xref: /openbmc/linux/security/commoncap.c (revision 643d1f7f)
1 /* Common capabilities, needed by capability.o and root_plug.o
2  *
3  *	This program is free software; you can redistribute it and/or modify
4  *	it under the terms of the GNU General Public License as published by
5  *	the Free Software Foundation; either version 2 of the License, or
6  *	(at your option) any later version.
7  *
8  */
9 
10 #include <linux/capability.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/security.h>
15 #include <linux/file.h>
16 #include <linux/mm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/skbuff.h>
21 #include <linux/netlink.h>
22 #include <linux/ptrace.h>
23 #include <linux/xattr.h>
24 #include <linux/hugetlb.h>
25 #include <linux/mount.h>
26 #include <linux/sched.h>
27 
28 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
29 /*
30  * Because of the reduced scope of CAP_SETPCAP when filesystem
31  * capabilities are in effect, it is safe to allow this capability to
32  * be available in the default configuration.
33  */
34 # define CAP_INIT_BSET  CAP_FULL_SET
35 #else /* ie. ndef CONFIG_SECURITY_FILE_CAPABILITIES */
36 # define CAP_INIT_BSET  CAP_INIT_EFF_SET
37 #endif /* def CONFIG_SECURITY_FILE_CAPABILITIES */
38 
39 kernel_cap_t cap_bset = CAP_INIT_BSET;    /* systemwide capability bound */
40 EXPORT_SYMBOL(cap_bset);
41 
42 /* Global security state */
43 
44 unsigned securebits = SECUREBITS_DEFAULT; /* systemwide security settings */
45 EXPORT_SYMBOL(securebits);
46 
47 int cap_netlink_send(struct sock *sk, struct sk_buff *skb)
48 {
49 	NETLINK_CB(skb).eff_cap = current->cap_effective;
50 	return 0;
51 }
52 
53 int cap_netlink_recv(struct sk_buff *skb, int cap)
54 {
55 	if (!cap_raised(NETLINK_CB(skb).eff_cap, cap))
56 		return -EPERM;
57 	return 0;
58 }
59 
60 EXPORT_SYMBOL(cap_netlink_recv);
61 
62 /*
63  * NOTE WELL: cap_capable() cannot be used like the kernel's capable()
64  * function.  That is, it has the reverse semantics: cap_capable()
65  * returns 0 when a task has a capability, but the kernel's capable()
66  * returns 1 for this case.
67  */
68 int cap_capable (struct task_struct *tsk, int cap)
69 {
70 	/* Derived from include/linux/sched.h:capable. */
71 	if (cap_raised(tsk->cap_effective, cap))
72 		return 0;
73 	return -EPERM;
74 }
75 
76 int cap_settime(struct timespec *ts, struct timezone *tz)
77 {
78 	if (!capable(CAP_SYS_TIME))
79 		return -EPERM;
80 	return 0;
81 }
82 
83 int cap_ptrace (struct task_struct *parent, struct task_struct *child)
84 {
85 	/* Derived from arch/i386/kernel/ptrace.c:sys_ptrace. */
86 	if (!cap_issubset(child->cap_permitted, parent->cap_permitted) &&
87 	    !__capable(parent, CAP_SYS_PTRACE))
88 		return -EPERM;
89 	return 0;
90 }
91 
92 int cap_capget (struct task_struct *target, kernel_cap_t *effective,
93 		kernel_cap_t *inheritable, kernel_cap_t *permitted)
94 {
95 	/* Derived from kernel/capability.c:sys_capget. */
96 	*effective = cap_t (target->cap_effective);
97 	*inheritable = cap_t (target->cap_inheritable);
98 	*permitted = cap_t (target->cap_permitted);
99 	return 0;
100 }
101 
102 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
103 
104 static inline int cap_block_setpcap(struct task_struct *target)
105 {
106 	/*
107 	 * No support for remote process capability manipulation with
108 	 * filesystem capability support.
109 	 */
110 	return (target != current);
111 }
112 
113 static inline int cap_inh_is_capped(void)
114 {
115 	/*
116 	 * Return 1 if changes to the inheritable set are limited
117 	 * to the old permitted set. That is, if the current task
118 	 * does *not* possess the CAP_SETPCAP capability.
