1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* Common capabilities, needed by capability.o. 3 */ 4 5 #include <linux/capability.h> 6 #include <linux/audit.h> 7 #include <linux/init.h> 8 #include <linux/kernel.h> 9 #include <linux/lsm_hooks.h> 10 #include <linux/file.h> 11 #include <linux/mm.h> 12 #include <linux/mman.h> 13 #include <linux/pagemap.h> 14 #include <linux/swap.h> 15 #include <linux/skbuff.h> 16 #include <linux/netlink.h> 17 #include <linux/ptrace.h> 18 #include <linux/xattr.h> 19 #include <linux/hugetlb.h> 20 #include <linux/mount.h> 21 #include <linux/sched.h> 22 #include <linux/prctl.h> 23 #include <linux/securebits.h> 24 #include <linux/user_namespace.h> 25 #include <linux/binfmts.h> 26 #include <linux/personality.h> 27 28 /* 29 * If a non-root user executes a setuid-root binary in 30 * !secure(SECURE_NOROOT) mode, then we raise capabilities. 31 * However if fE is also set, then the intent is for only 32 * the file capabilities to be applied, and the setuid-root 33 * bit is left on either to change the uid (plausible) or 34 * to get full privilege on a kernel without file capabilities 35 * support. So in that case we do not raise capabilities. 36 * 37 * Warn if that happens, once per boot. 38 */ 39 static void warn_setuid_and_fcaps_mixed(const char *fname) 40 { 41 static int warned; 42 if (!warned) { 43 printk(KERN_INFO "warning: `%s' has both setuid-root and" 44 " effective capabilities. Therefore not raising all" 45 " capabilities.\n", fname); 46 warned = 1; 47 } 48 } 49 50 /** 51 * cap_capable - Determine whether a task has a particular effective capability 52 * @cred: The credentials to use 53 * @ns: The user namespace in which we need the capability 54 * @cap: The capability to check for 55 * @opts: Bitmask of options defined in include/linux/security.h 56 * 57 * Determine whether the nominated task has the specified capability amongst 58 * its effective set, returning 0 if it does, -ve if it does not. 59 * 60 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable() 61 * and has_capability() functions. That is, it has the reverse semantics: 62 * cap_has_capability() returns 0 when a task has a capability, but the 63 * kernel's capable() and has_capability() returns 1 for this case. 64 */ 65 int cap_capable(const struct cred *cred, struct user_namespace *targ_ns, 66 int cap, unsigned int opts) 67 { 68 struct user_namespace *ns = targ_ns; 69 70 /* See if cred has the capability in the target user namespace 71 * by examining the target user namespace and all of the target 72 * user namespace's parents. 73 */ 74 for (;;) { 75 /* Do we have the necessary capabilities? */ 76 if (ns == cred->user_ns) 77 return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM; 78 79 /* 80 * If we're already at a lower level than we're looking for, 81 * we're done searching. 82 */ 83 if (ns->level <= cred->user_ns->level) 84 return -EPERM; 85 86 /* 87 * The owner of the user namespace in the parent of the 88 * user namespace has all caps. 89 */ 90 if ((ns->parent == cred->user_ns) && uid_eq(ns->owner, cred->euid)) 91 return 0; 92 93 /* 94 * If you have a capability in a parent user ns, then you have 95 * it over all children user namespaces as well. 96 */ 97 ns = ns->parent; 98 } 99 100 /* We never get here */ 101 } 102 103 /** 104 * cap_settime - Determine whether the current process may set the system clock 105 * @ts: The time to set 106 * @tz: The timezone to set 107 * 108 * Determine whether the current process may set the system clock and timezone 109 * information, returning 0 if permission granted, -ve if denied. 110 */ 111 int cap_settime(const struct timespec64 *ts, const struct timezone *tz) 112 { 113 if (!capable(CAP_SYS_TIME)) 114 return -EPERM; 115 return 0; 116 } 117 118 /** 119 * cap_ptrace_access_check - Determine whether the current process may access 120 * another 121 * @child: The process to be accessed 122 * @mode: The mode of attachment. 123 * 124 * If we are in the same or an ancestor user_ns and have all the target 125 * task's capabilities, then ptrace access is allowed. 126 * If we have the ptrace capability to the target user_ns, then ptrace 127 * access is allowed. 128 * Else denied. 129 * 130 * Determine whether a process may access another, returning 0 if permission 131 * granted, -ve if denied. 132 */ 133 int cap_ptrace_access_check(struct task_struct *child, unsigned int mode) 134 { 135 int ret = 0; 136 const struct cred *cred, *child_cred; 137 const kernel_cap_t *caller_caps; 138 139 rcu_read_lock(); 140 cred = current_cred(); 141 child_cred = __task_cred(child); 142 if (mode & PTRACE_MODE_FSCREDS) 143 caller_caps = &cred->cap_effective; 144 else 145 caller_caps = &cred->cap_permitted; 146 if (cred->user_ns == child_cred->user_ns && 147 cap_issubset(child_cred->cap_permitted, *caller_caps)) 148 goto out; 149 if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE)) 150 goto out; 151 ret = -EPERM; 152 out: 153 rcu_read_unlock(); 154 return ret; 155 } 156 157 /** 158 * cap_ptrace_traceme - Determine whether another process may trace the current 159 * @parent: The task proposed to be the tracer 160 * 161 * If parent is in the same or an ancestor user_ns and has all current's 162 * capabilities, then ptrace access is allowed. 163 * If parent has the ptrace capability to current's user_ns, then ptrace 164 * access is allowed. 165 * Else denied. 