 * capabilities of the process are cleared. 982 * 983 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective 984 * capabilities are set to the permitted capabilities. 985 * 986 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should 987 * never happen. 988 * 989 * -astor 990 * 991 * cevans - New behaviour, Oct '99 992 * A process may, via prctl(), elect to keep its capabilities when it 993 * calls setuid() and switches away from uid==0. Both permitted and 994 * effective sets will be retained. 995 * Without this change, it was impossible for a daemon to drop only some 996 * of its privilege. The call to setuid(!=0) would drop all privileges! 997 * Keeping uid 0 is not an option because uid 0 owns too many vital 998 * files.. 999 * Thanks to Olaf Kirch and Peter Benie for spotting this. 1000 */ 1001 static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old) 1002 { 1003 kuid_t root_uid = make_kuid(old->user_ns, 0); 1004 1005 if ((uid_eq(old->uid, root_uid) || 1006 uid_eq(old->euid, root_uid) || 1007 uid_eq(old->suid, root_uid)) && 1008 (!uid_eq(new->uid, root_uid) && 1009 !uid_eq(new->euid, root_uid) && 1010 !uid_eq(new->suid, root_uid))) { 1011 if (!issecure(SECURE_KEEP_CAPS)) { 1012 cap_clear(new->cap_permitted); 1013 cap_clear(new->cap_effective); 1014 } 1015 1016 /* 1017 * Pre-ambient programs expect setresuid to nonroot followed 1018 * by exec to drop capabilities. We should make sure that 1019 * this remains the case. 1020 */ 1021 cap_clear(new->cap_ambient); 1022 } 1023 if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid)) 1024 cap_clear(new->cap_effective); 1025 if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid)) 1026 new->cap_effective = new->cap_permitted; 1027 } 1028 1029 /** 1030 * cap_task_fix_setuid - Fix up the results of setuid() call 1031 * @new: The proposed credentials 1032 * @old: The current task's current credentials 1033 * @flags: Indications of what has changed 1034 * 1035 * Fix up the results of setuid() call before the credential changes are 1036 * actually applied, returning 0 to grant the changes, -ve to deny them. 1037 */ 1038 int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags) 1039 { 1040 switch (flags) { 1041 case LSM_SETID_RE: 1042 case LSM_SETID_ID: 1043 case LSM_SETID_RES: 1044 /* juggle the capabilities to follow [RES]UID changes unless 1045 * otherwise suppressed */ 1046 if (!issecure(SECURE_NO_SETUID_FIXUP)) 1047 cap_emulate_setxuid(new, old); 1048 break; 1049 1050 case LSM_SETID_FS: 1051 /* juggle the capabilties to follow FSUID changes, unless 1052 * otherwise suppressed 1053 * 1054 * FIXME - is fsuser used for all CAP_FS_MASK capabilities? 1055 * if not, we might be a bit too harsh here. 1056 */ 1057 if (!issecure(SECURE_NO_SETUID_FIXUP)) { 1058 kuid_t root_uid = make_kuid(old->user_ns, 0); 1059 if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid)) 1060 new->cap_effective = 1061 cap_drop_fs_set(new->cap_effective); 1062 1063 if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid)) 1064 new->cap_effective = 1065 cap_raise_fs_set(new->cap_effective, 1066 new->cap_permitted); 1067 } 1068 break; 1069 1070 default: 1071 return -EINVAL; 1072 } 1073 1074 return 0; 1075 } 1076 1077 /* 1078 * Rationale: code calling task_setscheduler, task_setioprio, and 1079 * task_setnice, assumes that 1080 * . if capable(cap_sys_nice), then those actions should be allowed 1081 * . if not capable(cap_sys_nice), but acting on your own processes, 1082 * then those actions should be allowed 1083 * This is insufficient now since you can call code without suid, but 1084 * yet with increased caps. 1085 * So we check for increased caps on the target process. 1086 */ 1087 static int cap_safe_nice(struct task_struct *p) 1088 { 1089 int is_subset, ret = 0; 1090 1091 rcu_read_lock(); 1092 is_subset = cap_issubset(__task_cred(p)->cap_permitted, 1093 current_cred()->cap_permitted); 1094 if (!is_subset && !ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) 1095 ret = -EPERM; 1096 rcu_read_unlock(); 1097 1098 return ret; 1099 } 1100 1101 /** 1102 * cap_task_setscheduler - Detemine if scheduler policy change is permitted 1103 * @p: The task to affect 1104 * 1105 * Detemine if the requested scheduler policy change is permitted for the 1106 * specified task, returning 0 if permission is granted, -ve if denied. 