xref: /openbmc/linux/security/commoncap.c (revision 64c70b1c)
1 /* Common capabilities, needed by capability.o and root_plug.o
2  *
3  *	This program is free software; you can redistribute it and/or modify
4  *	it under the terms of the GNU General Public License as published by
5  *	the Free Software Foundation; either version 2 of the License, or
6  *	(at your option) any later version.
7  *
8  */
9 
10 #include <linux/capability.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/security.h>
15 #include <linux/file.h>
16 #include <linux/mm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/skbuff.h>
21 #include <linux/netlink.h>
22 #include <linux/ptrace.h>
23 #include <linux/xattr.h>
24 #include <linux/hugetlb.h>
25 
26 int cap_netlink_send(struct sock *sk, struct sk_buff *skb)
27 {
28 	NETLINK_CB(skb).eff_cap = current->cap_effective;
29 	return 0;
30 }
31 
32 EXPORT_SYMBOL(cap_netlink_send);
33 
34 int cap_netlink_recv(struct sk_buff *skb, int cap)
35 {
36 	if (!cap_raised(NETLINK_CB(skb).eff_cap, cap))
37 		return -EPERM;
38 	return 0;
39 }
40 
41 EXPORT_SYMBOL(cap_netlink_recv);
42 
43 int cap_capable (struct task_struct *tsk, int cap)
44 {
45 	/* Derived from include/linux/sched.h:capable. */
46 	if (cap_raised(tsk->cap_effective, cap))
47 		return 0;
48 	return -EPERM;
49 }
50 
51 int cap_settime(struct timespec *ts, struct timezone *tz)
52 {
53 	if (!capable(CAP_SYS_TIME))
54 		return -EPERM;
55 	return 0;
56 }
57 
58 int cap_ptrace (struct task_struct *parent, struct task_struct *child)
59 {
60 	/* Derived from arch/i386/kernel/ptrace.c:sys_ptrace. */
61 	if (!cap_issubset(child->cap_permitted, parent->cap_permitted) &&
62 	    !__capable(parent, CAP_SYS_PTRACE))
63 		return -EPERM;
64 	return 0;
65 }
66 
67 int cap_capget (struct task_struct *target, kernel_cap_t *effective,
68 		kernel_cap_t *inheritable, kernel_cap_t *permitted)
69 {
70 	/* Derived from kernel/capability.c:sys_capget. */
71 	*effective = cap_t (target->cap_effective);
72 	*inheritable = cap_t (target->cap_inheritable);
73 	*permitted = cap_t (target->cap_permitted);
74 	return 0;
75 }
76 
77 int cap_capset_check (struct task_struct *target, kernel_cap_t *effective,
78 		      kernel_cap_t *inheritable, kernel_cap_t *permitted)
79 {
80 	/* Derived from kernel/capability.c:sys_capset. */
81 	/* verify restrictions on target's new Inheritable set */
82 	if (!cap_issubset (*inheritable,
83 			   cap_combine (target->cap_inheritable,
84 					current->cap_permitted))) {
85 		return -EPERM;
86 	}
87 
88 	/* verify restrictions on target's new Permitted set */
89 	if (!cap_issubset (*permitted,
90 			   cap_combine (target->cap_permitted,
91 					current->cap_permitted))) {
92 		return -EPERM;
93 	}
94 
95 	/* verify the _new_Effective_ is a subset of the _new_Permitted_ */
96 	if (!cap_issubset (*effective, *permitted)) {
97 		return -EPERM;
98 	}
99 
100 	return 0;
101 }
102 
103 void cap_capset_set (struct task_struct *target, kernel_cap_t *effective,
104 		     kernel_cap_t *inheritable, kernel_cap_t *permitted)
105 {
106 	target->cap_effective = *effective;
107 	target->cap_inheritable = *inheritable;
108 	target->cap_permitted = *permitted;
109 }
110 
111 int cap_bprm_set_security (struct linux_binprm *bprm)
112 {
113 	/* Copied from fs/exec.c:prepare_binprm. */
114 
115 	/* We don't have VFS support for capabilities yet */
116 	cap_clear (bprm->cap_inheritable);
117 	cap_clear (bprm->cap_permitted);
118 	cap_clear (bprm->cap_effective);
119 
120 	/*  To support inheritance of root-permissions and suid-root
121 	 *  executables under compatibility mode, we raise all three
122 	 *  capability sets for the file.