166 * 167 * Determine whether the nominated task is permitted to trace the current 168 * process, returning 0 if permission is granted, -ve if denied. 169 */ 170 int cap_ptrace_traceme(struct task_struct *parent) 171 { 172 int ret = 0; 173 const struct cred *cred, *child_cred; 174 175 rcu_read_lock(); 176 cred = __task_cred(parent); 177 child_cred = current_cred(); 178 if (cred->user_ns == child_cred->user_ns && 179 cap_issubset(child_cred->cap_permitted, cred->cap_permitted)) 180 goto out; 181 if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE)) 182 goto out; 183 ret = -EPERM; 184 out: 185 rcu_read_unlock(); 186 return ret; 187 } 188 189 /** 190 * cap_capget - Retrieve a task's capability sets 191 * @target: The task from which to retrieve the capability sets 192 * @effective: The place to record the effective set 193 * @inheritable: The place to record the inheritable set 194 * @permitted: The place to record the permitted set 195 * 196 * This function retrieves the capabilities of the nominated task and returns 197 * them to the caller. 198 */ 199 int cap_capget(struct task_struct *target, kernel_cap_t *effective, 200 kernel_cap_t *inheritable, kernel_cap_t *permitted) 201 { 202 const struct cred *cred; 203 204 /* Derived from kernel/capability.c:sys_capget. */ 205 rcu_read_lock(); 206 cred = __task_cred(target); 207 *effective = cred->cap_effective; 208 *inheritable = cred->cap_inheritable; 209 *permitted = cred->cap_permitted; 210 rcu_read_unlock(); 211 return 0; 212 } 213 214 /* 215 * Determine whether the inheritable capabilities are limited to the old 216 * permitted set. Returns 1 if they are limited, 0 if they are not. 217 */ 218 static inline int cap_inh_is_capped(void) 219 { 220 /* they are so limited unless the current task has the CAP_SETPCAP 221 * capability 222 */ 223 if (cap_capable(current_cred(), current_cred()->user_ns, 224 CAP_SETPCAP, CAP_OPT_NONE) == 0) 225 return 0; 226 return 1; 227 } 228 229 /** 230 * cap_capset - Validate and apply proposed changes to current's capabilities 231 * @new: The proposed new credentials; alterations should be made here 232 * @old: The current task's current credentials 233 * @effective: A pointer to the proposed new effective capabilities set 234 * @inheritable: A pointer to the proposed new inheritable capabilities set 235 * @permitted: A pointer to the proposed new permitted capabilities set 236 * 237 * This function validates and applies a proposed mass change to the current 238 * process's capability sets. The changes are made to the proposed new 239 * credentials, and assuming no error, will be committed by the caller of LSM. 240 */ 241 int cap_capset(struct cred *new, 242 const struct cred *old, 243 const kernel_cap_t *effective, 244 const kernel_cap_t *inheritable, 245 const kernel_cap_t *permitted) 246 { 247 if (cap_inh_is_capped() && 248 !cap_issubset(*inheritable, 249 cap_combine(old->cap_inheritable, 250 old->cap_permitted))) 251 /* incapable of using this inheritable set */ 252 return -EPERM; 253 254 if (!cap_issubset(*inheritable, 255 cap_combine(old->cap_inheritable, 256 old->cap_bset))) 257 /* no new pI capabilities outside bounding set */ 258 return -EPERM; 259 260 /* verify restrictions on target's new Permitted set */ 261 if (!cap_issubset(*permitted, old->cap_permitted)) 262 return -EPERM; 263 264 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */ 265 if (!cap_issubset(*effective, *permitted)) 266 return -EPERM; 267 268 new->cap_effective = *effective; 269 new->cap_inheritable = *inheritable; 270 new->cap_permitted = *permitted; 271 272 /* 273 * Mask off ambient bits that are no longer both permitted and 274 * inheritable. 275 */ 276 new->cap_ambient = cap_intersect(new->cap_ambient, 277 cap_intersect(*permitted, 278 *inheritable)); 279 if (WARN_ON(!cap_ambient_invariant_ok(new))) 280 return -EINVAL; 281 return 0; 282 } 283 284 /** 285 * cap_inode_need_killpriv - Determine if inode change affects privileges 286 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV 287 * 288 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV 289 * affects the security markings on that inode, and if it is, should 290 * inode_killpriv() be invoked or the change rejected. 291 * 292 * Returns 1 if security.capability has a value, meaning inode_killpriv() 293 * is required, 0 otherwise, meaning inode_killpriv() is not required. 294 */ 295 int cap_inode_need_killpriv(struct dentry *dentry) 296 { 297 struct inode *inode = d_backing_inode(dentry); 298 int error; 299 300 error = __vfs_getxattr(dentry, inode, XATTR_NAME_CAPS, NULL, 0); 301 return error > 0; 302 } 303 304 /** 305 * cap_inode_killpriv - Erase the security markings on an inode 306 * @dentry: The inode/dentry to alter 307 * 308 * Erase the privilege-enhancing security markings on an inode. 309 * 310 * Returns 0 if successful, -ve on error. 311 */ 312 int cap_inode_killpriv(struct dentry *dentry) 313 { 314 int error; 315 316 error = __vfs_removexattr(dentry, XATTR_NAME_CAPS); 317 if (error == -EOPNOTSUPP) 318 error = 0; 319 return error; 320 } 321 322 static bool rootid_owns_currentns(kuid_t kroot) 323 { 324 struct user_namespace *ns; 325 326 if (!uid_valid(kroot)) 327 return false; 328 329 for (ns = current_user_ns(); ; ns = ns->parent) { 330 if (from_kuid(ns, kroot) == 0) 331 return true; 332 if (ns == &init_user_ns) 333 break; 334 } 335 336 return false; 337 } 338 339 static __u32 sansflags(__u32 m) 340 { 341 return m & ~VFS_CAP_FLAGS_EFFECTIVE; 342 } 343 344 static bool is_v2header(size_t size, const struct vfs_cap_data *cap) 345 { 346 if (size != XATTR_CAPS_SZ_2) 347 return false; 348 return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_2; 349 } 350 351 static bool is_v3header(size_t size, const struct vfs_cap_data *cap) 352 { 353 if (size != XATTR_CAPS_SZ_3) 354 return false; 355 return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_3; 356 } 357 358 /* 359 * getsecurity: We are called for security.