119 	 */
120 	return (cap_capable(current, CAP_SETPCAP) != 0);
121 }
122 
123 #else /* ie., ndef CONFIG_SECURITY_FILE_CAPABILITIES */
124 
125 static inline int cap_block_setpcap(struct task_struct *t) { return 0; }
126 static inline int cap_inh_is_capped(void) { return 1; }
127 
128 #endif /* def CONFIG_SECURITY_FILE_CAPABILITIES */
129 
130 int cap_capset_check (struct task_struct *target, kernel_cap_t *effective,
131 		      kernel_cap_t *inheritable, kernel_cap_t *permitted)
132 {
133 	if (cap_block_setpcap(target)) {
134 		return -EPERM;
135 	}
136 	if (cap_inh_is_capped()
137 	    && !cap_issubset(*inheritable,
138 			     cap_combine(target->cap_inheritable,
139 					 current->cap_permitted))) {
140 		/* incapable of using this inheritable set */
141 		return -EPERM;
142 	}
143 
144 	/* verify restrictions on target's new Permitted set */
145 	if (!cap_issubset (*permitted,
146 			   cap_combine (target->cap_permitted,
147 					current->cap_permitted))) {
148 		return -EPERM;
149 	}
150 
151 	/* verify the _new_Effective_ is a subset of the _new_Permitted_ */
152 	if (!cap_issubset (*effective, *permitted)) {
153 		return -EPERM;
154 	}
155 
156 	return 0;
157 }
158 
159 void cap_capset_set (struct task_struct *target, kernel_cap_t *effective,
160 		     kernel_cap_t *inheritable, kernel_cap_t *permitted)
161 {
162 	target->cap_effective = *effective;
163 	target->cap_inheritable = *inheritable;
164 	target->cap_permitted = *permitted;
165 }
166 
167 static inline void bprm_clear_caps(struct linux_binprm *bprm)
168 {
169 	cap_clear(bprm->cap_inheritable);
170 	cap_clear(bprm->cap_permitted);
171 	bprm->cap_effective = false;
172 }
173 
174 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
175 
176 int cap_inode_need_killpriv(struct dentry *dentry)
177 {
178 	struct inode *inode = dentry->d_inode;
179 	int error;
180 
181 	if (!inode->i_op || !inode->i_op->getxattr)
182 	       return 0;
183 
184 	error = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0);
185 	if (error <= 0)
186 		return 0;
187 	return 1;
188 }
189 
190 int cap_inode_killpriv(struct dentry *dentry)
191 {
192 	struct inode *inode = dentry->d_inode;
193 
194 	if (!inode->i_op || !inode->i_op->removexattr)
195 	       return 0;
196 
197 	return inode->i_op->removexattr(dentry, XATTR_NAME_CAPS);
198 }
199 
200 static inline int cap_from_disk(struct vfs_cap_data *caps,
201 				struct linux_binprm *bprm,
202 				int size)
203 {
204 	__u32 magic_etc;
205 
206 	if (size != XATTR_CAPS_SZ)
207 		return -EINVAL;
208 
209 	magic_etc = le32_to_cpu(caps->magic_etc);
210 
211 	switch ((magic_etc & VFS_CAP_REVISION_MASK)) {
212 	case VFS_CAP_REVISION:
213 		if (magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
214 			bprm->cap_effective = true;
215 		else
216 			bprm->cap_effective = false;
217 		bprm->cap_permitted = to_cap_t(le32_to_cpu(caps->permitted));
218 		bprm->cap_inheritable = to_cap_t(le32_to_cpu(caps->inheritable));
219 		return 0;
220 	default:
221 		return -EINVAL;
222 	}
223 }
224 
225 /* Locate any VFS capabilities: */
226 static int get_file_caps(struct linux_binprm *bprm)
227 {
228 	struct dentry *dentry;
229 	int rc = 0;
230 	struct vfs_cap_data incaps;
231 	struct inode *inode;
232 
233 	if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID) {
234 		bprm_clear_caps(bprm);
235 		return 0;