123 	 *
124 	 *  If only the real uid is 0, we only raise the inheritable
125 	 *  and permitted sets of the executable file.
126 	 */
127 
128 	if (!issecure (SECURE_NOROOT)) {
129 		if (bprm->e_uid == 0 || current->uid == 0) {
130 			cap_set_full (bprm->cap_inheritable);
131 			cap_set_full (bprm->cap_permitted);
132 		}
133 		if (bprm->e_uid == 0)
134 			cap_set_full (bprm->cap_effective);
135 	}
136 	return 0;
137 }
138 
139 void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
140 {
141 	/* Derived from fs/exec.c:compute_creds. */
142 	kernel_cap_t new_permitted, working;
143 
144 	new_permitted = cap_intersect (bprm->cap_permitted, cap_bset);
145 	working = cap_intersect (bprm->cap_inheritable,
146 				 current->cap_inheritable);
147 	new_permitted = cap_combine (new_permitted, working);
148 
149 	if (bprm->e_uid != current->uid || bprm->e_gid != current->gid ||
150 	    !cap_issubset (new_permitted, current->cap_permitted)) {
151 		current->mm->dumpable = suid_dumpable;
152 
153 		if (unsafe & ~LSM_UNSAFE_PTRACE_CAP) {
154 			if (!capable(CAP_SETUID)) {
155 				bprm->e_uid = current->uid;
156 				bprm->e_gid = current->gid;
157 			}
158 			if (!capable (CAP_SETPCAP)) {
159 				new_permitted = cap_intersect (new_permitted,
160 							current->cap_permitted);
161 			}
162 		}
163 	}
164 
165 	current->suid = current->euid = current->fsuid = bprm->e_uid;
166 	current->sgid = current->egid = current->fsgid = bprm->e_gid;
167 
168 	/* For init, we want to retain the capabilities set
169 	 * in the init_task struct. Thus we skip the usual
170 	 * capability rules */
171 	if (!is_init(current)) {
172 		current->cap_permitted = new_permitted;
173 		current->cap_effective =
174 		    cap_intersect (new_permitted, bprm->cap_effective);
175 	}
176 
177 	/* AUD: Audit candidate if current->cap_effective is set */
178 
179 	current->keep_capabilities = 0;
180 }
181 
182 int cap_bprm_secureexec (struct linux_binprm *bprm)
183 {
184 	/* If/when this module is enhanced to incorporate capability
185 	   bits on files, the test below should be extended to also perform a
186 	   test between the old and new capability sets.  For now,
187 	   it simply preserves the legacy decision algorithm used by
188 	   the old userland. */
189 	return (current->euid != current->uid ||
190 		current->egid != current->gid);
191 }
192 
193 int cap_inode_setxattr(struct dentry *dentry, char *name, void *value,
194 		       size_t size, int flags)
195 {
196 	if (!strncmp(name, XATTR_SECURITY_PREFIX,
197 		     sizeof(XATTR_SECURITY_PREFIX) - 1)  &&
198 	    !capable(CAP_SYS_ADMIN))
199 		return -EPERM;
200 	return 0;
201 }
202 
203 int cap_inode_removexattr(struct dentry *dentry, char *name)
204 {
205 	if (!strncmp(name, XATTR_SECURITY_PREFIX,
206 		     sizeof(XATTR_SECURITY_PREFIX) - 1)  &&
207 	    !capable(CAP_SYS_ADMIN))
208 		return -EPERM;
209 	return 0;
210 }
211 
212 /* moved from kernel/sys.c. */
213 /*
214  * cap_emulate_setxuid() fixes the effective / permitted capabilities of
215  * a process after a call to setuid, setreuid, or setresuid.
216  *
217  *  1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
218  *  {r,e,s}uid != 0, the permitted and effective capabilities are
219  *  cleared.
220  *
221  *  2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
222  *  capabilities of the process are cleared.
223  *
224  *  3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
225  *  capabilities are set to the permitted capabilities.
226  *
227  *  fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
228  *  never happen.
229  *
230  *  -astor
231  *
232  * cevans - New behaviour, Oct '99
233  * A process may, via prctl(), elect to keep its capabilities when it
234  * calls setuid() and switches away from uid==0. Both permitted and
235  * effective sets will be retained.