* before any attempt to read the 360 * xattr from the inode itself. 361 * 362 * This gives us a chance to read the on-disk value and convert it. If we 363 * return -EOPNOTSUPP, then vfs_getxattr() will call the i_op handler. 364 * 365 * Note we are not called by vfs_getxattr_alloc(), but that is only called 366 * by the integrity subsystem, which really wants the unconverted values - 367 * so that's good. 368 */ 369 int cap_inode_getsecurity(struct inode *inode, const char *name, void **buffer, 370 bool alloc) 371 { 372 int size, ret; 373 kuid_t kroot; 374 uid_t root, mappedroot; 375 char *tmpbuf = NULL; 376 struct vfs_cap_data *cap; 377 struct vfs_ns_cap_data *nscap; 378 struct dentry *dentry; 379 struct user_namespace *fs_ns; 380 381 if (strcmp(name, "capability") != 0) 382 return -EOPNOTSUPP; 383 384 dentry = d_find_any_alias(inode); 385 if (!dentry) 386 return -EINVAL; 387 388 size = sizeof(struct vfs_ns_cap_data); 389 ret = (int) vfs_getxattr_alloc(dentry, XATTR_NAME_CAPS, 390 &tmpbuf, size, GFP_NOFS); 391 dput(dentry); 392 393 if (ret < 0) 394 return ret; 395 396 fs_ns = inode->i_sb->s_user_ns; 397 cap = (struct vfs_cap_data *) tmpbuf; 398 if (is_v2header((size_t) ret, cap)) { 399 /* If this is sizeof(vfs_cap_data) then we're ok with the 400 * on-disk value, so return that. */ 401 if (alloc) 402 *buffer = tmpbuf; 403 else 404 kfree(tmpbuf); 405 return ret; 406 } else if (!is_v3header((size_t) ret, cap)) { 407 kfree(tmpbuf); 408 return -EINVAL; 409 } 410 411 nscap = (struct vfs_ns_cap_data *) tmpbuf; 412 root = le32_to_cpu(nscap->rootid); 413 kroot = make_kuid(fs_ns, root); 414 415 /* If the root kuid maps to a valid uid in current ns, then return 416 * this as a nscap. */ 417 mappedroot = from_kuid(current_user_ns(), kroot); 418 if (mappedroot != (uid_t)-1 && mappedroot != (uid_t)0) { 419 if (alloc) { 420 *buffer = tmpbuf; 421 nscap->rootid = cpu_to_le32(mappedroot); 422 } else 423 kfree(tmpbuf); 424 return size; 425 } 426 427 if (!rootid_owns_currentns(kroot)) { 428 kfree(tmpbuf); 429 return -EOPNOTSUPP; 430 } 431 432 /* This comes from a parent namespace. Return as a v2 capability */ 433 size = sizeof(struct vfs_cap_data); 434 if (alloc) { 435 *buffer = kmalloc(size, GFP_ATOMIC); 436 if (*buffer) { 437 struct vfs_cap_data *cap = *buffer; 438 __le32 nsmagic, magic; 439 magic = VFS_CAP_REVISION_2; 440 nsmagic = le32_to_cpu(nscap->magic_etc); 441 if (nsmagic & VFS_CAP_FLAGS_EFFECTIVE) 442 magic |= VFS_CAP_FLAGS_EFFECTIVE; 443 memcpy(&cap->data, &nscap->data, sizeof(__le32) * 2 * VFS_CAP_U32); 444 cap->magic_etc = cpu_to_le32(magic); 445 } else { 446 size = -ENOMEM; 447 } 448 } 449 kfree(tmpbuf); 450 return size; 451 } 452 453 static kuid_t rootid_from_xattr(const void *value, size_t size, 454 struct user_namespace *task_ns) 455 { 456 const struct vfs_ns_cap_data *nscap = value; 457 uid_t rootid = 0; 458 459 if (size == XATTR_CAPS_SZ_3) 460 rootid = le32_to_cpu(nscap->rootid); 461 462 return make_kuid(task_ns, rootid); 463 } 464 465 static bool validheader(size_t size, const struct vfs_cap_data *cap) 466 { 467 return is_v2header(size, cap) || is_v3header(size, cap); 468 } 469 470 /* 471 * User requested a write of security.capability. If needed, update the 472 * xattr to change from v2 to v3, or to fixup the v3 rootid. 473 * 474 * If all is ok, we return the new size, on error return < 0. 475 */ 476 int cap_convert_nscap(struct dentry *dentry, const void **ivalue, size_t size) 477 { 478 struct vfs_ns_cap_data *nscap; 479 uid_t nsrootid; 480 const struct vfs_cap_data *cap = *ivalue; 481 __u32 magic, nsmagic; 482 struct inode *inode = d_backing_inode(dentry); 483 struct user_namespace *task_ns = current_user_ns(), 484 *fs_ns = inode->i_sb->s_user_ns; 485 kuid_t rootid; 486 size_t newsize; 487 488 if (!*ivalue) 489 return -EINVAL; 490 if (!validheader(size, cap)) 491 return -EINVAL; 492 if (!capable_wrt_inode_uidgid(inode, CAP_SETFCAP)) 493 return -EPERM; 494 if (size == XATTR_CAPS_SZ_2) 495 if (ns_capable(inode->i_sb->s_user_ns, CAP_SETFCAP)) 496 /* user is privileged, just write the v2 */ 497 return size; 498 499 rootid = rootid_from_xattr(*ivalue, size, task_ns); 500 if (!uid_valid(rootid)) 501 return -EINVAL; 502 503 nsrootid = from_kuid(fs_ns, rootid); 504 if (nsrootid == -1) 505 return -EINVAL; 506 507 newsize = sizeof(struct vfs_ns_cap_data); 508 nscap = kmalloc(newsize, GFP_ATOMIC); 509 if (!nscap) 510 return -ENOMEM; 511 nscap->rootid = cpu_to_le32(nsrootid); 512 nsmagic = VFS_CAP_REVISION_3; 513 magic = le32_to_cpu(cap->magic_etc); 514 if (magic & VFS_CAP_FLAGS_EFFECTIVE) 515 nsmagic |= VFS_CAP_FLAGS_EFFECTIVE; 516 nscap->magic_etc = cpu_to_le32(nsmagic); 517 memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32); 518 519 *ivalue = nscap; 520 return newsize; 521 } 522 523 /* 524 * Calculate the new process capability sets from the capability sets attached 525 * to a file. 526 */ 527 static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps, 528 struct linux_binprm *bprm, 529 bool *effective, 530 bool *has_fcap) 531 { 532 struct cred *new = bprm->cred; 533 unsigned i; 534 int ret = 0; 535 536 if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE) 537 *effective = true; 538 539 if (caps->magic_etc & VFS_CAP_REVISION_MASK) 540 *has_fcap = true; 541 542 CAP_FOR_EACH_U32(i) { 543 __u32 permitted = caps->permitted.cap[i]; 544 __u32 inheritable = caps->inheritable.cap[i]; 545 546 /* 547 * pP' = (X & fP) | (pI & fI) 548 * The addition of pA' is handled later. 