1107 */ 1108 int cap_task_setscheduler(struct task_struct *p) 1109 { 1110 return cap_safe_nice(p); 1111 } 1112 1113 /** 1114 * cap_task_ioprio - Detemine if I/O priority change is permitted 1115 * @p: The task to affect 1116 * @ioprio: The I/O priority to set 1117 * 1118 * Detemine if the requested I/O priority change is permitted for the specified 1119 * task, returning 0 if permission is granted, -ve if denied. 1120 */ 1121 int cap_task_setioprio(struct task_struct *p, int ioprio) 1122 { 1123 return cap_safe_nice(p); 1124 } 1125 1126 /** 1127 * cap_task_ioprio - Detemine if task priority change is permitted 1128 * @p: The task to affect 1129 * @nice: The nice value to set 1130 * 1131 * Detemine if the requested task priority change is permitted for the 1132 * specified task, returning 0 if permission is granted, -ve if denied. 1133 */ 1134 int cap_task_setnice(struct task_struct *p, int nice) 1135 { 1136 return cap_safe_nice(p); 1137 } 1138 1139 /* 1140 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from 1141 * the current task's bounding set. Returns 0 on success, -ve on error. 1142 */ 1143 static int cap_prctl_drop(unsigned long cap) 1144 { 1145 struct cred *new; 1146 1147 if (!ns_capable(current_user_ns(), CAP_SETPCAP)) 1148 return -EPERM; 1149 if (!cap_valid(cap)) 1150 return -EINVAL; 1151 1152 new = prepare_creds(); 1153 if (!new) 1154 return -ENOMEM; 1155 cap_lower(new->cap_bset, cap); 1156 return commit_creds(new); 1157 } 1158 1159 /** 1160 * cap_task_prctl - Implement process control functions for this security module 1161 * @option: The process control function requested 1162 * @arg2, @arg3, @arg4, @arg5: The argument data for this function 1163 * 1164 * Allow process control functions (sys_prctl()) to alter capabilities; may 1165 * also deny access to other functions not otherwise implemented here. 1166 * 1167 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented 1168 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM 1169 * modules will consider performing the function. 1170 */ 1171 int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3, 1172 unsigned long arg4, unsigned long arg5) 1173 { 1174 const struct cred *old = current_cred(); 1175 struct cred *new; 1176 1177 switch (option) { 1178 case PR_CAPBSET_READ: 1179 if (!cap_valid(arg2)) 1180 return -EINVAL; 1181 return !!cap_raised(old->cap_bset, arg2); 1182 1183 case PR_CAPBSET_DROP: 1184 return cap_prctl_drop(arg2); 1185 1186 /* 1187 * The next four prctl's remain to assist with transitioning a 1188 * system from legacy UID=0 based privilege (when filesystem 1189 * capabilities are not in use) to a system using filesystem 1190 * capabilities only - as the POSIX.1e draft intended. 1191 * 1192 * Note: 1193 * 1194 * PR_SET_SECUREBITS = 1195 * issecure_mask(SECURE_KEEP_CAPS_LOCKED) 1196 * | issecure_mask(SECURE_NOROOT) 1197 * | issecure_mask(SECURE_NOROOT_LOCKED) 1198 * | issecure_mask(SECURE_NO_SETUID_FIXUP) 1199 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED) 1200 * 1201 * will ensure that the current process and all of its 1202 * children will be locked into a pure 1203 * capability-based-privilege environment. 1204 */ 1205 case PR_SET_SECUREBITS: 1206 if ((((old->securebits & SECURE_ALL_LOCKS) >> 1) 1207 & (old->securebits ^ arg2)) /*[1]*/ 1208 || ((old->securebits & SECURE_ALL_LOCKS & ~arg2)) /*[2]*/ 1209 || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/ 1210 || (cap_capable(current_cred(), 1211 current_cred()->user_ns, CAP_SETPCAP, 1212 SECURITY_CAP_AUDIT) != 0) /*[4]*/ 1213 /* 1214 * [1] no changing of bits that are locked 1215 * [2] no unlocking of locks 1216 * [3] no setting of unsupported bits 1217 * [4] doing anything requires privilege (go read about 1218 * the "sendmail capabilities bug") 1219 */ 1220 ) 1221 /* cannot change a locked bit */ 1222 return -EPERM; 1223 1224 new = prepare_creds(); 1225 if (!new) 1226 return -ENOMEM; 1227 new->securebits = arg2; 1228 return commit_creds(new); 1229 1230 case PR_GET_SECUREBITS: 1231 return old->securebits; 1232 1233 case PR_GET_KEEPCAPS: 1234 return !!issecure(SECURE_KEEP_CAPS); 1235 1236 case PR_SET_KEEPCAPS: 1237 if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */ 1238 return -EINVAL; 1239 if (issecure(SECURE_KEEP_CAPS_LOCKED)) 1240 return -EPERM; 1241 1242 new = prepare_creds(); 1243 if (!new) 1244 return -ENOMEM; 1245 if (arg2) 1246 new->securebits |= issecure_mask(SECURE_KEEP_CAPS); 1247 else 1248 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS); 1249 return commit_creds(new); 1250 1251 case PR_CAP_AMBIENT: 1252 if (arg2 == PR_CAP_AMBIENT_CLEAR_ALL) { 1253 if (arg3 | arg4 | arg5) 1254 return -EINVAL; 1255 1256 new = prepare_creds(); 1257 if (!new) 1258 return -ENOMEM; 1259 cap_clear(new->cap_ambient); 1260 return commit_creds(new); 1261 } 1262 1263 if (((!cap_valid(arg3)) | arg4 | arg5)) 1264 return -EINVAL; 1265 1266 if (arg2 == PR_CAP_AMBIENT_IS_SET) { 1267 return !!cap_raised(current_cred()->cap_ambient, arg3); 1268 } else if (arg2 != PR_CAP_AMBIENT_RAISE && 1269 arg2 != PR_CAP_AMBIENT_LOWER) { 1270 return -EINVAL; 1271 } else { 1272 if (arg2 == PR_CAP_AMBIENT_RAISE && 1273 (!cap_raised(current_cred()->cap_permitted, arg3) || 1274 !cap_raised(current_cred()->cap_inheritable, 1275 arg3) || 1276 issecure(SECURE_NO_CAP_AMBIENT_RAISE))) 1277 return -EPERM; 1278 1279 new = prepare_creds(); 1280 if (!new) 1281 return -ENOMEM; 1282 if (arg2 == PR_CAP_AMBIENT_RAISE) 1283 cap_raise(new->cap_ambient, arg3); 1284 else 1285 cap_lower(new->cap_ambient, arg3); 1286 return commit_creds(new); 1287 } 1288 1289 default: 1290 /* No functionality available - continue with default */ 1291 return -ENOSYS; 1292 } 1293 } 1294 1295 /** 1296 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted 1297 * @mm: The VM space in which the new mapping is to be made 1298 * @pages: The size of the mapping 1299 * 1300 * Determine whether the allocation of a new virtual mapping by the current 1301 * task is permitted, returning 1 if permission is granted, 0 if not. 1302 */ 1303 int cap_vm_enough_memory(struct mm_struct *mm, long pages) 1304 { 1305 int cap_sys_admin = 0; 1306 1307 if (cap_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN, 1308 SECURITY_CAP_NOAUDIT) == 0) 1309 cap_sys_admin = 1; 1310 return cap_sys_admin; 1311 } 1312 1313 /* 1314 * cap_mmap_addr - check if able to map given addr 1315 * @addr: address attempting to be mapped 1316 * 1317 * If the process is attempting to map memory below dac_mmap_min_addr they need 1318 * CAP_SYS_RAWIO. The other parameters to this function are unused by the 1319 * capability security module. Returns 0 if this mapping should be allowed 1320 * -EPERM if not. 1321 */ 1322 int cap_mmap_addr(unsigned long addr) 1323 { 1324 int ret = 0; 1325 1326 if (addr < dac_mmap_min_addr) { 1327 ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO, 1328 SECURITY_CAP_AUDIT); 1329 /* set PF_SUPERPRIV if it turns out we allow the low mmap */ 1330 if (ret == 0) 1331 current->flags |= PF_SUPERPRIV; 1332 } 1333 return ret; 1334 } 1335 1336 int cap_mmap_file(struct file *file, unsigned long reqprot, 1337 unsigned long prot, unsigned long flags) 1338 { 1339 return 0; 1340 } 1341 1342 #ifdef CONFIG_SECURITY 1343 1344 struct security_hook_list capability_hooks[] __lsm_ro_after_init = { 1345 LSM_HOOK_INIT(capable, cap_capable), 1346 LSM_HOOK_INIT(settime, cap_settime), 1347 LSM_HOOK_INIT(ptrace_access_check, cap_ptrace_access_check), 1348 LSM_HOOK_INIT(ptrace_traceme, cap_ptrace_traceme), 1349 LSM_HOOK_INIT(capget, cap_capget), 1350 LSM_HOOK_INIT(capset, cap_capset), 1351 LSM_HOOK_INIT(bprm_set_creds, cap_bprm_set_creds), 1352 LSM_HOOK_INIT(inode_need_killpriv, cap_inode_need_killpriv), 1353 LSM_HOOK_INIT(inode_killpriv, cap_inode_killpriv), 1354 LSM_HOOK_INIT(inode_getsecurity, cap_inode_getsecurity), 1355 LSM_HOOK_INIT(mmap_addr, cap_mmap_addr), 1356 LSM_HOOK_INIT(mmap_file, cap_mmap_file), 1357 LSM_HOOK_INIT(task_fix_setuid, cap_task_fix_setuid), 1358 LSM_HOOK_INIT(task_prctl, cap_task_prctl), 1359 LSM_HOOK_INIT(task_setscheduler, cap_task_setscheduler), 1360 LSM_HOOK_INIT(task_setioprio, cap_task_setioprio), 1361 LSM_HOOK_INIT(task_setnice, cap_task_setnice), 1362 LSM_HOOK_INIT(vm_enough_memory, cap_vm_enough_memory), 1363 }; 1364 1365 void __init capability_add_hooks(void) 1366 { 1367 security_add_hooks(capability_hooks, ARRAY_SIZE(capability_hooks), 1368 "capability"); 1369 } 1370 1371 #endif /* CONFIG_SECURITY */ 1372