236  * Without this change, it was impossible for a daemon to drop only some
237  * of its privilege. The call to setuid(!=0) would drop all privileges!
238  * Keeping uid 0 is not an option because uid 0 owns too many vital
239  * files..
240  * Thanks to Olaf Kirch and Peter Benie for spotting this.
241  */
242 static inline void cap_emulate_setxuid (int old_ruid, int old_euid,
243 					int old_suid)
244 {
245 	if ((old_ruid == 0 || old_euid == 0 || old_suid == 0) &&
246 	    (current->uid != 0 && current->euid != 0 && current->suid != 0) &&
247 	    !current->keep_capabilities) {
248 		cap_clear (current->cap_permitted);
249 		cap_clear (current->cap_effective);
250 	}
251 	if (old_euid == 0 && current->euid != 0) {
252 		cap_clear (current->cap_effective);
253 	}
254 	if (old_euid != 0 && current->euid == 0) {
255 		current->cap_effective = current->cap_permitted;
256 	}
257 }
258 
259 int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid,
260 			  int flags)
261 {
262 	switch (flags) {
263 	case LSM_SETID_RE:
264 	case LSM_SETID_ID:
265 	case LSM_SETID_RES:
266 		/* Copied from kernel/sys.c:setreuid/setuid/setresuid. */
267 		if (!issecure (SECURE_NO_SETUID_FIXUP)) {
268 			cap_emulate_setxuid (old_ruid, old_euid, old_suid);
269 		}
270 		break;
271 	case LSM_SETID_FS:
272 		{
273 			uid_t old_fsuid = old_ruid;
274 
275 			/* Copied from kernel/sys.c:setfsuid. */
276 
277 			/*
278 			 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
279 			 *          if not, we might be a bit too harsh here.
280 			 */
281 
282 			if (!issecure (SECURE_NO_SETUID_FIXUP)) {
283 				if (old_fsuid == 0 && current->fsuid != 0) {
284 					cap_t (current->cap_effective) &=
285 					    ~CAP_FS_MASK;
286 				}
287 				if (old_fsuid != 0 && current->fsuid == 0) {
288 					cap_t (current->cap_effective) |=
289 					    (cap_t (current->cap_permitted) &
290 					     CAP_FS_MASK);
291 				}
292 			}
293 			break;
294 		}
295 	default:
296 		return -EINVAL;
297 	}
298 
299 	return 0;
300 }
301 
302 void cap_task_reparent_to_init (struct task_struct *p)
303 {
304 	p->cap_effective = CAP_INIT_EFF_SET;
305 	p->cap_inheritable = CAP_INIT_INH_SET;
306 	p->cap_permitted = CAP_FULL_SET;
307 	p->keep_capabilities = 0;
308 	return;
309 }
310 
311 int cap_syslog (int type)
312 {
313 	if ((type != 3 && type != 10) && !capable(CAP_SYS_ADMIN))
314 		return -EPERM;
315 	return 0;
316 }
317 
318 int cap_vm_enough_memory(long pages)
319 {
320 	int cap_sys_admin = 0;
321 
322 	if (cap_capable(current, CAP_SYS_ADMIN) == 0)
323 		cap_sys_admin = 1;
324 	return __vm_enough_memory(pages, cap_sys_admin);
325 }
326 
327 EXPORT_SYMBOL(cap_capable);
328 EXPORT_SYMBOL(cap_settime);
329 EXPORT_SYMBOL(cap_ptrace);
330 EXPORT_SYMBOL(cap_capget);
331 EXPORT_SYMBOL(cap_capset_check);
332 EXPORT_SYMBOL(cap_capset_set);
333 EXPORT_SYMBOL(cap_bprm_set_security);
334 EXPORT_SYMBOL(cap_bprm_apply_creds);
335 EXPORT_SYMBOL(cap_bprm_secureexec);
336 EXPORT_SYMBOL(cap_inode_setxattr);
337 EXPORT_SYMBOL(cap_inode_removexattr);
338 EXPORT_SYMBOL(cap_task_post_setuid);
339 EXPORT_SYMBOL(cap_task_reparent_to_init);
340 EXPORT_SYMBOL(cap_syslog);
341 EXPORT_SYMBOL(cap_vm_enough_memory);
342 
343 MODULE_DESCRIPTION("Standard Linux Common Capabilities Security Module");
344 MODULE_LICENSE("GPL");
345