549 */ 550 new->cap_permitted.cap[i] = 551 (new->cap_bset.cap[i] & permitted) | 552 (new->cap_inheritable.cap[i] & inheritable); 553 554 if (permitted & ~new->cap_permitted.cap[i]) 555 /* insufficient to execute correctly */ 556 ret = -EPERM; 557 } 558 559 /* 560 * For legacy apps, with no internal support for recognizing they 561 * do not have enough capabilities, we return an error if they are 562 * missing some "forced" (aka file-permitted) capabilities. 563 */ 564 return *effective ? ret : 0; 565 } 566 567 /* 568 * Extract the on-exec-apply capability sets for an executable file. 569 */ 570 int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps) 571 { 572 struct inode *inode = d_backing_inode(dentry); 573 __u32 magic_etc; 574 unsigned tocopy, i; 575 int size; 576 struct vfs_ns_cap_data data, *nscaps = &data; 577 struct vfs_cap_data *caps = (struct vfs_cap_data *) &data; 578 kuid_t rootkuid; 579 struct user_namespace *fs_ns; 580 581 memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data)); 582 583 if (!inode) 584 return -ENODATA; 585 586 fs_ns = inode->i_sb->s_user_ns; 587 size = __vfs_getxattr((struct dentry *)dentry, inode, 588 XATTR_NAME_CAPS, &data, XATTR_CAPS_SZ); 589 if (size == -ENODATA || size == -EOPNOTSUPP) 590 /* no data, that's ok */ 591 return -ENODATA; 592 593 if (size < 0) 594 return size; 595 596 if (size < sizeof(magic_etc)) 597 return -EINVAL; 598 599 cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps->magic_etc); 600 601 rootkuid = make_kuid(fs_ns, 0); 602 switch (magic_etc & VFS_CAP_REVISION_MASK) { 603 case VFS_CAP_REVISION_1: 604 if (size != XATTR_CAPS_SZ_1) 605 return -EINVAL; 606 tocopy = VFS_CAP_U32_1; 607 break; 608 case VFS_CAP_REVISION_2: 609 if (size != XATTR_CAPS_SZ_2) 610 return -EINVAL; 611 tocopy = VFS_CAP_U32_2; 612 break; 613 case VFS_CAP_REVISION_3: 614 if (size != XATTR_CAPS_SZ_3) 615 return -EINVAL; 616 tocopy = VFS_CAP_U32_3; 617 rootkuid = make_kuid(fs_ns, le32_to_cpu(nscaps->rootid)); 618 break; 619 620 default: 621 return -EINVAL; 622 } 623 /* Limit the caps to the mounter of the filesystem 624 * or the more limited uid specified in the xattr. 625 */ 626 if (!rootid_owns_currentns(rootkuid)) 627 return -ENODATA; 628 629 CAP_FOR_EACH_U32(i) { 630 if (i >= tocopy) 631 break; 632 cpu_caps->permitted.cap[i] = le32_to_cpu(caps->data[i].permitted); 633 cpu_caps->inheritable.cap[i] = le32_to_cpu(caps->data[i].inheritable); 634 } 635 636 cpu_caps->permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK; 637 cpu_caps->inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK; 638 639 cpu_caps->rootid = rootkuid; 640 641 return 0; 642 } 643 644 /* 645 * Attempt to get the on-exec apply capability sets for an executable file from 646 * its xattrs and, if present, apply them to the proposed credentials being 647 * constructed by execve(). 648 */ 649 static int get_file_caps(struct linux_binprm *bprm, struct file *file, 650 bool *effective, bool *has_fcap) 651 { 652 int rc = 0; 653 struct cpu_vfs_cap_data vcaps; 654 655 cap_clear(bprm->cred->cap_permitted); 656 657 if (!file_caps_enabled) 658 return 0; 659 660 if (!mnt_may_suid(file->f_path.mnt)) 661 return 0; 662 663 /* 664 * This check is redundant with mnt_may_suid() but is kept to make 665 * explicit that capability bits are limited to s_user_ns and its 666 * descendants. 667 */ 668 if (!current_in_userns(file->f_path.mnt->mnt_sb->s_user_ns)) 669 return 0; 670 671 rc = get_vfs_caps_from_disk(file->f_path.dentry, &vcaps); 672 if (rc < 0) { 673 if (rc == -EINVAL) 674 printk(KERN_NOTICE "Invalid argument reading file caps for %s\n", 675 bprm->filename); 676 else if (rc == -ENODATA) 677 rc = 0; 678 goto out; 679 } 680 681 rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_fcap); 682 683 out: 684 if (rc) 685 cap_clear(bprm->cred->cap_permitted); 686 687 return rc; 688 } 689 690 static inline bool root_privileged(void) { return !issecure(SECURE_NOROOT); } 691 692 static inline bool __is_real(kuid_t uid, struct cred *cred) 693 { return uid_eq(cred->uid, uid); } 694 695 static inline bool __is_eff(kuid_t uid, struct cred *cred) 696 { return uid_eq(cred->euid, uid); } 697 698 static inline bool __is_suid(kuid_t uid, struct cred *cred) 699 { return !__is_real(uid, cred) && __is_eff(uid, cred); } 700 701 /* 702 * handle_privileged_root - Handle case of privileged root 703 * @bprm: The execution parameters, including the proposed creds 704 * @has_fcap: Are any file capabilities set? 705 * @effective: Do we have effective root privilege? 