236 	}
237 
238 	dentry = dget(bprm->file->f_dentry);
239 	inode = dentry->d_inode;
240 	if (!inode->i_op || !inode->i_op->getxattr)
241 		goto out;
242 
243 	rc = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0);
244 	if (rc > 0) {
245 		if (rc == XATTR_CAPS_SZ)
246 			rc = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS,
247 						&incaps, XATTR_CAPS_SZ);
248 		else
249 			rc = -EINVAL;
250 	}
251 	if (rc == -ENODATA || rc == -EOPNOTSUPP) {
252 		/* no data, that's ok */
253 		rc = 0;
254 		goto out;
255 	}
256 	if (rc < 0)
257 		goto out;
258 
259 	rc = cap_from_disk(&incaps, bprm, rc);
260 	if (rc)
261 		printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n",
262 			__FUNCTION__, rc, bprm->filename);
263 
264 out:
265 	dput(dentry);
266 	if (rc)
267 		bprm_clear_caps(bprm);
268 
269 	return rc;
270 }
271 
272 #else
273 int cap_inode_need_killpriv(struct dentry *dentry)
274 {
275 	return 0;
276 }
277 
278 int cap_inode_killpriv(struct dentry *dentry)
279 {
280 	return 0;
281 }
282 
283 static inline int get_file_caps(struct linux_binprm *bprm)
284 {
285 	bprm_clear_caps(bprm);
286 	return 0;
287 }
288 #endif
289 
290 int cap_bprm_set_security (struct linux_binprm *bprm)
291 {
292 	int ret;
293 
294 	ret = get_file_caps(bprm);
295 	if (ret)
296 		printk(KERN_NOTICE "%s: get_file_caps returned %d for %s\n",
297 			__FUNCTION__, ret, bprm->filename);
298 
299 	/*  To support inheritance of root-permissions and suid-root
300 	 *  executables under compatibility mode, we raise all three
301 	 *  capability sets for the file.
302 	 *
303 	 *  If only the real uid is 0, we only raise the inheritable
304 	 *  and permitted sets of the executable file.
305 	 */
306 
307 	if (!issecure (SECURE_NOROOT)) {
308 		if (bprm->e_uid == 0 || current->uid == 0) {
309 			cap_set_full (bprm->cap_inheritable);
310 			cap_set_full (bprm->cap_permitted);
311 		}
312 		if (bprm->e_uid == 0)
313 			bprm->cap_effective = true;
314 	}
315 
316 	return ret;
317 }
318 
319 void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
320 {
321 	/* Derived from fs/exec.c:compute_creds. */
322 	kernel_cap_t new_permitted, working;
323 
324 	new_permitted = cap_intersect (bprm->cap_permitted, cap_bset);
325 	working = cap_intersect (bprm->cap_inheritable,
326 				 current->cap_inheritable);
327 	new_permitted = cap_combine (new_permitted, working);
328 
329 	if (bprm->e_uid != current->uid || bprm->e_gid != current->gid ||
330 	    !cap_issubset (new_permitted, current->cap_permitted)) {
331 		set_dumpable(current->mm, suid_dumpable);
332 		current->pdeath_signal = 0;
333 
334 		if (unsafe & ~LSM_UNSAFE_PTRACE_CAP) {
335 			if (!capable(CAP_SETUID)) {
336 				bprm->e_uid = current->uid;
337 				bprm->e_gid = current->gid;
338 			}
339 			if (!capable (CAP_SETPCAP)) {
340 				new_permitted = cap_intersect (new_permitted,
341 							current->cap_permitted);
342 			}
343 		}
344 	}
345 
346 	current->suid = current->euid = current->fsuid = bprm->e_uid;
347 	current->sgid = current->egid = current->fsgid = bprm->e_gid;
348 
349 	/* For init, we want to retain the capabilities set
350 	 * in the init_task struct. Thus we skip the usual
351 	 * capability rules */
352 	if (!is_global_init(current)) {
353 		current->cap_permitted = new_permitted;
354 		current->cap_effective = bprm->cap_effective ?