706 * @root_uid: This namespace' root UID WRT initial USER namespace 707 * 708 * Handle the case where root is privileged and hasn't been neutered by 709 * SECURE_NOROOT. If file capabilities are set, they won't be combined with 710 * set UID root and nothing is changed. If we are root, cap_permitted is 711 * updated. If we have become set UID root, the effective bit is set. 712 */ 713 static void handle_privileged_root(struct linux_binprm *bprm, bool has_fcap, 714 bool *effective, kuid_t root_uid) 715 { 716 const struct cred *old = current_cred(); 717 struct cred *new = bprm->cred; 718 719 if (!root_privileged()) 720 return; 721 /* 722 * If the legacy file capability is set, then don't set privs 723 * for a setuid root binary run by a non-root user. Do set it 724 * for a root user just to cause least surprise to an admin. 725 */ 726 if (has_fcap && __is_suid(root_uid, new)) { 727 warn_setuid_and_fcaps_mixed(bprm->filename); 728 return; 729 } 730 /* 731 * To support inheritance of root-permissions and suid-root 732 * executables under compatibility mode, we override the 733 * capability sets for the file. 734 */ 735 if (__is_eff(root_uid, new) || __is_real(root_uid, new)) { 736 /* pP' = (cap_bset & ~0) | (pI & ~0) */ 737 new->cap_permitted = cap_combine(old->cap_bset, 738 old->cap_inheritable); 739 } 740 /* 741 * If only the real uid is 0, we do not set the effective bit. 742 */ 743 if (__is_eff(root_uid, new)) 744 *effective = true; 745 } 746 747 #define __cap_gained(field, target, source) \ 748 !cap_issubset(target->cap_##field, source->cap_##field) 749 #define __cap_grew(target, source, cred) \ 750 !cap_issubset(cred->cap_##target, cred->cap_##source) 751 #define __cap_full(field, cred) \ 752 cap_issubset(CAP_FULL_SET, cred->cap_##field) 753 754 static inline bool __is_setuid(struct cred *new, const struct cred *old) 755 { return !uid_eq(new->euid, old->uid); } 756 757 static inline bool __is_setgid(struct cred *new, const struct cred *old) 758 { return !gid_eq(new->egid, old->gid); } 759 760 /* 761 * 1) Audit candidate if current->cap_effective is set 762 * 763 * We do not bother to audit if 3 things are true: 764 * 1) cap_effective has all caps 765 * 2) we became root *OR* are were already root 766 * 3) root is supposed to have all caps (SECURE_NOROOT) 767 * Since this is just a normal root execing a process. 768 * 769 * Number 1 above might fail if you don't have a full bset, but I think 770 * that is interesting information to audit. 771 * 772 * A number of other conditions require logging: 773 * 2) something prevented setuid root getting all caps 774 * 3) non-setuid root gets fcaps 775 * 4) non-setuid root gets ambient 776 */ 777 static inline bool nonroot_raised_pE(struct cred *new, const struct cred *old, 778 kuid_t root, bool has_fcap) 779 { 780 bool ret = false; 781 782 if ((__cap_grew(effective, ambient, new) && 783 !(__cap_full(effective, new) && 784 (__is_eff(root, new) || __is_real(root, new)) && 785 root_privileged())) || 786 (root_privileged() && 787 __is_suid(root, new) && 788 !__cap_full(effective, new)) || 789 (!__is_setuid(new, old) && 790 ((has_fcap && 791 __cap_gained(permitted, new, old)) || 792 __cap_gained(ambient, new, old)))) 793 794 ret = true; 795 796 return ret; 797 } 798 799 /** 800 * cap_bprm_creds_from_file - Set up the proposed credentials for execve(). 801 * @bprm: The execution parameters, including the proposed creds 802 * @file: The file to pull the credentials from 803 * 804 * Set up the proposed credentials for a new execution context being 805 * constructed by execve(). The proposed creds in @bprm->cred is altered, 806 * which won't take effect immediately. Returns 0 if successful, -ve on error. 807 */ 808 int cap_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file) 809 { 810 /* Process setpcap binaries and capabilities for uid 0 */ 811 const struct cred *old = current_cred(); 812 struct cred *new = bprm->cred; 813 bool effective = false, has_fcap = false, is_setid; 814 int ret; 815 kuid_t root_uid; 816 817 if (WARN_ON(!cap_ambient_invariant_ok(old))) 818 return -EPERM; 819 820 ret = get_file_caps(bprm, file, &effective, &has_fcap); 821 if (ret < 0) 822 return ret; 823 824 root_uid = make_kuid(new->user_ns, 0); 825 826 handle_privileged_root(bprm, has_fcap, &effective, root_uid); 827 828 /* if we have fs caps, clear dangerous personality flags */ 829 if (__cap_gained(permitted, new, old)) 830 bprm->per_clear |= PER_CLEAR_ON_SETID; 831 832 /* Don't let someone trace a set[ug]id/setpcap binary with the revised 833 * credentials unless they have the appropriate permit. 834 * 835 * In addition, if NO_NEW_PRIVS, then ensure we get no new privs. 836 */ 837 is_setid = __is_setuid(new, old) || __is_setgid(new, old); 838 839 if ((is_setid || __cap_gained(permitted, new, old)) && 840 ((bprm->unsafe & ~LSM_UNSAFE_PTRACE) || 841 !ptracer_capable(current, new->user_ns))) { 842 /* downgrade; they get no more than they had, and maybe less */ 843 if (!ns_capable(new->user_ns, CAP_SETUID) || 844 (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) { 845 new->euid = new->uid; 846 new->egid = new->gid; 847 } 848 new->cap_permitted = cap_intersect(new->cap_permitted, 849 old->cap_permitted); 850 } 851 852 new->suid = new->fsuid = new->euid; 853 new->sgid = new->fsgid = new->egid; 854 855 /* File caps or setid cancels ambient. */ 856 if (has_fcap || is_setid) 857 cap_clear(new->cap_ambient); 858 859 /* 860 * Now that we've computed pA', update pP' to give: 861 * pP' = (X & fP) | (pI & fI) | pA' 862 */ 863 new->cap_permitted = cap_combine(new->cap_permitted, new->cap_ambient); 864 865 /* 866 * Set pE' = (fE ? pP' : pA'). Because pA' is zero if fE is set, 867 * this is the same as pE' = (fE ? pP' : 0) | pA'. 868 */ 869 if (effective) 870 new->cap_effective = new->cap_permitted; 871 else 872 new->cap_effective = new->cap_ambient; 873 874 if (WARN_ON(!cap_ambient_invariant_ok(new))) 875 return -EPERM; 876 877 if (nonroot_raised_pE(new, old, root_uid, has_fcap)) { 878 ret = audit_log_bprm_fcaps(bprm, new, old); 879 if (ret < 0) 880 return ret; 881 } 882 883 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS); 884 885 if (WARN_ON(!cap_ambient_invariant_ok(new))) 886 return -EPERM; 887 888 /* Check for privilege-elevated exec. */ 889 if (is_setid || 890 (!__is_real(root_uid, new) && 891 (effective || 892 __cap_grew(permitted, ambient, new)))) 893 bprm->secureexec = 1; 894 895 return 0; 896 } 897 898 /** 899 * cap_inode_setxattr - Determine whether an xattr may be altered 900 * @dentry: The inode/dentry being altered 901 * @name: The name of the xattr to be changed 902 * @value: The value that the xattr will be changed to 903 * @size: The size of value 904 * @flags: The replacement flag 905 * 906 * Determine whether an xattr may be altered or set on an inode, returning 0 if 907 * permission is granted, -ve if denied. 908 * 909 * This is used to make sure security xattrs don't get updated or set by those 910 * who aren't privileged to do so. 911 */ 912 int cap_inode_setxattr(struct dentry *dentry, const char *name, 913 const void *value, size_t size, int flags) 914 { 915 struct user_namespace *user_ns = dentry->d_sb->s_user_ns; 916 917 /* Ignore non-security xattrs */ 918 if (strncmp(name, XATTR_SECURITY_PREFIX, 919 XATTR_SECURITY_PREFIX_LEN) != 0) 920 return 0; 921 922 /* 923 * For XATTR_NAME_CAPS the check will be done in 924 * cap_convert_nscap(), called by setxattr() 925 */ 926 if (strcmp(name, XATTR_NAME_CAPS) == 0) 927 return 0; 928 929 if (!ns_capable(user_ns, CAP_SYS_ADMIN)) 930 return -EPERM; 931 return 0; 932 } 933 934 /** 935 * cap_inode_removexattr - Determine whether an xattr may be removed 936 * @dentry: The inode/dentry being altered 937 * @name: The name of the xattr to be changed 938 * 939 * Determine whether an xattr may be removed from an inode, returning 0 if 940 * permission is granted, -ve if denied. 941 * 942 * This is used to make sure security xattrs don't get removed by those who 943 * aren't privileged to remove them. 944 */ 945 int cap_inode_removexattr(struct dentry *dentry, const char *name) 946 { 947 struct user_namespace *user_ns = dentry->d_sb->s_user_ns; 948 949 /* Ignore non-security xattrs */ 950 if (strncmp(name, XATTR_SECURITY_PREFIX, 951 XATTR_SECURITY_PREFIX_LEN) != 0) 952 return 0; 953 954 if (strcmp(name, XATTR_NAME_CAPS) == 0) { 955 /* security.capability gets namespaced */ 956 struct inode *inode = d_backing_inode(dentry); 957 if (!inode) 958 return -EINVAL; 959 if (!capable_wrt_inode_uidgid(inode, CAP_SETFCAP)) 960 return -EPERM; 961 return 0; 962 } 963 964 if (!ns_capable(user_ns, CAP_SYS_ADMIN)) 965 return -EPERM; 966 return 0; 967 } 968 969 /* 970 * cap_emulate_setxuid() fixes the effective / permitted capabilities of 971 * a process after a call to setuid, setreuid, or setresuid. 972 * 973 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of 974 * {r,e,s}uid != 0, the permitted and effective capabilities are 975 * cleared. 976 * 977 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective 978 * capabilities of the process are cleared. 979 * 980 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective 981 * capabilities are set to the permitted capabilities. 982 * 983 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should 984 * never happen. 985 * 986 * -astor 987 * 988 * cevans - New behaviour, Oct '99 989 * A process may, via prctl(), elect to keep its capabilities when it 990 * calls setuid() and switches away from uid==0. Both permitted and 991 * effective sets will be retained. 992 * Without this change, it was impossible for a daemon to drop only some 993 * of its privilege. The call to setuid(!=0) would drop all privileges! 994 * Keeping uid 0 is not an option because uid 0 owns too many vital 995 * files.. 996 * Thanks to Olaf Kirch and Peter Benie for spotting this. 997 */ 998 static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old) 999 { 1000 kuid_t root_uid = make_kuid(old->user_ns, 0); 1001 1002 if ((uid_eq(old->uid, root_uid) || 1003 uid_eq(old->euid, root_uid) || 1004 uid_eq(old->suid, root_uid)) && 1005 (!uid_eq(new->uid, root_uid) && 1006 !uid_eq(new->euid, root_uid) && 1007 !uid_eq(new->suid, root_uid))) { 1008 if (!issecure(SECURE_KEEP_CAPS)) { 1009 cap_clear(new->cap_permitted); 1010 cap_clear(new->cap_effective); 1011 } 1012 1013 /* 1014 * Pre-ambient programs expect setresuid to nonroot followed 1015 * by exec to drop capabilities. We should make sure that 1016 * this remains the case. 1017 */ 1018 cap_clear(new->cap_ambient); 1019 } 1020 if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid)) 1021 cap_clear(new->cap_effective); 1022 if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid)) 1023 new->cap_effective = new->cap_permitted; 1024 } 1025 1026 /** 1027 * cap_task_fix_setuid - Fix up the results of setuid() call 1028 * @new: The proposed credentials 1029 * @old: The current task's current credentials 1030 * @flags: Indications of what has changed 1031 * 1032 * Fix up the results of setuid() call before the credential changes are 1033 * actually applied, returning 0 to grant the changes, -ve to deny them. 1034 */ 1035 int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags) 1036 { 1037 switch (flags) { 1038 case LSM_SETID_RE: 1039 case LSM_SETID_ID: 1040 case LSM_SETID_RES: 1041 /* juggle the capabilities to follow [RES]UID changes unless 1042 * otherwise suppressed */ 1043 if (!issecure(SECURE_NO_SETUID_FIXUP)) 1044 cap_emulate_setxuid(new, old); 1045 break; 1046 1047 case LSM_SETID_FS: 1048 /* juggle the capabilties to follow FSUID changes, unless 1049 * otherwise suppressed 1050 * 1051 * FIXME - is fsuser used for all CAP_FS_MASK capabilities? 