355 				new_permitted : 0;
356 	}
357 
358 	/* AUD: Audit candidate if current->cap_effective is set */
359 
360 	current->keep_capabilities = 0;
361 }
362 
363 int cap_bprm_secureexec (struct linux_binprm *bprm)
364 {
365 	if (current->uid != 0) {
366 		if (bprm->cap_effective)
367 			return 1;
368 		if (!cap_isclear(bprm->cap_permitted))
369 			return 1;
370 		if (!cap_isclear(bprm->cap_inheritable))
371 			return 1;
372 	}
373 
374 	return (current->euid != current->uid ||
375 		current->egid != current->gid);
376 }
377 
378 int cap_inode_setxattr(struct dentry *dentry, char *name, void *value,
379 		       size_t size, int flags)
380 {
381 	if (!strcmp(name, XATTR_NAME_CAPS)) {
382 		if (!capable(CAP_SETFCAP))
383 			return -EPERM;
384 		return 0;
385 	} else if (!strncmp(name, XATTR_SECURITY_PREFIX,
386 		     sizeof(XATTR_SECURITY_PREFIX) - 1)  &&
387 	    !capable(CAP_SYS_ADMIN))
388 		return -EPERM;
389 	return 0;
390 }
391 
392 int cap_inode_removexattr(struct dentry *dentry, char *name)
393 {
394 	if (!strcmp(name, XATTR_NAME_CAPS)) {
395 		if (!capable(CAP_SETFCAP))
396 			return -EPERM;
397 		return 0;
398 	} else if (!strncmp(name, XATTR_SECURITY_PREFIX,
399 		     sizeof(XATTR_SECURITY_PREFIX) - 1)  &&
400 	    !capable(CAP_SYS_ADMIN))
401 		return -EPERM;
402 	return 0;
403 }
404 
405 /* moved from kernel/sys.c. */
406 /*
407  * cap_emulate_setxuid() fixes the effective / permitted capabilities of
408  * a process after a call to setuid, setreuid, or setresuid.
409  *
410  *  1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
411  *  {r,e,s}uid != 0, the permitted and effective capabilities are
412  *  cleared.
413  *
414  *  2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
415  *  capabilities of the process are cleared.
416  *
417  *  3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
418  *  capabilities are set to the permitted capabilities.
419  *
420  *  fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
421  *  never happen.
422  *
423  *  -astor
424  *
425  * cevans - New behaviour, Oct '99
426  * A process may, via prctl(), elect to keep its capabilities when it
427  * calls setuid() and switches away from uid==0. Both permitted and
428  * effective sets will be retained.
429  * Without this change, it was impossible for a daemon to drop only some
430  * of its privilege. The call to setuid(!=0) would drop all privileges!
431  * Keeping uid 0 is not an option because uid 0 owns too many vital
432  * files..
433  * Thanks to Olaf Kirch and Peter Benie for spotting this.
434  */
435 static inline void cap_emulate_setxuid (int old_ruid, int old_euid,
436 					int old_suid)
437 {
438 	if ((old_ruid == 0 || old_euid == 0 || old_suid == 0) &&
439 	    (current->uid != 0 && current->euid != 0 && current->suid != 0) &&
440 	    !current->keep_capabilities) {
441 		cap_clear (current->cap_permitted);
442 		cap_clear (current->cap_effective);
443 	}
444 	if (old_euid == 0 && current->euid != 0) {
445 		cap_clear (current->cap_effective);
446 	}
447 	if (old_euid != 0 && current->euid == 0) {
448 		current->cap_effective = current->cap_permitted;
449 	}
450 }
451 
452 int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid,
453 			  int flags)
454 {
455 	switch (flags) {
456 	case LSM_SETID_RE:
457 	case LSM_SETID_ID:
458 	case LSM_SETID_RES:
459 		/* Copied from kernel/sys.c:setreuid/setuid/setresuid. */
460 		if (!issecure (SECURE_NO_SETUID_FIXUP)) {
461 			cap_emulate_setxuid (old_ruid, old_euid, old_suid);
462 		}
463 		break;
464 	case LSM_SETID_FS:
465 		{
466 			uid_t old_fsuid = old_ruid;
467 
468 			/* Copied from kernel/sys.c:setfsuid. */
469 
470 			/*
471 			 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
472 			 *          if not, we might be a bit too harsh here.
473 			 */
474 
475 			if (!issecure (SECURE_NO_SETUID_FIXUP)) {
476 				if (old_fsuid == 0 && current->fsuid != 0) {
477 					cap_t (current->cap_effective) &=
478 					    ~CAP_FS_MASK;
479 				}
480 				if (old_fsuid != 0 && current->fsuid == 0) {
481 					cap_t (current->cap_effective) |=
482 					    (cap_t (current->cap_permitted) &
483 					     CAP_FS_MASK);
484 				}
485 			}
486 			break;
487 		}
488 	default:
489 		return -EINVAL;
490 	}
491 
492 	return 0;
493 }
494 
495 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
496 /*
497  * Rationale: code calling task_setscheduler, task_setioprio, and
498  * task_setnice, assumes that
499  *   . if capable(cap_sys_nice), then those actions should be allowed
500  *   . if not capable(cap_sys_nice), but acting on your own processes,
501  *   	then those actions should be allowed
502  * This is insufficient now since you can call code without suid, but
503  * yet with increased caps.
504  * So we check for increased caps on the target process.
505  */
506 static inline int cap_safe_nice(struct task_struct *p)
507 {
508 	if (!cap_issubset(p->cap_permitted, current->cap_permitted) &&
509 	    !__capable(current, CAP_SYS_NICE))
510 		return -EPERM;
511 	return 0;
512 }
513 
514 int cap_task_setscheduler (struct task_struct *p, int policy,
515 			   struct sched_param *lp)
516 {
517 	return cap_safe_nice(p);
518 }
519 
520 int cap_task_setioprio (struct task_struct *p, int ioprio)
521 {
522 	return cap_safe_nice(p);
523 }
524 
525 int cap_task_setnice (struct task_struct *p, int nice)
526 {
527 	return cap_safe_nice(p);
528 }
529 
530 int cap_task_kill(struct task_struct *p, struct siginfo *info,
531 				int sig, u32 secid)
532 {
533 	if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
534 		return 0;
535 
536 	/*
537 	 * Running a setuid root program raises your capabilities.
538 	 * Killing your own setuid root processes was previously
539 	 * allowed.
540 	 * We must preserve legacy signal behavior in this case.
541 	 */
542 	if (p->euid == 0 && p->uid == current->uid)
543 		return 0;
544 
545 	/* sigcont is permitted within same session */
546 	if (sig == SIGCONT && (task_session_nr(current) == task_session_nr(p)))
547 		return 0;
548 
549 	if (secid)
550 		/*
551 		 * Signal sent as a particular user.
552 		 * Capabilities are ignored.  May be wrong, but it's the
553 		 * only thing we can do at the moment.
554 		 * Used only by usb drivers?
555 		 */
556 		return 0;
557 	if (cap_issubset(p->cap_permitted, current->cap_permitted))
558 		return 0;
559 	if (capable(CAP_KILL))
560 		return 0;
561 
562 	return -EPERM;
563 }
564 #else
565 int cap_task_setscheduler (struct task_struct *p, int policy,
566 			   struct sched_param *lp)
567 {
568 	return 0;
569 }
570 int cap_task_setioprio (struct task_struct *p, int ioprio)
571 {
572 	return 0;
573 }
574 int cap_task_setnice (struct task_struct *p, int nice)
575 {
576 	return 0;
577 }
578 int cap_task_kill(struct task_struct *p, struct siginfo *info,
579 				int sig, u32 secid)
580 {
581 	return 0;
582 }
583 #endif
584 
585 void cap_task_reparent_to_init (struct task_struct *p)
586 {
587 	p->cap_effective = CAP_INIT_EFF_SET;
588 	p->cap_inheritable = CAP_INIT_INH_SET;
589 	p->cap_permitted = CAP_FULL_SET;
590 	p->keep_capabilities = 0;
591 	return;
592 }
593 
594 int cap_syslog (int type)
595 {
596 	if ((type != 3 && type != 10) && !capable(CAP_SYS_ADMIN))
597 		return -EPERM;
598 	return 0;
599 }
600 
601 int cap_vm_enough_memory(struct mm_struct *mm, long pages)
602 {
603 	int cap_sys_admin = 0;
604 
605 	if (cap_capable(current, CAP_SYS_ADMIN) == 0)
606 		cap_sys_admin = 1;
607 	return __vm_enough_memory(mm, pages, cap_sys_admin);
608 }
609 
610