1052 * if not, we might be a bit too harsh here. 1053 */ 1054 if (!issecure(SECURE_NO_SETUID_FIXUP)) { 1055 kuid_t root_uid = make_kuid(old->user_ns, 0); 1056 if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid)) 1057 new->cap_effective = 1058 cap_drop_fs_set(new->cap_effective); 1059 1060 if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid)) 1061 new->cap_effective = 1062 cap_raise_fs_set(new->cap_effective, 1063 new->cap_permitted); 1064 } 1065 break; 1066 1067 default: 1068 return -EINVAL; 1069 } 1070 1071 return 0; 1072 } 1073 1074 /* 1075 * Rationale: code calling task_setscheduler, task_setioprio, and 1076 * task_setnice, assumes that 1077 * . if capable(cap_sys_nice), then those actions should be allowed 1078 * . if not capable(cap_sys_nice), but acting on your own processes, 1079 * then those actions should be allowed 1080 * This is insufficient now since you can call code without suid, but 1081 * yet with increased caps. 1082 * So we check for increased caps on the target process. 1083 */ 1084 static int cap_safe_nice(struct task_struct *p) 1085 { 1086 int is_subset, ret = 0; 1087 1088 rcu_read_lock(); 1089 is_subset = cap_issubset(__task_cred(p)->cap_permitted, 1090 current_cred()->cap_permitted); 1091 if (!is_subset && !ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) 1092 ret = -EPERM; 1093 rcu_read_unlock(); 1094 1095 return ret; 1096 } 1097 1098 /** 1099 * cap_task_setscheduler - Detemine if scheduler policy change is permitted 1100 * @p: The task to affect 1101 * 1102 * Detemine if the requested scheduler policy change is permitted for the 1103 * specified task, returning 0 if permission is granted, -ve if denied. 1104 */ 1105 int cap_task_setscheduler(struct task_struct *p) 1106 { 1107 return cap_safe_nice(p); 1108 } 1109 1110 /** 1111 * cap_task_ioprio - Detemine if I/O priority change is permitted 1112 * @p: The task to affect 1113 * @ioprio: The I/O priority to set 1114 * 1115 * Detemine if the requested I/O priority change is permitted for the specified 1116 * task, returning 0 if permission is granted, -ve if denied. 1117 */ 1118 int cap_task_setioprio(struct task_struct *p, int ioprio) 1119 { 1120 return cap_safe_nice(p); 1121 } 1122 1123 /** 1124 * cap_task_ioprio - Detemine if task priority change is permitted 1125 * @p: The task to affect 1126 * @nice: The nice value to set 1127 * 1128 * Detemine if the requested task priority change is permitted for the 1129 * specified task, returning 0 if permission is granted, -ve if denied. 1130 */ 1131 int cap_task_setnice(struct task_struct *p, int nice) 1132 { 1133 return cap_safe_nice(p); 1134 } 1135 1136 /* 1137 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from 1138 * the current task's bounding set. Returns 0 on success, -ve on error. 1139 */ 1140 static int cap_prctl_drop(unsigned long cap) 1141 { 1142 struct cred *new; 1143 1144 if (!ns_capable(current_user_ns(), CAP_SETPCAP)) 1145 return -EPERM; 1146 if (!cap_valid(cap)) 1147 return -EINVAL; 1148 1149 new = prepare_creds(); 1150 if (!new) 1151 return -ENOMEM; 1152 cap_lower(new->cap_bset, cap); 1153 return commit_creds(new); 1154 } 1155 1156 /** 1157 * cap_task_prctl - Implement process control functions for this security module 1158 * @option: The process control function requested 1159 * @arg2, @arg3, @arg4, @arg5: The argument data for this function 1160 * 1161 * Allow process control functions (sys_prctl()) to alter capabilities; may 1162 * also deny access to other functions not otherwise implemented here. 1163 * 1164 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented 1165 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM 1166 * modules will consider performing the function. 1167 */ 1168 int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3, 1169 unsigned long arg4, unsigned long arg5) 1170 { 1171 const struct cred *old = current_cred(); 1172 struct cred *new; 1173 1174 switch (option) { 1175 case PR_CAPBSET_READ: 1176 if (!cap_valid(arg2)) 1177 return -EINVAL; 1178 return !!cap_raised(old->cap_bset, arg2); 1179 1180 case PR_CAPBSET_DROP: 1181 return cap_prctl_drop(arg2); 1182 1183 /* 1184 * The next four prctl's remain to assist with transitioning a 1185 * system from legacy UID=0 based privilege (when filesystem 1186 * capabilities are not in use) to a system using filesystem 1187 * capabilities only - as the POSIX.1e draft intended. 1188 * 1189 * Note: 1190 * 1191 * PR_SET_SECUREBITS = 1192 * issecure_mask(SECURE_KEEP_CAPS_LOCKED) 1193 * | issecure_mask(SECURE_NOROOT) 1194 * | issecure_mask(SECURE_NOROOT_LOCKED) 1195 * | issecure_mask(SECURE_NO_SETUID_FIXUP) 1196 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED) 1197 * 1198 * will ensure that the current process and all of its 1199 * children will be locked into a pure 1200 * capability-based-privilege environment. 1201 */ 1202 case PR_SET_SECUREBITS: 1203 if ((((old->securebits & SECURE_ALL_LOCKS) >> 1) 1204 & (old->securebits ^ arg2)) /*[1]*/ 1205 || ((old->securebits & SECURE_ALL_LOCKS & ~arg2)) /*[2]*/ 1206 || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/ 1207 || (cap_capable(current_cred(), 1208 current_cred()->user_ns, 1209 CAP_SETPCAP, 1210 CAP_OPT_NONE) != 0) /*[4]*/ 1211 /* 1212 * [1] no changing of bits that are locked 1213 * [2] no unlocking of locks 1214 * [3] no setting of unsupported bits 1215 * [4] doing anything requires privilege (go read about 1216 * the "sendmail capabilities bug") 1217 */ 1218 ) 1219 /* cannot change a locked bit */ 1220 return -EPERM; 1221 1222 new = prepare_creds(); 1223 if (!new) 1224 return -ENOMEM; 1225 new->securebits = arg2; 1226 return commit_creds(new); 1227 1228 case PR_GET_SECUREBITS: 1229 return old->securebits; 1230 1231 case PR_GET_KEEPCAPS: 1232 return !!issecure(SECURE_KEEP_CAPS); 1233 1234 case PR_SET_KEEPCAPS: 1235 if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */ 1236 return -EINVAL; 1237 if (issecure(SECURE_KEEP_CAPS_LOCKED)) 1238 return -EPERM; 1239 1240 new = prepare_creds(); 1241 if (!new) 1242 return -ENOMEM; 1243 if (arg2) 1244 new->securebits |= issecure_mask(SECURE_KEEP_CAPS); 1245 else 1246 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS); 1247 return commit_creds(new); 1248 1249 case PR_CAP_AMBIENT: 1250 if (arg2 == PR_CAP_AMBIENT_CLEAR_ALL) { 1251 if (arg3 | arg4 | arg5) 1252 return -EINVAL; 1253 1254 new = prepare_creds(); 1255 if (!new) 1256 return -ENOMEM; 1257 cap_clear(new->cap_ambient); 1258 return commit_creds(new); 1259 } 1260 1261 if (((!cap_valid(arg3)) | arg4 | arg5)) 1262 return -EINVAL; 1263 1264 if (arg2 == PR_CAP_AMBIENT_IS_SET) { 1265 return !!cap_raised(current_cred()->cap_ambient, arg3); 1266 } else if (arg2 != PR_CAP_AMBIENT_RAISE && 1267 arg2 != PR_CAP_AMBIENT_LOWER) { 1268 return -EINVAL; 1269 } else { 1270 if (arg2 == PR_CAP_AMBIENT_RAISE && 1271 (!cap_raised(current_cred()->cap_permitted, arg3) || 1272 !cap_raised(current_cred()->cap_inheritable, 1273 arg3) || 1274 issecure(SECURE_NO_CAP_AMBIENT_RAISE))) 1275 return -EPERM; 1276 1277 new = prepare_creds(); 1278 if (!new) 1279 return -ENOMEM; 1280 if (arg2 == PR_CAP_AMBIENT_RAISE) 1281 cap_raise(new->cap_ambient, arg3); 1282 else 1283 cap_lower(new->cap_ambient, arg3); 1284 return commit_creds(new); 1285 } 1286 1287 default: 1288 /* No functionality available - continue with default */ 1289 return -ENOSYS; 1290 } 1291 } 1292 1293 /** 1294 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted 1295 * @mm: The VM space in which the new mapping is to be made 1296 * @pages: The size of the mapping 1297 * 1298 * Determine whether the allocation of a new virtual mapping by the current 1299 * task is permitted, returning 1 if permission is granted, 0 if not. 1300 */ 1301 int cap_vm_enough_memory(struct mm_struct *mm, long pages) 1302 { 1303 int cap_sys_admin = 0; 1304 1305 if (cap_capable(current_cred(), &init_user_ns, 1306 CAP_SYS_ADMIN, CAP_OPT_NOAUDIT) == 0) 1307 cap_sys_admin = 1; 1308 1309 return cap_sys_admin; 1310 } 1311 1312 /* 1313 * cap_mmap_addr - check if able to map given addr 1314 * @addr: address attempting to be mapped 1315 * 1316 * If the process is attempting to map memory below dac_mmap_min_addr they need 1317 * CAP_SYS_RAWIO. The other parameters to this function are unused by the 1318 * capability security module. Returns 0 if this mapping should be allowed 1319 * -EPERM if not. 1320 */ 1321 int cap_mmap_addr(unsigned long addr) 1322 { 1323 int ret = 0; 1324 1325 if (addr < dac_mmap_min_addr) { 1326 ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO, 1327 CAP_OPT_NONE); 1328 /* set PF_SUPERPRIV if it turns out we allow the low mmap */ 1329 if (ret == 0) 1330 current->flags |= PF_SUPERPRIV; 1331 } 1332 return ret; 1333 } 1334 1335 int cap_mmap_file(struct file *file, unsigned long reqprot, 1336 unsigned long prot, unsigned long flags) 1337 { 1338 return 0; 1339 } 1340 1341 #ifdef CONFIG_SECURITY 1342 1343 static struct security_hook_list capability_hooks[] __lsm_ro_after_init = { 1344 LSM_HOOK_INIT(capable, cap_capable), 1345 LSM_HOOK_INIT(settime, cap_settime), 1346 LSM_HOOK_INIT(ptrace_access_check, cap_ptrace_access_check), 1347 LSM_HOOK_INIT(ptrace_traceme, cap_ptrace_traceme), 1348 LSM_HOOK_INIT(capget, cap_capget), 1349 LSM_HOOK_INIT(capset, cap_capset), 1350 LSM_HOOK_INIT(bprm_creds_from_file, cap_bprm_creds_from_file), 1351 LSM_HOOK_INIT(inode_need_killpriv, cap_inode_need_killpriv), 1352 LSM_HOOK_INIT(inode_killpriv, cap_inode_killpriv), 1353 LSM_HOOK_INIT(inode_getsecurity, cap_inode_getsecurity), 1354 LSM_HOOK_INIT(mmap_addr, cap_mmap_addr), 1355 LSM_HOOK_INIT(mmap_file, cap_mmap_file), 1356 LSM_HOOK_INIT(task_fix_setuid, cap_task_fix_setuid), 1357 LSM_HOOK_INIT(task_prctl, cap_task_prctl), 1358 LSM_HOOK_INIT(task_setscheduler, cap_task_setscheduler), 1359 LSM_HOOK_INIT(task_setioprio, cap_task_setioprio), 1360 LSM_HOOK_INIT(task_setnice, cap_task_setnice), 1361 LSM_HOOK_INIT(vm_enough_memory, cap_vm_enough_memory), 1362 }; 1363 1364 static int __init capability_init(void) 1365 { 1366 security_add_hooks(capability_hooks, ARRAY_SIZE(capability_hooks), 1367 "capability"); 1368 return 0; 1369 } 1370 1371 DEFINE_LSM(capability) = { 1372 .name = "capability", 1373 .order = LSM_ORDER_FIRST, 1374 .init = capability_init, 1375 }; 1376 1377 #endif /* CONFIG_SECURITY */ 1378